

II concrete above the intermediate beam cap is included in the Estimated Quantities
or siab on concrete 1-Girder.

Foundation Data					
Type	Design Data	Bent Number			
		1	2	3	4
$\begin{gathered} \text { Load } \\ \text { Beoring } \\ \text { Pile } \end{gathered}$	Pile Type and Size	HP 12x53	---	---	HP 12×53
	Number ea	4	---	---	4
	Approximate Length per Each ft	30	---	---	19
	Pile Driving Verification Method	DF	---	---	DF
	Minimum Nominal Axial	505	---	---	505
	Hammer Energy Required ft-lb	16.200	---	---	16.200
$\begin{aligned} & \text { Rock } \\ & \text { Socket } \end{aligned}$	Number ea		2	2	
	- Foundation Material	---	Rock	Rock	--
	Elevation Range ft	---	838-835	844-839	---
		---	28.6	28.6	---
	~Foundation Material	---	Rock	Rock	--
	Elevation Range ft	---	835-821	839-830	---
		---	28.6	28.6	---
		---	12.0	12.0	---

Minimum Nominal Axial Compressive Resistance $=\underline{\text { Maximum Factored Loods }}$
 Manufactured pile point reinforcement shall be used on all piles in this structure performed on all drilled shofts and rock sockets.

General Notes:
Design Specifications
and AASHTO LRFD Bridge Design Specifications (6 th Ec.

Design Looding:

Design Unit Stresses:
Closs B Concrete (Substructure) $\quad f^{\prime} \mathrm{C}=3.000 \mathrm{psi}$
Closs B-2 Concrete (Drilled Shafts \& Rock Sockets) $\quad f^{\prime} \mathrm{C}=4.000 \mathrm{psi}$
Closs B-1 Concrete (Safety Barrier Curb) $\quad f^{\prime} C=4.000$ psi
$\begin{aligned} & \text { Closs B-2 Concrete (Superstructure, except } \\ & \text { Prestressed Girders ond Sofety Barrier Curb) }\end{aligned} \quad f^{\prime} \mathrm{C}=4.000 \mathrm{psi}$
Reinforcing Steel (Grade 60)
Steel Pile (ASTM A709 Grade
$c=4,000 \mathrm{ps}$
$y=60.000 \mathrm{ps}$

For prestressed girder stresses, see Sheets Nol. 14 \& 15
Neoprene Pads:
Plain and Laminated Neoprene Bearing. Pads shall be 60 durometer and
shall be in acoordance with sec 716 .
Joint filler:
All joint filler shall be in accordance with Sec 10.57 for preformed
sponge rubber expansion ond partition joint filler. except os noted.
Reinforcing Steel:
Minimum clearonce to reinforcing steel shall be $11 / 2^{\prime \prime}$. unless
otherwise shown.
Traffic Hondling:
Structure to be closed dur ing construction. Traffic to be maintained
on other routes during construction. See roadway plons for traffic control
Miscelloneous:

LOCATION SKETCH

See EPG 751.35.5.

EIEVATION OF WING
ELEVATION OF WING

Cut coupler f
with finished
gound 1 ine
elevation of wing
OPTIONAL TURNED DRAIN
conly if rock is ent untered at outside of wind

DETAIL A

Note:

Crain pipe may be either 6-inch diameter corrugoted
netallic-coated steel pipe underdrain. 4 -inch diome
metallic-coatel seel pipe underdrain 4-inch di ameter
Corrugated polyvinyl chioride (PVC) drain pipe, or 4 -ino
-

Perforated pipe shall be placed at fill face side ot the
bottom of end bent and ploinpipe shall be used where the
Perforated pipe shall be placed at fill foce side at the
botom of end bent and plan pipe shal be used where the
vertical drain ends to the exit at ground line.

section thru key

STEEL PILEE SPLICE

General Notes:
For details of
see Shot
foe Sheets No. 12 \& 13 .
send
stronds at end of bent or. if necessary. cut sholl be field mointain $11^{1 / 2} 2^{\prime \prime}$ minimum clearance to fill
foce of end bent. Bend \#6-F 40 \& \#6-F42 bars in field to clear
girders. For locotion of Coil Tie Rods and \#4-H45
(Strond Tie Bar), see Sheet No. 14 . For details of Vertical Drain ot End Bents,
see Sheet No. 6 . All concrete in the end bent above top of
beam ond below top of slob shall be Closs B-2 All U-bars shall be placed parallel to
\& Roodway.
For Elevations D-D \& E-E, see Sheet No. 13.
For details of Bridge Approach Slab, see Sheet No. 26
f required)
$\underset{\substack{\text { CoUNTY } \\ \text { VERNON }}}{\text { U. }}$

VERNON
JTSB NO
7 SO 46

${ }^{\text {Contract }}$ ID

DETAIL A

These quantities are included in the Estimated Quantities
toble on Sheet No. 2.

General Notes:

For details of End Bent No. 4 not shown.
see Sheets No. 11 \& 13.
All U-bars and Pr. V-bars shall be placed
porollel to \& Roadway.
For details of Vertical Droin at End Bents.
see Sheet No. 6 .
PLAN OF BEAM SHOWING REINFORCEMENT

* 4 Spaces ${ }^{6} 6$

For Sections A-A, B-B \& C-C, see Sheet No. 13
Al concrete in the end bent obove top of
beam ond below top of slob sholl be Class B-2
All vertical reinforcing, bars in the substructure
beams or cops shal bil be tield odjusted to cleor
piles by ot leost $1 / 1 / 2^{\prime \prime}$.

ELEVATION D-D

DETAILS OF END BENT NO. 4

PLAN SHOWING LOCATION OF STEEL INTERMEDIATE DIAPHRAGMS

 skew, precost panels or cast in ploce silab.) type,

SECTION C-C

STEEL DIAPHRAGM NOTES:
(*) In I ieu of $21 / 2^{\prime \prime}$ outside diameter washers. contractor may substitute o. 3/16" (Min.
thickness) plate with four $15 / 116^{\prime \prime} \varnothing$ hol es and one hordened washer per bolt.
 luding bols. and washers shall be galvonized. fabricated structural steel shall be ASTM A709 Grode 36 except os noted. Poyment for furnishing ond instolling steel intermedi ote diaphrogms will be considered
completely Covered by the controct unit price for Steel intermediate Diaphrogm for P/S concrete Girders.
shop drawings will not be required for steel intermediate diaphragms and angle connections.

$$
\begin{aligned}
& \begin{array}{l}
\text { Use quarter points for spans, less than } 7{ }^{\text {T }} \\
\text { Use tenth points for spons } 75 \text { or more. }
\end{array}
\end{aligned}
$$

Theoretical Bot+om of Slab Elevations at \& of Girder (Prior to forming for slab) **											
$\begin{aligned} & \text { Girder } \\ & \text { Number } \end{aligned}$	Span (1-2) ($58^{\prime}-3^{\prime \prime}$ \& brg. - \& brg.)										
	\& brg.	. 25	. 50	. 75	\& brg.						
1	875.75	875.84	875.92	875.99	876.05						
2	875.98	876.06	876.14	876.21	876.27						
3	875.84	875.92	876.00	876.07	876.13						
				Span 1	(2-3) 191	-6" \& br	9. - q	brg.)			
	¢ brg.	. 10	. 20	. 30	. 40	. 50	. 60	. 70	. 80	90	\& brg.
1	876.05	876.13	876.21	876.28	876.34	876.39	876.43	876.46	876.48	876.50	876.51
2	876.28	876.36	876.44	876.52	876.58	876.63	876.67	876.70	876.72	876.73	876.73
3	876.14	876.22	876.29	876.36	876.42	876.47	876.51	876.55	876.57	876.58	876.59
	Span	(3-4)	58'-3" q	brg.	\& brg.)						
	¢ brg.	. 25	. 50	. 75	¢ brg.						
1	876.52	876.60	876.68	876.75	876.81						
2	876.74	876.83	876.91	876.97	877.03						
3	876.60	876.69	876.77	876.83	876.89						

Cell in Tasks: Slob sheet Details Bottom Sian

TYPICAL SLAB ELEVATIONS DIAGRAM

Cell in Tosks: Slab Sheet detai (P/S Gircer Comer Diogrom) Fill in informotion from desion.

GIRDER CAMBER DIAGRAM
If girder camber is different from that shown in the camber diagram, in order
to mointoin minimum slob thickness odjustment of the slab hounches. on increase - mointain minimum slab thickness adjustment of the slab haunches. on increase
n slab thickness or a raise in grode uniformly throughout the structure shall

Concrete in the slab hounches is included in the Estimated Quantities for slab
on Concrete I-Girder.
Conversion foctors for girder camber (estimated ot 90 days

$0.25 \mathrm{pt} .=0.7125 \times 0.5 \mathrm{pt}$
connty
VERNON
VERNON

Job No.
JTSO546
CONTRACT 10.

${ }_{\text {PROUEGT No. }}^{\text {Contract }}$
BRIDEE No.
EXAMLE

(

This portion drawn by detailer

$$
\begin{aligned}
& \text { PART PLAN SHOWING PILE \& } \\
& \text { DRILLED SHAFT NUMBERING FOR } \\
& \text { RECORDING AS-BUILT PILE DATA } \\
& \text { \& AS-BUILT DRILLED SHAFT DATA }
\end{aligned}
$$

Modify tables as needed

As-Built Pile Data			
Pile No.		Computed Nominal Axial Compressive Resistance (kips)	Remarks
			End Bent No. 1
1			
2			
3			
4			
			Intermediate Bent No. 3
5			
6			
7			
8			
9			
			End Bent No. 4
10			
11			
12			
13			

Coordinate System: Modified U.S. State Plane 1983 Coordinate Zone: Missouri East _Coordinate Proi. Factor: 1000078 Coordinate Datum: NAD 83 (CONUS) Coordinate Units: 1 S Sinev Fer \qquad

