

Estimated Quantities				
Item		Substr.	Superstr.	Total
Class 1 Excavation	cu. yard	80		
Removal of Bridges (X-186)	Iump sum			
Drilled Shafts (3 ft .6 in . Dia.)	linear foot	94		94
Rock Sockets (3 ft . 0 in. Dia.)	linear foot	32		32
Video Camera Inspection	each	4		
Foundation Inspection Holes	linear foot	72		72
Sonic Logging Testing	each			4
Galvanized Structural Steel Piles (12 in.)	linear foot	196		196
Pile Point Reinforcement	each	8		8
Class B Concrete (substructure)	cu. yard	0.		70.4
Slab on Concrete 1-Girder	sq. yard		635	635
Type D Barrier	linear foot		491	491
Type 6 (54 in in), Prestressed Concrete 1-Girder	linear foot		632	632
Reinforcing Steel (Bridges)	pound	15,270		5,270 !
Steel Intermediate Diaphragm for P/S Concrete Girders	each		6	6
Slab Drain	each		36	36
Vertical Drain at End Bents	each			
Plain Neoprene Bearing Pad	each		6	6
Laminated Neoprene Bearing Pad	each		12	12
Pay items \& units from EPG 751.6				

Al concrete above the construction joint in the end bents is included in the
Estimated Quantities for siab on Concrete 1 -Girder.
All reinforcement in the end bents is included in the Estimated Quantities for Slab
on concrete 1 -Girder.
All reinforcement in the intermediate bent concrete diaphragms except reinforcement
embedded in the beam cap is included in the Estimated Quantities for Siab on
Concrete I-Girder.
II concrete above the intermediate beam cap is included in the Estimated Quantities
for slab on concrete I-Girder.
Notes from EPG 751.50, Section B

Foundation Data					
Type	Design Data	Bent Number			
			2	3	
$\begin{aligned} & \text { Load } \\ & \text { Bear } \\ & \text { Pirie } \end{aligned}$	Pile Type and Size eas	HP 12×53		\cdots	HP 12×53
	Number ea	30	\cdots	\cdots	4
	Approximate Length Per Each	30	\cdots		30
	Pile Point Reinforcement ea	All	\cdots	\ldots	All
	Min. Galvanized Penetration (Elev.) ft	Full length	\cdots	\cdots	1 leng
	Pile Driving Verification Method	DF	\cdots	\ldots	DF
	Resistance Factor	0.4	\cdots	\ldots	0.4
	Minimum Nominal Axial				
$\begin{aligned} & \text { Rock } \\ & \text { Socket } \end{aligned}$	Number ea		2	2	
	- Foundation Material	\cdots	Rock	Rock	\cdots
	Elevation Range ft	...	838-835	844-839	\ldots
	(Side Resistance) ${ }_{\text {ast }}$		28.6	28.6	
	Elevation Range ft	\ldots	835-821	839-830	--
		.-.	28.6	28.6	
	Minimum Nominal Axial Compressive Resistance Tip Resistance)	...	12.0	12.0	

DF = FHWA-modified Gates Dynamic Formula
Minimum Nominal Axial Compressive Resistance $=\frac{\text { Maximum Factored Loads }}{\text { Resistance Factor }} \quad \begin{aligned} & \text { Notes } \\ & \text { Section } \\ & \text { EP2 }\end{aligned}$ EPG 751.50
$\begin{aligned} & \text { Minimum Nominal Axial Compressive Resistance } \\ & \text { (Side Resistance }+ \text { Tip Resistance) }\end{aligned}=\frac{\text { Maximum Factored Loads }}{\text { Resistance Factors }}$
manufactured pile point reinforcement shall be used on all piles in this structure.
Sonic logging testing shall be performed on all drilled shafts and rock sockets

General Notes:
 Design Loading:

Class B Concrete (Substructure)
$\mathrm{f}^{\prime} \mathrm{C}=3,000 \mathrm{psi}$
Class B-2 Concrete (Drilled Shafts \& Rock Sockets) $\quad f^{\prime} \mathrm{C}=4.000 \mathrm{ps}$
Class B-1 Concrete (Barrier) \quad C \quad ($=4,000 \mathrm{ps}$
$\begin{aligned} & \text { Class B-2 Concrete (Superstructure, except } \\ & \text { Prestressed Girders and Barrier) }\end{aligned} \quad f^{\prime} \mathrm{c}=4,000 \mathrm{ps}$
Reinforcing Steel (Grade 60)
Steel Pile (ASTM A709 Grade
$y=60,000 \mathrm{ps}$
$y=50,000 \mathrm{ps}$
For precast prestressed panel
Sor
For prestressed girder stresses, see Sheets No. $14 \propto 15$
eoprene Pads
Neopene bearing pads shall be 60 durometer and shall be in accordance
with sec 716 .
All joint filler shall be in accordance with Sec 1057 for preformed
sponge rubber expansion and partition ioint filler except as noted.
Spoinforcing steel:
Minimum clearance to reinforcing steel shall be $11 / 2^{\prime \prime}$, unless
otherwise shown
\square

Structure to be closed during construction Traffic to be maintained
on other routes. See roadwap plas for traffic control

---।

ICel 1 in Tasks: Bridge Detailing Notes
(1B3. 21 NEstimated Quantities For)

- - Notes in EPG 751.50 Section B3c

The Estimated Quantities for Slab on Concrete 1-Girder are based on skewed precast prestressed end panels.
The prestressed panel quantities are not included in the table of Estimated Quantities for slab on Concrete
1 -Girder.
Class B-2 Concrete quantity is based on minimum top flange thickness and minimum joint material thickness.

CADD Std: P/S Girder Haunching Diagram - Quarter Pts or P/S Girder Haunching
Modify as needed. Fill in information trom design.

CADD Std: Girder Bottom of Slab Elevations Diagran

Use quarter points for spans less than
Use tenth points for spans 75 or more.

Theoretical Bottom of Slab Elevations at Centerline of Girde (Prior to forming for slab) (Estimated at 90 days)

1	875.75	875.84	875.92	875.99	876.05
2	875.98	876	86	876	

2	875.98	876.06	876.14	876.21	876.27
3	875.84	875.02	876.20	8767	876

1	876.05	876.13	876.21	876.28	876.34	876.39	876.43	876.46	86.43	876.50
2	876	876.51								

Elevations are based on a constant slab thickness of $81 / 2$ and include allowance for
theoretical dead load deflections due to weight of slab (including precast panel
Theoretical Bottom
of Slab Elevation

YPICAL SLAB ELEVATIONS DIAGRAM

CADD Std: P/SGirder Camber Diagram (C $<A$) SIab Sheet Details) Sal

* Alternate bar shape available, see barrier sheet.

Insert the proper cell fron CADD Std Slab Pouring Sequences. See EPG 751.10 .1 . 12
If using case for a prestressed girder bridge, remove no Retarder" column and see EPG 751 . 50 (H6) for proper notes.
Adust detail to the appropriate skew.

The contractor shall furnish an approved retarder to retard the set of the concrete to
2.5 hours, and shall pour and satisfactorily finish the slab pours at the rate given. The concrete diaphragm at the intermediate bents and integral end bents shall be
poured a minimum of 30 minutes and a maximum of 2 hours before the slab is poured SLAB POURING SEQUENCE

Slab sections for other types of girders are available outside the border of
the standard drawing.

DETAIL A

full depth sla

DETAIL B

Finish each side
of joint with $\frac{1}{4}$
of joint with
radius edging t
Const. Joint
(Extend ful
width of deck

* Adjust the construction joint

slab on panels

SLAB CONSTRUCTION JOINT
Notes:
for details of precast prestressed panels, see Sheet No. 15
for reinforcement of barrier not shown, see sheet No
For Theoretical Bottom of Slab Elevations, Girder Camber Diagram and
Theoretical Slab Haunching Diagram, see Sheet No. 17 .
SLAB DETAILS
For Plan of Slab Showing Reinforcement, see Sheet No. 18

 PART PLAN SHOWING PILE \&
DRILLED SHAFT NUMBERING FOR RECORDING AS-BUILT PILE DATA
\& AS-BUILT DRILLED SHAFT DATA

As Built pile Data and As Built Drilled Shaft Data
may be combined on one sheet as shown here.

Modify table tengths as

Note: in remarks column
Indicate in type and grade
A. Piter
B. Batter
B. Batter
B. Briven to practical refusal
Cis

This sheet to be completed by MoDot construction personnel.

