Estimated Quantities			
Item	Substr.	Superstr.	Total
Closs 1 Excovation cu. yard	210		210
Tenporory Shor ing			
Removal of Bridges (A-504 NB \& SB) Iump sum			1
Bridge Approach Slab (Bridge). sq. yord	536		536
Orilled Shafts (5 ff . 6 in. Dio.) linear foot	260.0		260.0
Rock Sockets (5 ft . 0 in. Dia.) lineor foot	116.0		
Supplementary Television Comero Inspection each	,		8
Foundation Inspection Holes \quad inear foot	196.0		
Sonic Logging Testing eoch	,		
Structural Steel piles (14 in.) lineor foot	1755		
Pile Point Reinforcement each			15
Class B Concrete (substructure) ou. yord	389.3		
		3075	
* Sofety Barrier Curb linear foot		631	
* Wedian Barrier Curb (Type C) linear foot		330	330
Reinforcing steel (Bridges) pound	115.490		15.490
Mechonical Bar Splice each	144	2144	2228
Temporory cooting - Concrete Bents ond Piers (Weother ing steel) Iump sum			
Foor i icoted Structural Low Alloy Steel (Plote Girder) A709, Grade 50w pound		50.020	50.020
		56	
Orater			
(inter		${ }_{3900}$	${ }_{3900}^{3900}$
vertical Drain ot End Bents each			
Plain Neoprene Bear ing Pad each		12	
Leminer		${ }_{24}^{12}$	$\frac{12}{24}$

General Notes:
Design Specifications:
Lood - AASHTO LRFD 4th Edition and 2008 Interims
2000 and Resistance Factor Design
2002 AASHTO $17+$ th Edition (Seismic)
Seismic Performance Category B
Design Loading:
H5\#-93 (LRFD Superstructure, LRFD Substructure)
400 kip Equivalent Static Collision Force
Intermediote Bents. No. 23 inclucte, dead load for a possible future reinforced, concrete
collision wall with alength of $80^{\prime}-0^{\prime \prime}$, height of $23^{\prime}-0$ " and a thickness of ${ }^{\prime}$, ${ }^{\prime \prime \prime}$ "

1. Pay item required since total is greater than or equal to fifty.
2. Substructure total should include the quantity of mechanical bar splices located in non-integral end bents and all intermediate bents.
3. Superstructure total should include the quantity of mechanical bar splices located in deck slabs, integral end bents, concrete diaphragms at non-integral end bents and concrete diaphragms at intermediate bents.

This would be the only highlighted item needed on this sheet if MBS pay item were not required. If this were the case, add the following to the end of this note: ... except that on measurement will be made for mechanical
Field connections shall be made with $3 / 4^{\prime \prime}$ diameter high strength bolts and 13/16" bar splices and they High strength bolts, nuts and washers will be sampled for quality assurance as speci
Section (FS-712) from Materials Manual. Joint Filler: will be considered

All joint filler shall be in accordance with sec 1057 for preformed sponge rubber ex
partition joint filler, except as noted. completely covered by the contract unit Reinforcing Steel: price for other items.
Minimum clearance to reinforcing steel shall be 1-1/2", unless otherwise shown.
MBS refers to mechanical bar splice. Mechanical bar splices shall be in accordance with sec 706 or 710 . Structural Steel Protective Coatings:

Protective Coating: Facia girders shall be coated with complete System H in accordance with Sec 1081 .
Portions of the structural steel embedded in or in contact with concrete, including but not limited
to the top flange of girders, shall be coated with not less than 2.0 mils of the prime coat for system H . Prime coat: The prime coat shall be applied in the fabrication shop. The cost of the prime coat will be
considered completely covered by the contract unit price for the Fabricated Structural Steel. Field coats: The color of the field coats shall be Brown (Federal Standard \#30045). The cost of the
intermediate field coat will be considered completely covered by the contract unit price per sq. foot Intermediate Field coat (System H). The cost of the finish field coat will be considered completely covered by
the contract unit price per sa. foot for Finish Field coat (System H). At the option of the contractor, the care during all phases of loading, hauling, handling, erection and pouring of the slab to minimize damage and shall be fully responsible for all repairs and cleaning of the coating systems as required by the engineer. Permanent Steel Casing Protective Cootings (Int. Bent No. 3):

Before the coating is applied, steel casing shall be thoroughly cleaned. All exposed surfaces of the permanent
steel casing shall be coated with one $6-\mathrm{mil}(0.15 \mathrm{~mm})$ thickness of approved gray epoxy-mastic in cccordance steel casing shall be coated with one $6-\mathrm{mil}(0.15 \mathrm{~mm}$) thickness of approved gray epoxy-mastic in accordance
with the epoxy-mastic manufacturer's recommendations.

 Concrete Protective Coatings:

Temporary cooting for concrete bents and piers (weathering steel) shall be applied on all concrete
surfaces obove the ground line or low water elevation on all abutments and intermediate bents in
accordance with Sentic Handing:

1. Don't use note if pay item is not required (Total MBS quantity <50).
2. Would exclude "end bents" if bents were non-integral.
3. Would replace "end bents" with "concrete diaphragms at end bents" if bents were non-integral and girders were concrete.
4. Would add ", intermediate bent concrete diaphragms" after "end bents" if girders were concrete.
5. Would exclude "slab" if MBS were not located in the slab.

Stoged construction. Mointain 2 Iones of traftic per direction, except for closure pours.
See rociwy plons for troffic control pion.
Miscelloneous:
"Sec" refers to the sections in the standard and supplemental specifications unless specified
otherwise.
Outline of old work is indicated by light dashed lines. Heavy lines indicate new work.
Existing Structure:
With approval of the engineer, existing substructure may be removed to existing construction joints
if necessary for stage construction. See existing bridge plans for location of existing construction
closure Pour:
Expansive Class B-2 concrete shall be used in the closure pour.

Notes:
Longitudinal dimensions shown are horizontal.
For Plon of Slob ${ }^{\text {Showing }}$ Bottom Reinforcement
see Sheets No. 38 \& 39 .
For Section Thru Slab and Slab Pour ing
Sequence, see Sheet No. 40 .
For Plote Girder Camber. Diagram and
Theoretical Slob Hunnch, see Sheet No. 27. For Dead Load Deflection, see Sheet No. 28.
For Theoretical Bottom of Slab Elevations, se
Sheet No. 29 .
For details and locations of slab drains, see
Sheets No. $32 \& 33$.
For details of barrier curb not shown, see
Sheets No. $41,42 \& 43$.
For details of median curb not shown, see
sheets No. $44 \& 45$.
Work this sheet with sheet No. 37.

