Difference between revisions of "751.50 Standard Detailing Notes"

From Engineering_Policy_Guide
Jump to navigation Jump to search
m (Consolidated LFD Tables and LRFD Chart in E2. corresponding with new dynamic pile driving formula in specs.)
m (→‎A3. All Structures: Per BR, new note for uncoated steel coming in contact with galvanized piles)
(319 intermediate revisions by 3 users not shown)
Line 1: Line 1:
 +
{|style="padding: 0.3em; margin-left:10px; border:2px solid #a9a9a9; text-align:left; font-size: 95%; background:#f5f5f5" width="300px" align="right"
 +
|-
 +
|align="center"| '''Copying Detailing Notes from EPG to MicroStation Drawings'''
 +
|-
 +
|'''<font color="purple">[MS Cell]</font color="purple">''' in the standard detailing notes indicates those notes are available in MicroStation note cells because of the drawing associated with the note.
 +
|-
 +
|Please refer to  [[media:751.50 Copying Detailing Notes May 2014.docx|Copying Detailing Notes from EPG to MicroStation Drawings]] for additional information.
 +
|}
 +
 
== A. General Notes ==
 
== A. General Notes ==
  
 +
=== A1. Design Specifications, Loadings & Unit Stresses ===
 +
 +
'''Omit parts not applicable; Omit parts underlined when not applicable. The format for these notes as they would appear on the plans is as follows with the indention shown being optional. For notes applicable to MSE walls see [[#J. MSE Wall Notes (Notes for Bridge Standard Drawings)|J. MSE Wall Notes]].'''
 +
 +
:'''General Notes:'''
  
=== A1. Design Specifications, Loadings & Unit Stresses ===
+
::'''  Design Specifications:'''
 +
:::A1.1
 +
 
 +
::'''Design Loading:'''
 +
:::A1.2
 +
 
 +
::''' Design Unit Stresses:'''
 +
::: A1.3
 +
 
 +
'''(A1.1) Design Specifications: '''
 +
 
 +
'''Use for all LRFD standard culverts and standard culverts-bridge designs in which the design and/or details are completely covered by the Missouri Standard Plans for Highway Construction and/or EPG 751.8 in accordance with the following design specifications. '''
 +
:::2010 AASHTO LRFD Bridge Design Specifications and 2010 Interim Revisions
 +
 
 +
'''Use for all LRFD bridge final designs initiated on or after March 1, 2013.'''
 +
 
 +
:::2012 AASHTO LRFD Bridge Design Specifications (6th Ed.) and 2013 Interim Revisions
 +
:::<u>2011 AASHTO Guide Specifications for LRFD Seismic Bridge Design (2nd Ed.) and 2014 Interim Revisions</u> (<u>Seismic</u> <u>Seismic Details</u>)
 +
:::<u>Seismic Design Category = _ </u> 
 +
:::<u>Design earthquake response spectral acceleration coefficient at 1.0 second period, S<sub>D1</sub> = _ </u>
 +
:::<u>Acceleration Coefficient (effective peak ground acceleration coefficient), A<sub>s</sub> = _ </u>
 +
:::<u>2002 AASHTO LFD (17th Ed.) Standard Specifications</u> (<u>Seismic</u> <u>Seismic Details</u>)
 +
:::<u>Seismic Performance Category = _</u>
 +
:::<u>Acceleration Coefficient = _ </u> 
 +
:::<u>Bridge Deck Rating = _(1)</u>
 +
 
 +
'''Use for all LRFD bridge final designs initiated before March 1, 2013.'''
  
'''Omit parts not applicable; Omit parts underlined when not applicable.'''
+
:::2010 AASHTO LRFD Bridge Design Specifications and 2010 Interim Revisions
 +
:::<u>2011 AASHTO Guide Specifications for LRFD Seismic Bridge Design (2nd Ed.) and 2012 Interim Revisions</u> (<u>Seismic</u> <u>Seismic Details</u>)
 +
:::<u>Seismic Design Category = _ </u> 
 +
:::<u>Design earthquake response spectral acceleration coefficient at 1.0 second period, S<sub>D1</sub> = _ </u>
 +
:::<u>Acceleration Coefficient (effective peak ground acceleration coefficient), A<sub>s</sub> = _ </u>
 +
:::<u>2002 AASHTO LFD (17th Ed.) Standard Specifications</u> (<u>Seismic</u> <u>Seismic Details</u>)
 +
:::<u>Seismic Performance Category = _</u>
 +
:::<u>Acceleration Coefficient = _ </u>
 +
:::<u>Bridge Deck Rating = _(1)</u>
  
'''(A1.1) Use the following note on LRFD plans.'''
+
'''Use for all LFD bridge final designs.'''
 +
:::2002 AASHTO LFD (17th Ed.) Standard Specifications
 +
:::<u>2002 AASHTO LFD (17th Ed.) Standard Specifications</u> (<u>Seismic</u> <u>Seismic Details</u>)
 +
:::<u>Seismic Performance Category = _</u>
 +
:::<u>Acceleration Coefficient = _ </u>
 +
:::<u>Bridge Deck Rating = _(1)</u>
  
'''GENERAL NOTES:'''
+
(1) Use when repairing concrete deck. The rating (3 to 9) is from the bridge inspection report.
:'''Design Specifications:'''
+
<div id="(A1.2) Design Loading:"></div>
::2007 - AASHTO LRFD 4th Edition
 
::Load and Resistance Factor Design
 
::Seismic Design Category = <u>&nbsp;&nbsp;</u>
 
::Seismic Peak Horizontal Ground Acceleration = <u>&nbsp;&nbsp;</u>
 
  
'''Use the following note on plans when repairing concrete deck.'''
+
'''(A1.2) Design Loading:'''
  
'''Bridge deck rating (3 to 9) is from the bridge inspection report.'''
+
'''Use for all LRFD bridge and culvert final designs.'''
::Bridge Deck Rating = <u>&nbsp;&nbsp;</u>
+
::Vehicular = HL-93 <u>minus lane load</u> (1)
:'''Design Loading:'''
+
:: <u>No</u> <u>Future Wearing Surface</u> <u>= 35 lb/sf</u>
::<u>HL-93</u> (LRFD Superstructure, <u>LRFD</u> <u>LFD</u> Substructure)
 
::<u>35#/Sq. Ft.</u> <u>No</u> Future Wearing Surface
 
 
::<u>Defense Transporter Erector Loading</u>
 
::<u>Defense Transporter Erector Loading</u>
::Earth 120 #/Cu. Ft., Equivalent Fluid Pressure <u>45#/Cu. Ft. [[#A1-notes|(1)]] </u>
+
::Earth = 120 lb/cf
 +
::Equivalent Fluid Pressure = <u>(2)</u>
 
::<u>Ø = &nbsp;</u>
 
::<u>Ø = &nbsp;</u>
 
::{|cellpading="0"
 
::{|cellpading="0"
|valign="top"|Superstructure:||Simply-supported, non-composite for dead load.<br/>Continuous composite for live load. [[#A1-notes|(2)]]
+
|valign="top"|(3)||valign="top"|Superstructure:||<u>Simply-Supported</u>, Non-Composite for dead load.<br/><u>Continuous</u> Composite for live load.
 
|}
 
|}
  
  
'''Use the following note on LFD plans after July 2003 Letting.'''
+
'''Use for all LFD bridge final designs.'''
 
 
'''GENERAL NOTES:'''
 
:'''Design Specifications:'''
 
::2002 - AASHTO 17th Edition
 
::Load Factor Design
 
::Seismic Performance Category
 
::Acceleration Coefficient = <u>&nbsp;&nbsp;</u>
 
 
 
'''Use the following note on plans when repairing concrete deck.'''
 
 
 
'''Bridge deck rating (3 to 9) is from the bridge inspection report.'''
 
::Bridge Deck Rating = <u>&nbsp;&nbsp;</u>
 
:'''Design Loading:'''
 
 
::<u>HS20-44</u>
 
::<u>HS20-44</u>
 
::<u>HS20 Modified</u>
 
::<u>HS20 Modified</u>
::<u>35#/Sq. Ft.</u> <u>No</u> Future Wearing Surface
+
::<u>35 lb/sf</u> <u>No</u> Future Wearing Surface
::<u>Military 24,000# Tandem Axle</u>
+
::<u>Military 24,000 lb Tandem Axle</u>
 
::<u>Defense Transporter Erector Loading</u>
 
::<u>Defense Transporter Erector Loading</u>
::Earth 120 #/Cu. Ft., Equivalent Fluid Pressure <u>45#/Cu. Ft. [[#A1-notes|(1)]] </u>
+
::Earth 120 lb/cf, Equivalent Fluid Pressure <u>(2)</u>  
 
::<u>Ø =  &nbsp;</u>
 
::<u>Ø =  &nbsp;</u>
 
::Fatigue Stress - <u>Case I</u>  <u>Case II</u>  <u>Case III</u>
 
::Fatigue Stress - <u>Case I</u>  <u>Case II</u>  <u>Case III</u>
 
::{|cellpading="0"
 
::{|cellpading="0"
|valign="top"|Superstructure:||Simply-supported, non-composite for dead load. <br/>Continuous composite for live load. [[#A1-notes|(2)]]
+
|valign="top"|(3)||valign="top"|Superstructure:||<u>Simply-Supported</u>, Non-Composite for dead load.<br/><u>Continuous</u> Composite for live load.
 
|}
 
|}
  
 +
(1) Include for all culverts and culverts-bridges unless lane load is used.
 +
 +
(2) For bridges and retaining walls use "45 lb/cf (Min.)" unless the Ø angle requires using a larger value. For box culverts use "30 lb/cf (Min.), 60 lb/cf (Max.)".
  
 +
(3) Use with all prestressed concrete structures. Omit underline portions for single spans.
  
  
'''(A1.2) Omit parts not applicable; Omit parts underlined when not applicable.'''
+
'''(A1.3) Use for LRFD. (For ASD, LFD, and allowable stresses, see Development Section.)'''
  
:'''Design Unit Stresses:'''
+
::'''Design Unit Stresses:'''
 
::{|
 
::{|
|Class B Concrete (Substructure)||<u>fc = 1,200</u>||<u>f'c = 3,000</u>||psi
+
|Class B Concrete (Substructure)||f'c = 3,000 psi
|-
 
|Class B-2 Concrete (Drilled Shafts & Rock Sockets)||<u>fc = 1,600</u>||<u>f'c = 4,000</u>||psi
 
|-
 
|Class B-1 Concrete (Superstructure)||<u>fc = 1,600</u>||<u>f'c = 4,000</u>||psi
 
 
|-
 
|-
|Class B-2 Concrete (Superstructure, except<br/> &nbsp; Prestressed Girders and <u>Safety Barrier</u> <u>and</u><br/> &nbsp; <u>Median Barrier</u> Curb)||valign="bottom"| <u>fc = 1,600</u>||valign="bottom"| <u>f'c = 4,000</u>||valign="bottom"| psi
+
|Class B Concrete (Retaining Wall)||f'c = 3,000 psi
 
|-
 
|-
|Class B-1 Concrete (Substructure)||<u>fc = 1,600</u>||<u>f'c = 4,000</u>||psi
+
|Class B-2 Concrete (Drilled Shafts & Rock Sockets)||f'c = 4,000 psi
 
|-
 
|-
|Class B-1 Concrete (Box Culvert)||<u>fc = 1,600</u>||<u>f'c = 4,000</u>||psi
+
|Class B-1 Concrete (Superstructure)||f'c = 4,000 psi
 
|-
 
|-
|Class B-1 Concrete <u>Safety Barrier</u> <u>and</u><br/> &nbsp; <u>Median Barrier</u> Curb)||valign="bottom"| <u>fc = 1,600</u>||valign="bottom"| <u>f'c = 4,000</u>||valign="bottom"| psi
+
|Class B-2 Concrete (Superstructure, except<br/> &nbsp; Prestressed <u>Girders</u> <u>Beams</u> and <u>Safety Barrier</u> <u>and</u><br/> &nbsp; <u>Median Barrier</u> Curb)||valign="bottom"| f'c = 4,000 psi
 
|-
 
|-
|Class B-2 Concrete (Superstructure, except<br/> &nbsp; <u>Safety Barrier</u> <u>and</u> <u>Median Barrier</u> Curb)||valign="bottom"| <u>fc = 1,600</u>||valign="bottom"| <u>f'c = 4,000</u>||valign="bottom"| psi||valign="bottom"|[[#A1-notes|(3)]]
+
|Class B-1 Concrete (Substructure)||f'c = 4,000 psi
 
|-
 
|-
|Reinforcing Steel (Grade 40)||<u>fs = 20,000</u>||<u>fy = 40,000</u>||psi
+
|Class B-1 Concrete (Box Culvert)||f'c = 4,000 psi
 
|-
 
|-
|Reinforcing Steel (Grade 60)||<u>fs = 24,000</u>||<u>fy = 60,000</u>||psi
+
|Class B-1 Concrete (<u>Safety Barrier</u> <u>and</u><br/> &nbsp; <u>Median Barrier</u> Curb)||valign="bottom"| f'c = 4,000 psi
 
|-
 
|-
|Structural Carbon Steel(ASTM A709 Grade 36)||<u>fs = 20,000</u>||<u>fy = 36,000</u>||psi
+
|Class B-2 Concrete (Superstructure, except<br/> &nbsp; <u>Safety Barrier</u> <u>and</u> <u>Median Barrier</u> Curb)||valign="bottom"| f'c = 4,000 psi (1)
 
|-
 
|-
|Structural Steel (ASTM  A441)||<u>fs = 23,000</u>||<u>fy = 42,000</u>||psi
+
|Reinforcing Steel (Grade 40)||fy = 40,000 psi
 
|-
 
|-
|Structural Steel (ASTM  A441)||<u>fs = 25,000</u>||<u>fy = 46,000</u>||psi
+
|Reinforcing Steel (Grade 60)||fy = 60,000 psi
 
|-
 
|-
|Structural Steel (ASTM A441)||<u>fs = 27,000</u>||<u>fy = 50,000</u>||psi
+
|Structural Carbon Steel(ASTM A709 Grade 36)||fy = 36,000 psi
 
|-
 
|-
|Structural Steel (ASTM  A709  Grade 42)||<u>fs = 23,000</u>||<u>fy = 42,000</u>||psi
+
|Structural Steel (ASTM  A709  Grade 50)||fy = 50,000 psi
 
|-
 
|-
|Structural Steel (ASTM  A709  Grade 50)||<u>fs = 27,000</u>||<u>fy = 50,000</u>||psi
+
|Structural Steel (ASTM  A709  Grade 50W)||fy = 50,000 psi
 
|-
 
|-
|Structural Steel (ASTM A709 Grade 50W)||<u>fs = 27,000</u>||<u>fy = 50,000</u>||psi
+
|Structural Steel (ASTM A709 Grade HPS50W)||fy = 50,000 psi
 
|-
 
|-
|Structural Steel (ASTM A709 Grade HPS50W)||<u>fs = 27,000</u>||<u>fy = 50,000</u>||psi
+
|Structural Steel (ASTM A709 Grade HPS70W)||fy = 70,000 psi
 
|-
 
|-
|Structural Steel (ASTM A709 Grade HPS70W)||<u>fs = 38,000</u>||<u>fy = 70,000</u>||psi
+
|Steel Pile (ASTM A709 Grade 50)||fy = 50,000 psi  
 
|-
 
|-
|Steel Pile (ASTM A709  Grade 36)||<u>fb = [[#A1-notes|(**)]] </u>||fy = 36,000||psi
+
|colspan="2"|For steel pipe pile design unit stresses, see Sheet No. _.
 
|-
 
|-
|Steel Pile (ASTM A709  Grade 50)||<u>fb = [[#A1-notes|(**)]] </u>||fy = 50,000||psi
+
|colspan="2"|For precast prestressed panel stresses, see Sheet No. _.
 
|-
 
|-
|colspan="4"|For precast prestressed panel stresses, see Sheet No. _.
+
|colspan="2"|For prestressed girder stresses, see Sheet<u>s</u> No. _ <u>&</u> _ .
 
|-
 
|-
|colspan="4"|For prestressed girder stresses, see Sheet No's. _ <u>&</u> _ .
+
|colspan="2"|For prestressed <u>solid slab</u> <u>voided slab</u> <u>box</u> beam stresses, see Sheet<u>s</u> No. _ <u>&</u> _ .
 
|}
 
|}
  
  
 
<div id="A1-notes"></div>
 
<div id="A1-notes"></div>
(**)  <u>6,000</u>  <u>9,000</u>  <u>12,000</u> Design bearing for point bearing piles which are to be driven to rock or other point bearing material shall be designed 9,000 psi, unless the Design Layout specifies otherwise.
+
(1) Slabs, diaphragms or beams poured integrally with the slab.
 
 
(1) Use 45 #/cu. ft. (min.) for bridges and retaining walls, and 30 #/cu. ft.(min.), 60 #/cu. ft. (max.) for box culverts.  (Modify if Ø angle dictates.)
 
 
 
(2) All Prestressed Concrete Girder Structures.
 
 
 
(3) Slabs, diaphragms or beams poured integrally with the slab.
 
  
Note to Detailer: Use f'c and fy for Load Factor Design.
+
Note: Any new construction using structural steels A514 or A517 requires permission of the State Bridge Engineer. Any construction involving these structural steels requires notification to the State Bridge Engineer.
  
=== A2. Box Culverts and Other Type Structures ===
+
=== A2. Concrete Box Culverts and Other Type Structures ===
  
 
'''All Boxes'''
 
'''All Boxes'''
  
'''(A2.0)'''
+
'''(A2.0) <font color="purple">[MS Cell]</font color="purple">'''
:The box shown below indicating whether a precast or cip box was used should be checked by MoDOT Construction personnel:<br/> &nbsp; &nbsp; <math>\Box</math> &nbsp; Precast Box used<br/> &nbsp; &nbsp; <math>\Box</math> &nbsp; Cast-in-Place Box used
+
:MoDOT Construction personnel will indicate the type of box culvert constructed:<br/> &nbsp; &nbsp; <math>\Box</math> &nbsp; Precast Concrete Box used<br/> &nbsp; &nbsp; <math>\Box</math> &nbsp; Cast-in-Place Concrete Box used
  
  
 
'''All Boxes on Rock'''
 
'''All Boxes on Rock'''
  
'''(A2.1)'''
+
'''(A2.1) Designer shall check with Structural Project Manager if the 6” dimension should be increased for soft rock and shale. '''
:Anchor full length of walls by excavating 6" into and casting concrete against vertical faces of hard, solid, undisturbed rock.
+
 
 +
:Anchor full length of walls by excavating 6 inches into and casting concrete against vertical faces of hard, solid, undisturbed rock.
  
 
'''(A2.1.1)'''
 
'''(A2.1.1)'''
:Holes shall be drilled 12" into solid rock with E1 and E2 bars grouted in.
+
:Holes shall be drilled 12 inches into solid rock with E1 and E2 bars grouted in.
  
  
Line 142: Line 172:
  
 
'''(A2.2)'''
 
'''(A2.2)'''
:When alternate precast box sections are used, the minimum barrel length measured along the shortest wall from the first joint to the outside of the headwall, shall be 3'-2". Reinforcement and dimensions for the wings and headwalls shall be in accordance with Missouri Standard Plans drawing.
+
:When alternate precast concrete box culvert sections are used, the minimum distance from inside face of headwalls to precast sections measured along the shortest wall shall be 3 feet. Reinforcement and dimensions for wings and headwalls shall be in accordance with Missouri Standard Plans.
  
  
Line 149: Line 179:
  
 
'''(A2.3) (The designer should check with Structural Project Manager before placing this note on the plans.)'''
 
'''(A2.3) (The designer should check with Structural Project Manager before placing this note on the plans.)'''
:Where, under short lengths of walls, top of rock is below elevations given for bottom of walls, plain concrete footings 3'-0" in width shall be poured up from rock to bottom of walls.  If top of rock is more than 3'-0" below bottom of short wall sections, the walls between points of support on rock, shall be designed and reinforced as beams and spaces below walls filled as directed by the engineer.  Payment for plain concrete footings and concrete reinforced as wall beams will be considered completely covered by the contract unit price for Class B-1 Concrete.
+
:Where, under short lengths of walls, top of rock is below elevations given for bottom of walls, plain concrete footings 3 feet in width shall be poured up from rock to bottom of walls.  If top of rock is more than 3 feet below bottom of short wall sections, the walls between points of support on rock, shall be designed and reinforced as beams and spaces below walls filled as directed by the engineer.  Payment for plain concrete footings and concrete reinforced as wall beams will be considered completely covered by the contract unit price for Class B-1 Concrete.
  
  
'''Box Type Structures on Rock or Shale Widened or Extended with Floor (Example)'''
+
'''Box Type Structures on Rock or Shale Widened or Extended with Floor '''
  
 
'''(A2.4)'''
 
'''(A2.4)'''
:Fill material under the 5" slab shall be firmly tamped before the slab is poured.
+
:Fill material under the slab shall be firmly tamped before the slab is poured.
  
  
Line 161: Line 191:
  
 
'''(A2.5) (Use when specified on the Design Layout.)'''
 
'''(A2.5) (Use when specified on the Design Layout.)'''
:Excavate rock 6" below bottom slab and backfill with suitable material for culverts on rock in accordance with Sec 206.
+
:Excavate rock 6 inches below bottom slab and backfill with suitable material for culverts on rock in accordance with Sec 206.
  
  
Line 167: Line 197:
  
 
'''(A2.6)'''
 
'''(A2.6)'''
:The contractor will have the option to build the curved portion of the structure on chords (maximum of 16'-0").
+
:The contractor will have the option to build the curved portion of the structure on chords (maximum of 16 feet).
  
  
 
'''(A2.7) (Use when special backfill is specified on the Design Layout.)'''
 
'''(A2.7) (Use when special backfill is specified on the Design Layout.)'''
:Excavate 3'-0" below the box and fill with suitable backfill material.
+
:Excavate 3 feet below the box and fill with suitable backfill material.
  
  
Line 177: Line 207:
  
 
'''(A2.8)'''
 
'''(A2.8)'''
:If precast option is used, collars shall be provided between all precast pieces.
+
:If precast option is used, precast box culvert ties in accordance with Sec 733 and Standard Plan 733 shall be provided between all precast sections.  
  
  
'''For Box Culverts with transverse joint(s), place notes A2.9 and A2.10 on the plan sheet. These notes are not needed if an appropriate standard plan is referenced.'''
+
'''For Box Culverts with transverse joint(s), place notes A2.9 and A2.10 under the Transverse Joint Detail. <font color="purple">[MS Cell]</font color="purple"> The detail and these notes are not needed if an appropriate standard plan is referenced.'''
  
 
'''(A2.9)'''
 
'''(A2.9)'''
:A filter cloth 3 feet in width and double thickness shall be applied to all transverse joints in the top slab and sidewalls.  The material shall be centered on the joint and the edges sealed with a mastic or with two sided tape.  The filter cloth shall be a geotextile meeting the approval of the engineer and having a grab tensile strength of 180 pounds (ASTM D-4632) and an apparent opening size of 50 to 100 (ASTM D-4751). Cost of furnishing and installing the filter cloth will be considered completely covered by the ontract unit price for other items.
+
:Filter cloth 3 feet in width and double thickness shall be centered on transverse joints in top slab and sidewalls with edges sealed with mastic or two sided tape.  Filter cloth shall be a subsurface drainage geotextile in accordance with Sec 1011. Cost of furnishing and installing filter cloth will be considered completely covered by the contract unit price for other items.
 +
<div id="(A2.10)"></div>
  
 
'''(A2.10)'''
 
'''(A2.10)'''
:Preformed fiber expansion joint material shall be securely stitched to one face of the concrete with no. 10 gage copper wire or no. 12 gage soft drawn galvanized steel wire.
+
:Preformed fiber expansion joint material in accordance with Sec 1057 shall be securely stitched to one face of the concrete with 10 Gage copper wire or 12 Gage soft drawn galvanized steel wire.
  
  
Line 192: Line 223:
 
:If unsuitable material is encountered, excavation of unsuitable material and furnishing and placing of granular backfill shall be in accordance with Sec 206.
 
:If unsuitable material is encountered, excavation of unsuitable material and furnishing and placing of granular backfill shall be in accordance with Sec 206.
  
'''(A2.12)'''
 
:Note: Slope of bottom slab shall be placed at natural stream gradient.
 
  
'''(A2.13)'''
+
'''(A2.14) For Box Culverts where the top slab is used as the riding surface, place the following note on plan sheet.'''
:Holes for anchor bolts shall be set with suitable templates in exact position and securely fixed to prevent displacement, or at the contractors option the holes may be drilled.
+
 
 +
:Culvert top slab surface may be finished with a vibratory screed.
 +
 
 +
<div id="Use notes A2.15 and A2.16"></div>
 +
 
 +
'''Use notes A2.15 and A2.16 for all box culverts.'''
 +
 
 +
'''(A2.15) '''
 +
 
 +
:Channel bottom shall be graded within the right of way for transition of channel bed to culvert openings. Channel banks shall be tapered to match culvert openings. (Roadway Item)
 +
 
 +
'''(A2.16) '''
 +
 
 +
:If any part of the barrel is exposed, the roadway fill shall be warped to provide 12 inches minimum cover. (Roadway Item)
  
 
=== A3. All Structures ===
 
=== A3. All Structures ===
Line 202: Line 244:
 
'''Neoprene Pads:'''
 
'''Neoprene Pads:'''
  
'''(A3.2) Does not apply to Type "N" PTFE Bearings & Laminated Neoprene Bearing Pad Assembly.'''
+
'''(A3.2) Does not apply to Type N PTFE Bearings & Laminated Neoprene Bearing Pad Assembly.'''
:Bearings shall be <u>50</u> <u>60</u> <u>70</u> durometer neoprene pads.
+
:<u>Plain</u> <u>and</u> <u>Laminated</u> Neoprene Bearing Pads <u>(Tapered)</u> shall be <u>50</u> <u>60</u> <u>70</u> durometer and shall be in accordance with Sec 716.
  
  
Line 223: Line 265:
 
:Minimum clearance to reinforcing steel shall be 1 1/2", unless otherwise shown.
 
:Minimum clearance to reinforcing steel shall be 1 1/2", unless otherwise shown.
  
=== A4. Protective Coatings ===
+
<div id="(A3.5.1) Use when uncoated steel"></div>
 +
'''(A3.5.1) Use when uncoated steel may come in contact with galvanized piles (concrete pile cap intermediate bents and pile footings).'''
 +
:Minimum clearance between galvanized piles and uncoated (plain) reinforcing steel including bar supports shall be 1 1/2”. Nylon, PVC, or polyethylene spacers shall be used to maintain clearance.  Nylon cable ties shall be used to bind the spacers to the reinforcement.
  
In "'''General Notes:'''" section of plans, place the following notes under the heading "'''Structural Steel Protective Coatings:'''".
+
'''(A3.6) Use when mechanical bar splices (MBS) are to be specified on the plans. The underlined portion shall be used when mechanical bar splice is not being paid for with pay item 706-10.70.  '''
  
 +
:MBS refers to mechanical bar splices. Mechanical bar splices shall be in accordance with Sec 706 or 710 <u>except that no measurement will be made for mechanical bar splices and they will be considered completely covered by the contract unit price for other items</u>.
  
'''Steel Structures - Non-Weathering Steel'''
+
<div id="Traffic Handling:"></div>
 +
'''Traffic Handling:'''
  
'''(A4.1) For new steel - 2nd paragraph shall not apply.'''
+
'''(A3.7) Use on all grade separations (new and rehabs) constructed over traffic. The note shall be as specified on the Bridge Memorandum (may not match the following) in accordance with [[751.1 Preliminary Design#751.1.2.6 Vertical and Horizontal Clearances|EPG 751.1.2.6 Vertical and Horizontal Clearances]].'''
:Protective Coating:  System G in accordance with Sec 1081.<br/>&nbsp;<br/>Surface Preparation: Surface preparation of the existing steel shall be in accordance with Sec 1081 for "Recoating of Structural Steel (System G or H)". The cost of surface preparation will be considered completely covered by the contract <u>lump sum</u> <u>unit</u> price <u>per sq. foot</u> for "Surface Preparation for Recoating Structural Steel".
+
 +
:Vertical clearance for Route <u> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;</u> traffic during construction shall be <u> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;</u> minimum over a <u> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp;</u> wide horizontal opening of the roadway <u>in each direction</u>.
  
'''(A4.2) New Steel - contract unit price for the Fabricated Structural Steel.'''
 
:'''Existing Steel - contract <u>lump sum</u> <u>unit</u> price <u>per sq. foot</u> for Field Application of Inorganic Zinc Primer.'''
 
  
:Prime Coat:  The cost of the prime coat will be considered completely covered by the contract <u>unit</u> <u>lump sum</u> price <u>per sq. foot</u> for <u>the Fabricated Structural Steel</u> <u>"Field Application of Inorganic Zinc Primer"</u>. Tint of the prime coat for System G shall be similar to the color of the field coat to be used.
+
'''(A3.8) Use for bridges and culverts.'''
 +
:<u>Structure to be closed during construction.</u> <u>Traffic to be maintained on (1) during construction.</u> See roadway plans for traffic control <u>and Sheet No. __ for staged construction details.</u>
  
'''(A4.3)(*) For existing steel - 2nd paragraph shall not apply.'''
+
::{| style="margin: 1em auto 1em auto" align="left"
:Field Coat:  The color of the finish field coat shall be <u>Gray (Federal Standard #26373)</u> <u>Brown (Federal Standard #30045)</u> <u>Black (Federal Standard #17038)</u> <u>Dark Blue (Federal Standard #25052)</u> <u>Bright Blue (Federal Standard #25095)</u>. The cost of the intermediate field coat will be considered completely covered by the contract <u>lump sum</u> <u>unit</u> price <u>per sq. foot</u> for "Intermediate Field Coat (System G)". The cost of the finish field coat will be considered completely covered by the contract <u>lump sum</u> <u>unit</u> price <u>per sq. foot</u> for "Finish Field Coat (System G).<br/>&nbsp;<br/>At the option of the contractor, the intermediate and finish field coats may be applied in the shop. The contractor shall exercise extreme care during all phases of loading, hauling, handling, erection and pouring of the slab to minimize damage and shall be fully responsible for all repairs and cleaning of the coating systems as required by the engineer.
+
|-
 +
|(1)|| Use “structure” with staged rehabilitation of existing structures.
 +
|-
 +
| ||Use “existing structure” with new structures built next to existing structures.
 +
|-
 +
| ||Use “structures” with staged replacement of existing structures.
 +
|-
 +
| ||Use “temporary bypass” when a bypass will be constructed.
 +
|-
 +
| ||Use “other routes” with new routes and with existing routes that are closed to traffic.
 +
|}
  
(*) The coating collor shall be specified on the Design Layout.
+
=== A4. Protective Coatings ===
  
 +
====A4a. Structural Steel Protective Coatings====
  
'''New Steel Structures - Weathering Steel'''
+
In "'''General Notes:'''" section of plans, place the following notes under the heading "Structural Steel Protective Coatings:".
  
'''(A4.11)'''
+
=====A4a1. <u>Steel Structures- Nonweathering Steel</u>=====
:Protective Coating: System H in accordance with Sec 1081.
 
  
'''(A4.12)'''
+
'''<u>Coating New Steel (Notes A4a1.1 – A4a1.7)</u>'''
:Portions of the structural steel embedded in or in contact with concrete, including but not limited to the top flange of girders, shall be coated with not less than 2.0 mils of the prime coat for System H.
 
  
'''(A4.13)'''
+
'''(A4a1.1) '''
:Prime Coat:  The prime coat shall be applied in the fabrication shop. The cost of the prime coat will be considered completely covered by the contract unit price for the Fabricated Structural Steel.
 
  
 +
:Protective Coating: System <u>G</u> <u>I</u> in accordance with Sec 1081.
  
'''Use notes (A4.14) and (A4.15) when weathering steel structures have an expansion device.'''
+
'''(A4a1.2) '''
  
'''(A4.14)'''
+
:Prime Coat: The cost of the prime coat will be considered completely covered by the contract unit price for the fabricated structural steel. Tint of the prime coat for System <u>G</u> <u>I</u> shall be similar to the color of the field coat to be used.  
:The surfaces of all structural steel located under expansion joints shall be coated with complete System H within a distance of 1 1/2 times the girder depth, but not less than 10 feet, from the centerline of all deck joints.  Within this limit, items to be coated shall include all surfaces of beam, girders, diaphragms, stiffeners, bearings and miscellaneous structural steel items.
 
  
'''(A4.15)'''
+
'''(A4a1.3) The coating color shall be as specified on the Design Layout. When System I is specified, omit the 2<sup>nd</sup> sentence'''.
:Field Coat:  The color of the finish field coat shall be Brown (Federal Standard #30045).  The cost of the intermediate and finish field coats will be considered completely covered by the contract unit price for the Fabricated Structural Steel. At the option of the contractor, the intermediate and finish field coats may be applied in the shop.  The contractor shall exercise extreme care during all phases of loading, hauling, handling, erection and pouring of the slab to minimize damage and shall be fully responsible for all repairs and cleaning of the coating systems as required by the engineer.
 
  
 +
:Field Coat(s): The color of the field coat(s) shall be <u>Gray (Federal Standard #26373)</u> <u>Brown (Federal Standard #30045)</u> <u>Black (Federal Standard #17038)</u> <u>Dark Blue (Federal Standard #25052)</u> <u>Bright Blue (Federal Standard #25095)</u>. The cost of the intermediate field coat will be considered completely covered by the contract <u>lump sum</u> <u>unit</u> price <u>per sq. foot</u> for Intermediate Field Coat (System G). The cost of the finish field coat will be considered completely covered by the contract <u>lump sum</u> <u>unit</u> price <u>per sq. foot</u> for <u>Finish Field Coat (System G)</u> <u>Finish Field Coat (System I)</u>.
  
'''(A4.20) Use note on recoating truss bridges.'''
+
'''(A4a1.4) When System I is specified and if finish coat only is required, omit the underlined part.'''
:For the duration of cleaning and recoating the truss spans, the truss span superstructure in any span shall not be draped with an impermeable surface subject to wind loads for a length any longer than 1/4 the span length at any one time regardless of height of coverage.  Simultaneous work in adjacent spans is permissible using the specified limits in each span.
 
  
 +
:At the option of the contractor, the <u>intermediate field coat and</u> finish field coat may be applied in the shop. The contractor shall exercise extreme care during all phases of loading, hauling, handling, erection and pouring of the slab to minimize damage and shall be fully responsible for all repairs and cleaning of the coating systems as required by the engineer.
  
'''Structures having Access Doors'''
+
'''(A4a1.5) Use for structures with Access Doors'''
  
'''(A4.23)'''
+
:Structural steel access doors shall be cleaned and coated in the shop or field with at least two coats of inorganic zinc primer to provide a minimum dry film thickness of 5 mils. In lieu of coating, the access doors may be galvanized in accordance with ASTM A123 and A153. The cost of coating or galvanizing doors will be considered completely covered by the contract unit price for other items.  
:Structural steel access doors shall be cleaned and coated in the shop or field with at least two coats of inorganic zinc primer to provide a minimum dry film thickness of 5 mils. In lieu of coating, the access doors may be galvanized in accordance with ASTM A123 and A153. The cost of coating or galvanizing doors will be considered completely covered by the contract unit price for other items.
 
  
'''(A4.24) Structure with no Other Fabricated Structural Steel.'''
+
'''(A4a1.6) Use for structures with Access Doors and when a fabricated structural steel pay item is not included.'''
:Payment for furnishing, coating or galvanizing and installing access doors and frames will be considered completely covered by the contract unit price for other items.
+
 +
:Payment for furnishing, coating or galvanizing and installing access doors and frames will be considered completely covered by the contract unit price for other items.  
  
 +
'''(A4a1.7)'''
  
'''Weathering steel or concrete structures having girder chairs but no coating item.'''
+
:System I finish coat shall be substituted for System G intermediate coat in Sec 1081.3.3.1.4.
  
'''(A4.27)'''
+
'''<u>Recoating Existing Steel (Notes A4a1.9 - A4a1.13)</u>'''  
:Structural steel for the girder chairs shall be coated with not less than 2 mils of inorganic zinc primer.  Scratched or damaged surfaces are to be touched up in the field before concrete is poured.  In lieu of coating, the girder chairs may be galvanized in accordance with ASTM A123.  The cost of coating or galvanizing the girder chairs will be considered completely covered by the contract unit price for other items.
 
  
 +
'''(A4a1.9)'''
  
'''Structural Steel Protective Coatings:'''
+
:Protective Coating: System <u>G</u> <u>I</u> in accordance with Sec 1081.
  
'''(A4.31)'''
+
'''(A4a1.10)'''
:Protective Coating:  Calcium Sulfonate System in accordance with Sec 1081.<br/>&nbsp;<br/>Surface Preparation: Surface preparation of the existing steel shall be in accordance with Sec 1081 for "Overcoating of Structural Steel (Calcium Sulfonate System)". The cost of surface preparation will be considered completely covered by the contract <u>lump sum</u> <u>unit</u> price <u>per sq. foot</u> for "Surface Preparation for Overcoating Structural Steel".
 
  
'''(A4.32)'''
+
:Surface Preparation: Surface preparation of the existing steel shall be in accordance with Sec 1081 for Recoating of Structural Steel (System G, H or I). The cost of surface preparation will be considered completely covered by the contract <u>lump sum</u> <u>unit</u> price <u>per sq. foot</u> for Surface Preparation for Recoating Structural Steel.
:Rust Penetrating Sealer: The rust penetrating sealer shall be applied to the surfaces of all bearings, overlapping steel plates, pin connections, pin and hanger connections and other locations where rust bleeding, pack rust and layered rust is occurring. The cost of the rust penetrating sealer will be considered completely covered by the contract lump sum price for "Calcium Sulfonate Rust Penetrating Sealer".
 
  
'''(A4.33)'''
+
'''(A4a1.11) '''
:Prime Coat:  The cost of the prime coat will be considered completely covered by the contract unit price per <u>sq. foot</u> <u>tons</u> for "Calcium Sulfonate Primer".
 
  
'''(A4.34)'''
+
:Prime Coat: The cost of the prime coat will be considered completely covered by the contract <u>lump sum</u> <u>unit</u> price <u>per sq. foot</u> for Field Application of Inorganic Zinc Primer. Tint of the prime coat for System <u>G</u> <u>I</u> shall be similar to the color of the field coat to be used.  
:Topcoat: The color of the topcoat shall be <u>Gray (Federal Standard #26373)</u> <u>Brown (Federal Standard #30045)</u> <u>Tan (Federal Standard #23522)</u> <u>Green (Federal Standard #24260)</u>. The cost of the topcoat will be considered completely covered by the contract unit price per <u>sq. foot</u> <u>tons</u> for "Calcium Sulfonate Topcoat".
 
  
 +
'''(A4a.12) The coating color shall be as specified on the Design Layout. When System I is specified, omit the 2<sup>nd</sup> sentence.'''
  
'''Structures with Exposed Piling'''
+
:Field Coat(s): The color of the field coat(s) shall be <u>Gray (Federal Standard #26373)</u> <u>Brown (Federal Standard #30045)</u> <u>Black (Federal Standard #17038)</u> <u>Dark Blue (Federal Standard #25052)</u> <u>Bright Blue (Federal Standard #25095)</u>. The cost of the intermediate field coat will be considered completely covered by the contract <u>lump sum</u> <u>unit</u> price <u>per sq. foot</u> for Intermediate Field Coat (System G). The cost of the finish field coat will be considered completely covered by the contract <u>lump sum</u> <u>unit</u> price <u>per sq. foot</u> for <u>Finish Field Coat (System G)</u> <u>Finish Field Coat (System I)</u>.
  
'''(A4.38) Use note when recoating existing exposed piles.'''
+
'''(A4a1.13) Use for recoating truss bridges. '''
:All exposed surfaces of the existing structural steel piles shall be coated with one 6-mil thickness of <u>aluminum</u> <u>gray</u> epoxy-mastic primer applied over an SSPC-SP6 surface preparation in accordance with Sec 1081. The requirements for bituminous coating shall be in accordance with Sec 702. These protective coatings will not be required below the normal low water line or below the existing ground line. The cost of surface preparation will be considered completely covered by the contract lump sum price for "Surface Preparation for Applying Epoxy-Mastic Primer". The cost of the <u>aluminum</u> <u>gray</u> epoxy-mastic primer and bituminous coating will be considered completely covered by the contract lump sum price for "<u>Aluminum</u> <u>Gray</u> Epoxy-Mastic Primer".
 
  
 +
{|style="padding: 0.3em; margin-left:10px; border:1px solid #a9a9a9; text-align:left; font-size: 95%; background:#f5f5f5" width="780px" align="center"
 +
|-
 +
|The length of span that is permissible to drape is to be determined by the designer and given in the note. Typically, ¼ span length is used but greater lengths have been used in the past based on calculations. See Structural Project Manager or Structural Liaison Engineer.
 +
|}
  
 +
:For the duration of cleaning and recoating the truss spans, the truss span superstructure in any span shall not be draped with an impermeable surface subject to wind loads for a length any longer than <u>1/4</u> the span length at any one time regardless of height of coverage. Simultaneous work in adjacent spans is permissible using the specified limits in each span.
  
In "'''General Notes:'''" section of plans, place the following notes under the heading "'''Concrete Protective Coatings:'''".
+
<div id="Overcoating Existing Steel (Notes A4a.10 – A4a.14)"></div>
 +
'''<u>Overcoating Existing Steel (Notes A4a1.21 – A4a1.27)</u> '''
  
'''(A4.41) Use note with weathering steel structures.'''
+
'''(A4a1.21) '''
:Temporary coating for concrete bents and piers (weathering steel) shall be applied on all concrete surfaces above the ground line or low water elevation on all abutments and intermediate bents in accordance with Sec 711.
 
  
'''(A4.42) Use note with coating for concrete bents and piers urethane or epoxy.'''
+
:Protective Coating: Calcium Sulfonate System in accordance with Sec 1081.
:Protective coating for concrete bents and piers <u>(Urethane)</u> <u>(Epoxy)</u> shall be applied as shown on the bridge plans and in accordance with Sec 711.
+
   
 +
:Surface Preparation: Surface preparation of the existing steel shall be in accordance with Sec 1081 for Overcoating of Structural Steel (Calcium Sulfonate System). The cost of surface preparation will be considered completely covered by the contract <u>lump sum</u> <u>unit</u> price <u>per sq. foot</u> for Surface Preparation for Overcoating Structural Steel.  
  
'''(A4.43)(Use notes when specified on Design Layout.)'''
+
'''(A4a1.22) '''
:Concrete and masonry protective coating shall be applied on all exposed concrete and stone areas in accordance with Sec 711.
 
  
'''(A4.44)(Use notes when specified on Design Layout.)'''
+
:Rust Penetrating Sealer: The rust penetrating sealer shall be applied to the surfaces of all bearings, overlapping steel plates, pin connections, pin and hanger connections and other locations where rust bleeding, pack rust and layered rust is occurring. The cost of the rust penetrating sealer will be considered completely covered by the contract lump sum price for Calcium Sulfonate Rust Penetrating Sealer.  
:Sacrificial graffiti protective coating shall be applied on all exposed concrete and stone areas in accordance with Sec 711.
 
  
=== A5. Miscellaneous ===
+
'''(A4a1.23) Use when a prime coat is not required. '''
  
In "'''General Notes:'''" section of plans, place the following notes under the heading "'''Miscellaneous:'''".
+
:Prime Coat: Prime coat shall not be required.
  
'''(A5.2) Use when traffic is to be maintained during construction.'''
+
'''(A4a1.24) Use when prime coat is noted on the Bridge Memorandum as required. '''
:Traffic over structure to be maintained during construction. See Roadway plans for traffic control.
 
  
'''(A5.3) Use the following note on all jobs with high strength bolts.'''
+
:Prime Coat: The cost of the prime coat will be considered completely covered by the contract <u>lump sum</u> <u>unit</u> price per <u>sq. foot</u> <u>tons</u> for Calcium Sulfonate Primer.  
:High strength bolts, nuts and washers will be sampled for quality assurance as specified in Sec 106 and Field Section (FS-712) from Materials Manual.
 
  
'''(A5.4) Use the following note for structures having detached wing walls at end bents.'''
+
'''(A4a1.25) '''
:Payment for furnishing all materials, labor and excavation necessary to construct the <u>Lt.</u> <u>Rt.</u> <u>both</u> detached wing wall<u>s</u> at End Bents No. <u> &nbsp; &nbsp; </u>&nbsp;  <u>and</u> <u>No. &nbsp; &nbsp; </u>&nbsp;including the Class <u> &nbsp; </u>&nbsp;Excavation, <u>&nbsp; &nbsp; Pile</u>,  [[#A5-notes|(1)]], Class <u>B</u> <u>B-1</u> Concrete (Substr.) [[#A5-notes|(2)]] and Reinforcing Steel (Bridges), will be considered completely covered by the contract unit price for these items.
 
  
'''(A5.5) Use the following note on all structures.'''
+
:Topcoat: The color of the topcoat shall be <u>Gray (Federal Standard #26373)</u> <u>Brown (Federal Standard #30045)</u> <u>Tan (Federal Standard #23522)</u> <u>Green (Federal Standard #24260)</u>. The cost of the topcoat will be considered completely covered by the contract unit price per <u>sq. foot</u> <u>tons</u> for Calcium Sulfonate Topcoat.
:"Sec" refers to the sections in the standard and supplemental specifications unless specified otherwise.
 
  
 +
<div id="(A4a.15) Use when two different new coating systems are used. Show detail on plans."></div>
 +
'''(A4a1.26) Use when two different new coating systems are used. Show detail on plans.'''
  
<div id="A5-notes"></div>
+
:Limits of Paint Overlap: The Calcium Sulfonate System shall overlap the System G epoxy intermediate field coating between 6 inches and 12 inches in order to achieve maximum coverage at the paint limit of each complete system near the expansion and contraction areas. The final field coating shall be masked to provide crisp, straight lines and to prevent overspray beyond the overlap required.
(1) List all items used for the detached wing walls.
 
  
(2) For continuous concrete slab bridges, the detached wing walls could be either Class B or Class B-1. (For slab bridges with Class B spread footings, the detached wing walls might as well be Class B, otherwise, Class B-1 may be used.) Check with Project Manager.
+
'''(A4a1.27) Use when new coating system overlaps existing coating system. Show detail on plans.'''
  
== B. Estimated Quantities Notes ==
+
:Limits of Paint Overlap: System G shall overlap the existing coating between 6 inches and 12 inches in order to achieve maximum coverage at the paint limit of each complete system near the expansion and contraction areas. The final field coating shall be masked to provide crisp, straight lines and to prevent overspray beyond the overlap required.
  
 +
=====A4a2. <u>Steel Structures- Weathering Steel</u>=====
  
=== B1. General ===
+
'''<u>Coating New Steel (Notes A4a2.1 - A4a2.3) </u>'''
  
 +
'''(A4a2.1) '''
  
==== B1a. Concrete ====
+
:Protective Coating: System H in accordance with Sec 1080.  
  
 +
'''(A4a2.2) '''
  
'''Integral End Bents (When bridge slab quantity using note B3.1 table only)'''
+
:Field Coats: The color of the field coats shall be Brown (Federal Standard #30045). The cost of the intermediate and finish field coats will be considered completely covered by the contract unit price for the fabricated structural steel.  
  
'''(B1.1) (Use on steel structures only.)'''
+
'''(A4a2.3) '''
:All concrete above the lower construction joint in the end bents <u>(except detached wing walls)</u> is included with the Superstructure Quantities.
 
  
'''(B1.2)'''
+
:At the option of the contractor, the intermediate and finish field coats may be applied in the shop. The contractor shall exercise extreme care during all phases of loading, hauling, handling, erection and pouring of the slab to minimize damage and shall be fully responsible for all repairs and cleaning of the coating systems as required by the engineer.  
:All concrete above the construction joint in the end bents <u>(except detached wing walls)</u> is included with the Superstructure Quantities.
 
  
 +
'''<u>Recoating Existing Steel (A4a2.10 – A4a2.13) </u>'''
  
'''Integral End Bents (When bridge slab quantity using note B3.21 table, slab bid per sq. yd.) '''
+
'''(A4a2.10)'''
  
'''(B1.3) (Use on steel structures only.)'''
+
:Protective Coating: System H in accordance with Sec 1080.
:All concrete between the upper and lower construction joints in the end bents <u>(except detached wing walls) </u> is included in the Estimated Quantities for Slab on Steel.
 
  
'''(B1.4)'''
+
'''(A4a2.11) '''
:All concrete above the construction joint in the end bents <u>(except detached wing walls)</u> is included in the Estimated Quantities for Slab on Concrete <u>I-Girder</u> <u>Bulb-Tee Girder</u>.
 
  
 +
:Surface Preparation: Surface preparation of the existing steel shall be in accordance with Sec 1080 and Sec 1081 for Recoating of Structural Steel (System G, H or I). The cost of surface preparation will be considered completely covered by the contract <u>lump sum</u> <u>unit</u> price <u>per sq. foot</u> for Surface Preparation for Recoating Structural Steel.
  
'''Integral End Bents'''
+
'''(A4a2.12) '''
  
'''(B1.5)'''
+
:Prime Coat: The cost of the prime coat will be considered completely covered by the contract <u>lump sum</u> <u>unit</u> price <u>per sq. foot</u> for <u>Field Application of Inorganic Zinc Primer</u>. Tint of the prime coat for System H shall be similar to the color of the field coat to be used.  
:All reinforcement in the end bents <u>(except detached wing walls)</u> is included in the Estimated Quantities for Slab on <u>Steel</u> <u>Concrete I-Girder</u> <u>Concrete Bulb-Tee Girder</u>.
 
  
 +
'''(A4a2.13) Use same note A4.3 (repeated here for completeness) for existing steel as for new steel. The coating color shall be as specified on the Design Layout. '''
  
'''Intermediate Bents with Concrete Diaphragms'''
+
:Field Coats: The color of the field coats shall be Brown (Federal Standard #30045). The cost of the intermediate field coat will be considered completely covered by the contract <u>lump sum</u> <u>unit</u> price <u>per sq. foot</u> for Intermediate Field Coat (System H). The cost of the finish field coat will be considered completely covered by the contract <u>lump sum</u> <u>unit</u> price <u>per sq. foot</u> for Finish Field Coat (System H).
  
'''(B1.5.1)'''
+
=====A4a3. <u>Miscellaneous</u>=====
:All reinforcement in the intermediate bent concrete diaphragms except reinforcement embedded in the beam cap is included in the Estimated Quantities for Slab on Concrete <u>I-Girder</u> <u>Bulb-Tee Girder</u>.
 
  
'''(B1.5.2)'''
+
'''(A4a3.1) Use for weathering steel or concrete structures with girder chairs and when a coating pay item is not included. '''
:All concrete above the intermediate beam cap is included in the Estimated Quantities for Slab on Concrete <u>I-Girder</u> <u>Bulb-Tee Girder</u>.
 
  
 +
:Structural steel for the <u>girder</u> <u>beam</u> chairs shall be coated with not less than 2 mils of inorganic zinc primer. Scratched or damaged surfaces are to be touched up in the field before concrete is poured. In lieu of coating, the <u>girder</u> <u>beam</u> chairs may be galvanized in accordance with ASTM A123. The cost of coating or galvanizing the <u>girder</u> <u>beam</u> chairs will be considered completely covered by the contract unit price for other items.
  
'''Non-Integral End Bents with Concrete Diaphragms'''
+
'''(A4a3.2) Use when recoating existing exposed piles. (Guidance: "Aluminum" is preferred because it acts as both a barrier and corrosion protection where "Gray" only acts as a barrier. If for any reason coated pile is embedded in fresh concrete, "Aluminum" shall not be used.)'''
  
'''(B1.5.3)'''
+
:All exposed surfaces of the existing structural steel piles <u>and sway bracing</u> shall be recoated with one 6-mil thickness of <u>aluminum</u> <u>gray</u> epoxy-mastic primer applied over an SSPC-SP3 surface preparation in accordance with Sec 1081. The bituminous coating shall be applied one foot above and below the existing ground line and in accordance with Sec 702. These protective coatings will not be required below the normal low water line. The cost of surface preparation will be considered completely covered by the contract lump sum price for Surface Preparation for Applying Epoxy-Mastic Primer. The cost of the <u>aluminum</u> <u>gray</u> epoxy-mastic primer and bituminous coating will be considered completely covered by the contract lump sum price for <u>Aluminum</u> <u>Gray</u> Epoxy-Mastic Primer.
:All reinforcement in the concrete diaphragms at End Bent<u>s</u> No. <u> &nbsp;  </u> is included in the Estimated Quantities for Slab on Concrete <u>I-Girder</u> <u>Bulb-Tee Girder</u>.
 
  
'''(B1.5.4)'''
+
====A4b. Concrete Protective Coatings====
:All concrete in the concrete diaphragm at End Bent<u>s</u> is included in the Estimated Quantities for Slab on Concrete <u>I-Girder</u> <u>Bulb-Tee Girder</u>.
 
  
 +
=====A4b1. Concrete Protective Coatings=====
  
'''Semi-Deep Abutments'''
+
In "'''General Notes:'''" section of plans, place the following notes under the heading "'''Concrete Protective Coatings:'''".
  
'''(B1.6)'''
+
'''(A4b1.1) Use note with weathering steel structures. '''
:All concrete and reinforcing steel below top of slab and above construction joint in Semi-Deep Abutments is included in the Estimated Quantities for Slab on Semi-Deep Abutments.
 
  
 +
:Temporary coating for concrete bents and piers (weathering steel) shall be applied on all concrete surfaces above the ground line or low water elevation on all abutments and intermediate bents in accordance with Sec 711.
  
'''End Bents with Expansion Device'''
+
'''(A4b1.2) Use note with coating for concrete bents and piers either urethane or epoxy. '''
  
'''(B1.7)'''
+
:Protective coating for concrete bents and piers <u>(Urethane)</u> <u>(Epoxy)</u> shall be applied as shown on the bridge plans and in accordance with Sec 711.  
:Concrete above the upper construction joint in backwall at End Bent<u>s</u> No. <u> &nbsp; </u> &nbsp;is included with Class B-2 Concrete (Slab on <u> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; </u>) Quantities.
 
  
 +
'''(A4b1.3) Use note when specified on Design Layout.'''
  
'''Sidewalk'''
+
:Concrete and masonry protective coating shall be applied on all exposed concrete and stone areas in accordance with Sec 711.
  
'''(B1.8)'''
+
'''(A4b1.4) Use note when specified on Design Layout. '''
:All concrete and reinforcing steel in sidewalk will be considered completely covered by the contract unit price for Sidewalk (Bridges).
 
  
 +
:Sacrificial graffiti protective coating shall be applied on all exposed concrete and stone areas in accordance with Sec 711.
  
'''Continuous Concrete Slab Bridge (Notes B1.9.1 thru B1.9.6)'''
+
=== A5. Miscellaneous ===
  
'''End Bents'''
+
In "'''General Notes:'''" section of plans, place the following notes under the heading "'''Miscellaneous:'''".
  
'''(B1.9.1)'''
+
'''(A5.3) Use the following note on all jobs with high strength bolts.'''
:All concrete above the construction joint in the end bents <u>(except detached wing walls)</u> is included with the Superstructure Quantities.
+
:High strength bolts, nuts and washers will be sampled for quality assurance as specified in Sec 106.
  
'''(B1.9.2)'''
+
'''(A5.4) Use the following note for structures having detached wing walls at end bents.'''
:All reinforcement in the end bents <u>(except detached wing walls)</u> is included with the Superstructure Quantities.
+
:Payment for furnishing all materials, labor and excavation necessary to construct the <u>Lt.</u> <u>Rt.</u> <u>both</u> detached wing wall<u>s</u> at End Bents No. <u> &nbsp; &nbsp; </u>&nbsp;  <u>and</u> <u>No. &nbsp; &nbsp; </u>&nbsp;including the Class <u> &nbsp; </u>&nbsp;Excavation, <u>&nbsp; &nbsp; Pile</u>, [[#A5-notes|(1)]], Class <u>B</u> <u>B-1</u> Concrete (Substr.) [[#A5-notes|(2)]] and Reinforcing Steel (Bridges), will be considered completely covered by the contract unit price for these items.
  
 +
::{| style="margin: 1em auto 1em auto" align="left"
 +
|-
 +
|(1)||List all items used for the detached wing walls.
 +
|-
 +
|valign="top"|(2)|| For continuous concrete slab bridges, the detached wing walls could be either Class B or Class B-1. (For slab bridges with Class B spread footings, the detached wing walls might as well be Class B, otherwise, Class B-1 may be used.) Check with Project Manager.
 +
|}
  
'''Intermediate Column Bents integral with slab'''
+
<div id="(A5.6)"></div>
  
'''(B1.9.3)'''
+
'''(A5.6) <font color="purple">[MS Cell]</font color="purple"> Use the following note on all Concrete Superstructures where Precast Panels are used.'''
:All concrete above construction joint between slab and columns in the intermediate bents is included with Superstructure Quantities.
+
:MoDOT Construction personnel will indicate the type of joint filler option used under the precast panels for this structure:
 +
:: □  Constant Joint Filler
 +
:: □  Variable Joint Filler
  
'''(B1.9.4)'''
+
== B. Estimated Quantities Notes ==
:All reinforcement in the intermediate bent columns is included with Superstructure Quantities.
 
  
  
'''Intermediate Pile Cap Bents integral with slab'''
+
=== B1. General ===
  
'''(B1.9.5)'''
 
:All concrete in the intermediate bent cap<u>s</u> is included with Superstructure Quantities.
 
  
'''(B1.9.6)'''
+
==== B1a. Concrete ====
:All reinforcement in the intermediate bent cap<u>s</u> is included with Superstructure Quantities.
 
 
 
==== B1b. Excavation, Sway Bracing & Neoprene Bearing Pads ====
 
  
  
 
'''Integral End Bents (When bridge slab quantity using note B3.1 table only)'''
 
'''Integral End Bents (When bridge slab quantity using note B3.1 table only)'''
  
'''(B1.10) Use when total estimated excavation is less than 10 cubic yards (No "excavation" item in the Estimated Quantities).'''
+
'''(B1.1) (Use on steel structures only.)'''
:Cost of any required excavation for bridge will be considered completely covered by the contract unit price for other items.
+
:All concrete above the lower construction joint in the end bents <u>(except detached wing walls)</u> is included with the Superstructure Quantities.
  
 +
'''(B1.2) (Use on concrete structures only.)'''
 +
:All concrete above the construction joint in the end bents <u>(except detached wing walls)</u> is included with the Superstructure Quantities.
  
'''Retaining Walls'''
 
  
'''(B1.11)'''
+
'''Integral End Bents, notes B1.3, B1.4, and B1.5  (When bridge slab quantity using note B3.21 table, slab bid per sq. yd.) '''
:No Class 1 Excavation will be paid for above lower limits of roadway excavation.
 
  
 +
'''(B1.3) (Use on steel structures only.)'''
 +
:All concrete between the upper and lower construction joints in the end bents <u>(except detached wing walls) </u> is included in the Estimated Quantities for Slab on Steel.
  
'''Concrete Structures Having Sway Bracing on Load Bearing Piles'''
+
'''(B1.4) (Use on concrete structures only.)'''
 +
:All concrete above the construction joint in the end bents <u>(except detached wing walls)</u> is included in the Estimated Quantities for <u>Slab on Concrete I-Girder</u> <u>Slab on Concrete Bulb-Tee Girder</u> <u>Slab on Concrete NU-Girder</u> <u>Slab on Concrete Beam</u> <u>Reinforced Concrete Slab Overlay</u>.
  
'''(B1.12)'''
+
'''(B1.5)'''
:The cost of furnishing and installing steel sway bracing on piles at the intermediate bent<u>s</u> will be considered completely covered by the contract unit price for Fabricated Structural Carbon Steel (Misc.).
+
:All reinforcement in the end bents <u>(except detached wing walls)</u> <u>and all reinforcement in cast-in-place pile at end bents</u> is included in the Estimated Quantities for <u>Slab on Steel</u> <u>Slab on Concrete I-Girder</u> <u>Slab on Concrete Bulb-Tee Girder</u> <u>Slab on Concrete NU-Girder</u> <u>Slab on Concrete Beam</u> <u>Reinforced Concrete Slab Overlay</u>.
  
  
'''Note to Detailer:'''<br/>For structures having steel sway bracing on piles, the weight of the bracing shall be shown under the substructure quantities.
+
'''Intermediate Bents with Concrete Diaphragms'''
  
'''(B1.13)'''
+
'''(B1.5.1)'''
:Cost of cleaning and coating of bracing at intermediate bents will be considered completely covered by the contract unit price for other items.
+
:All reinforcement in the intermediate bent concrete diaphragms except reinforcement embedded in the beam cap is included in the Estimated Quantities for <u>Slab on Concrete I-Girder</u> <u>Slab on Concrete Bulb-Tee Girder</u> <u>Slab on Concrete NU-Girder</u> <u>Slab on Concrete Beam</u> <u>Reinforced Concrete Slab Overlay</u>.
  
 +
'''(B1.5.2)'''
 +
:All concrete above the intermediate beam cap is included in the Estimated Quantities for <u>Slab on Concrete I-Girder</u> <u>Slab on Concrete Bulb-Tee Girder</u> <u>Slab on Concrete NU-Girder</u> <u>Slab on Concrete Beam</u> <u>Reinforced Concrete Slab Overlay</u>.
  
'''Structures Having Neoprene Bearing Pads'''
 
  
'''(B1.14)  Does not apply to Type "N" PTFE Bearings & Laminated Neoprene Bearing Pad Assembly.'''
+
'''Non-Integral End Bents with Concrete Diaphragms'''
:<u>Plain</u> <u>Laminated</u> Neoprene Bearing Pads <u>(Tapered)</u> shall be in accordance with Sec 716.
 
  
=== B2. Welded Wire Fabric ===
+
'''(B1.5.3)'''
 +
:All reinforcement in the concrete diaphragm at the end bents is included in the Estimated Quantities for <u>Slab on Concrete I-Girder</u> <u>Slab on Concrete Bulb-Tee Girder</u> <u>Slab on Concrete NU-Girder</u> <u>Slab on Concrete Beam</u> <u>Reinforced Concrete Slab Overlay</u>.
  
 +
'''(B1.5.4)'''
 +
:All concrete in the concrete diaphragm at the end bents is included in the Estimated Quantities for <u>Slab on Concrete I-Girder</u> <u>Slab on Concrete Bulb-Tee Girder</u> <u>Slab on Concrete NU-Girder</u> <u>Slab on Concrete Beam</u> <u>Reinforced Concrete Slab Overlay</u>.
  
'''Structures with Welded Wire Fabric'''
 
  
'''(B2.4)'''
+
'''Semi-Deep Abutments'''
:Weight of <u>6</u> x <u>6</u> - <u>W2.1</u> x <u>W2.1</u> welded wire fabric is included in Estimated Weight of Reinforcing Steel. (*)
 
  
 +
'''(B1.6)'''
 +
:All concrete and reinforcing steel below top of slab and above construction joint in Semi-Deep Abutments is included in the Estimated Quantities for Slab on Semi-Deep Abutment.
  
 +
<div id="(B1.7)"></div>
 +
'''End Bents with Expansion Device'''
  
{|border="1" style="text-align:center;" cellpadding="5" cellspacing="0"
+
'''(B1.7)'''
|-
+
:Concrete above the upper construction joint in backwall at End Bent<u>s</u> No. <u> &nbsp; </u> &nbsp;is included with Class B-2 Concrete (Slab on <u> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; </u>) Quantities.
!colspan="4"|WELDED WIRE FABRIC WEIGHT
+
 
|-
+
 
!STYLE||SPACE||SIZE||LBS./100 SQ, FT.
+
'''Sidewalk'''
|-
 
|6 x 6 - W2.1 x W2.1||6"||8 ga.||30
 
|-
 
|4 x 4 - W4 x W4||4"||4 ga.||85
 
|}
 
  
See CRSI Manual for other sizes.
+
'''(B1.8)'''
 +
:All concrete and reinforcing steel in sidewalk will be considered completely covered by the contract unit price for Sidewalk (Bridges).
  
Table should not be shown on plans
 
  
 +
'''Continuous Concrete Slab Bridge (Notes B1.9.1 thru B1.9.6)'''
  
(*) Modify for type actually used.  Show type on details where the fabric is shown.
+
'''End Bents'''
 
"W" denotes smooth wire; the number following indicates cross sectional area in hundredths of a square inch.  Deformed wire is denoted by the letter "D".
 
  
=== B3. Estimated Quantities Tables ===
+
'''(B1.9.1)'''
 +
:All concrete above the construction joint in the end bents <u>(except detached wing walls)</u> is included with the Superstructure Quantities.
  
 +
'''(B1.9.2)'''
 +
:All reinforcement in the end bents <u>(except detached wing walls)</u> is included with the Superstructure Quantities.
  
==== B3a. Bridges ====
 
  
'''(B3.1)'''
+
'''Intermediate Column Bents integral with slab'''
:{|border="0" style="text-align:center;" cellpadding="5" cellspacing="0"
+
 
|-
+
'''(B1.9.3)'''
!rowspan="3" | &nbsp;||colspan="5" style="border-top:3px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:3px solid black"|Estimated Quantities
+
:All concrete above construction joint between slab and columns in the intermediate bents is included with Superstructure Quantities.
|-
+
 
!colspan="2" style="border-top:1px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:1px solid black"|Item
+
'''(B1.9.4)'''
|width="60pt" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black"|Substr.
+
:All reinforcement in the intermediate bent columns is included with Superstructure Quantities.
|width="60pt" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black"|Superstr.
+
 
|width="60pt" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:3px solid black"|Total
+
 
|-
+
'''Intermediate Pile Cap Bents integral with slab'''
|align="left" width="225pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black;"|Class 1 Excavation
+
 
|align="right" style="border-top:1px solid black; border-bottom:1px solid gray; border-right:1px solid black"|cu. yard
+
'''(B1.9.5)'''
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|&nbsp;
+
:All concrete in the intermediate bent cap<u>s</u> is included with Superstructure Quantities.
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|&nbsp;
+
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|&nbsp;
+
'''(B1.9.6)'''
|-
+
:All reinforcement in the intermediate bent cap<u>s</u> is included with Superstructure Quantities.
|align="right" |[[Image:751.50 circled 1.gif]] <math>\, \big\{</math>
+
 
|align="left" width="225pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black;"|Structural Steel Piles ( &nbsp; &nbsp; in.)
+
<div id="(B1.9.7) Use"></div>
|align="right" style="border-top:1px solid gray; border-bottom:1px solid gray; border-right:1px solid black"|linear foot
+
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|&nbsp;
+
==== B1b. Excavation, Sway Bracing====
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|&nbsp;
+
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|&nbsp;
+
 
|-
+
'''Integral End Bents (When bridge slab quantity using note B3.1 table only)'''
|&nbsp;
+
 
|align="left" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black;"|Class B Concrete
+
'''(B1.10) Use when total estimated excavation is less than 10 cubic yards (No "excavation" item in the Estimated Quantities).'''
|align="right" style="border-top:1px solid gray; border-bottom:1px solid gray; border-right:1px solid black"|cu. yard
+
:Cost of any required excavation for bridge will be considered completely covered by the contract unit price for other items.
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|&nbsp;
+
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|&nbsp;
+
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|&nbsp;
+
'''Retaining Walls'''
|-
+
 
|align="right"|[[Image:751.50 circled 2.gif]] <math>\, \big\{*</math>
+
'''(B1.11)'''
|align="left" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black;"|Safety Barrier Curb
+
:No Class 1 Excavation will be paid for above lower limits of roadway excavation.
|align="right" style="border-top:1px solid gray; border-bottom:1px solid gray; border-right:1px solid black"|linear foot
+
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|&nbsp;
+
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|&nbsp;
+
'''Concrete Structures Having Sway Bracing on Load Bearing Piles'''
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|&nbsp;
+
 
|-
+
'''(B1.12)'''
|&nbsp;
+
:The cost of furnishing and installing steel sway bracing on piles at the intermediate bent<u>s</u> will be considered completely covered by the contract unit price for Fabricated Structural Carbon Steel (Misc.).
|align="left" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black;"|Reinforcing Steel (Bridges)
+
 
|align="right" style="border-top:1px solid gray; border-bottom:1px solid gray; border-right:1px solid black"|pound
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|&nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|&nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|&nbsp;
 
|-
 
|align="right" rowspan="2"|[[Image:751.50 circled 3.gif]] <math>\, \Bigg\{</math>
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black;"|&nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-right:1px solid black"|&nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|&nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|&nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|&nbsp;
 
|-
 
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:3px solid black;"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:3px solid black; border-right:1px solid black"|&nbsp;
 
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:1px solid black"|&nbsp;
 
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:1px solid black"|&nbsp;
 
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:3px solid black"|&nbsp;
 
|}
 
  
 +
'''Note to Detailer:'''<br/>For structures having steel sway bracing on piles, the weight of the bracing shall be shown under the substructure quantities.
  
 +
'''(B1.13)'''
 +
:Cost of cleaning and coating of bracing at intermediate bents will be considered completely covered by the contract unit price for other items.
  
{|
 
|valign="top"|[[Image:751.50 circled 1.gif]]||The following note shall be placed under the estimated quantities box when steel piles are used in Seismic Performance Categories B, C & D.
 
|}
 
  
'''(B3.2)'''
+
=== B2. Welded Wire Fabric ===
:Cost of channel shear connectors C4 x 5.4 (ASTM A709 Grade 36) in place will be considered completely covered by the contract unit price for Structural Steel Piles ( <u>10 in.</u> <u>12 in.</u> <u>14 in.</u>).
 
  
  
{|
+
'''Structures with Welded Wire Fabric'''
|valign="top"|[[Image:751.50 circled 2.gif]]||Place an <math>\, *</math> next to the safety barrier curb in the quantity box and add the following note under the estimated quantities box.
+
 
|}
+
'''(B2.4)'''
 +
:Weight of <u>6</u> x <u>6</u> - <u>W2.1</u> x <u>W2.1</u> welded wire fabric is included in Estimated Weight of Reinforcing Steel. (*)
  
'''(B3.3)'''
 
:<math>\, *</math> Safety barrier curb shall be cast-in-place option or slip-form option.
 
  
  
{|
+
{|border="1" style="text-align:center;" cellpadding="5" cellspacing="0"
|valign="top"|[[Image:751.50 circled 3.gif]]||In special cases, entries are made to the quantities table by the Construction after plans are completed. When notes are placed too close to the bottom of this table, additional quantities cannot be entered efficiently. The request has been made that space be left for at least four (4) additional entries to the table before notes are placed on the plans.
+
|-
 +
!colspan="4"|WELDED WIRE FABRIC WEIGHT
 +
|-
 +
!STYLE||SPACE||SIZE||LBS./100 SQ, FT.
 +
|-
 +
|6 x 6 - W2.1 x W2.1||6"||8 ga.||30
 +
|-
 +
|4 x 4 - W4 x W4||4"||4 ga.||85
 
|}
 
|}
  
 +
See CRSI Manual for other sizes.
  
'''The following notes shall be placed under the estimated quantities box when CIP piles are used in Seismic Performance Categories B, C and D.'''
+
Table should not be shown on plans
  
'''(B3.4)'''
 
:All reinforcement in cast-in-place piling at end bents is included in the superstructure quantities.
 
  
'''(B3.5) Do not use for slab bridges with CIP Pile Caps.'''
+
(*) Modify for type actually used. Show type on details where the fabric is shown.
:All reinforcement in cast-in-place piling at intermediate bents is included in the substructure quantities for intermediate bents.
+
 +
"W" denotes plain wire; the number following indicates cross sectional area in hundredths of a square inch.  Deformed wire is denoted by the letter "D".
  
'''(B3.6) Use for slab bridges with CIP Pile Caps.'''
+
=== B3. Estimated Quantities Tables ===
:All reinforcement in cast-in-place piling at intermediate bents is included in the superstructure quantities for intermediate bents.
 
  
  
'''Place an <math>\, **</math> next to the transverse diamond grooving in the quantity box and add the following note under the estimated quantities box.'''
+
==== B3a. Bridges ====
  
'''(B3.7)'''
+
'''(B3.1) <font color="purple">[MS Cell]</font color="purple">'''
:<math>\, **</math> MoDOT will allow, at the contractor's discretion, longitudinal or transverse diamond grooving of the surface of the concrete bridge deck.
+
:{|border="0" style="text-align:center;" cellpadding="5" cellspacing="0"
 
+
|-
==== B3b. Box Culverts & Slab on Semi-Deep ====
+
!rowspan="3" | &nbsp;||colspan="5" style="border-top:3px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:3px solid black"|Estimated Quantities
 
+
|-
Estimated Quantities Table for Box Culverts
+
!colspan="2" style="border-top:1px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:1px solid black"|Item
 
+
|width="60pt" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black"|Substr.
The quantities table on box culvert plans should show an extra column to the right in the table that is labeled "Final Quantities". Estimated quantities should be inserted to the left of this column in the usual manner by the detailer as shown in the example below.
+
|width="60pt" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black"|Superstr.
 
+
|width="60pt" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:3px solid black"|Total
The four extra spaces at the bottom of the table are not required as specified before.
 
 
 
'''(B3.11)'''
 
:{|border="0" style="text-align:center;" cellpadding="5" cellspacing="0"
 
 
|-
 
|-
!rowspan="2" | &nbsp;
+
|align="left" width="225pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black;"|Class 1 Excavation
!colspan="3" style="border-top:3px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:1px solid black"|Estimated Quantities
+
|align="right" style="border-top:1px solid black; border-bottom:1px solid gray; border-right:1px solid black"|cu. yard
!style="border-top:3px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:3px solid black"|Final<br/>Quantities
+
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|&nbsp;
 +
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|&nbsp;
 +
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|&nbsp;
 
|-
 
|-
|align="left" width="225pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black;"|Class 4 Excavation
+
|align="right" |[[Image:751.50 circled 1.gif]] <math>\, \big\{</math>
|align="right" style="border-top:1px solid black; border-bottom:1px solid gray; border-right:1px solid gray"|cu. yard
+
|align="left" width="225pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black;"|Structural Steel Piles ( &nbsp; &nbsp; in.)
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid gray; border-right:1px solid black" width="75pt"|&nbsp;
+
|align="right" style="border-top:1px solid gray; border-bottom:1px solid gray; border-right:1px solid black"|linear foot
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
+
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|&nbsp;
|-
+
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|&nbsp;
|<math>\, *</math>
+
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|&nbsp;
|align="left" width="225pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black;"|Class B-1 Concrete (Culverts-Bridge)
 
|align="right" style="border-top:1px solid gray; border-bottom:1px solid gray; border-right:1px solid gray"|cu. yard
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid gray; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
 
|-
 
|<math>\, *</math>
 
|align="left" width="225pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black;"|Reinforcing Steel (Culverts-Bridge)
 
|align="right" style="border-top:1px solid gray; border-bottom:1px solid gray; border-right:1px solid gray"|pound
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid gray; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
 
 
|-
 
|-
 
|&nbsp;
 
|&nbsp;
|align="left" width="225pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black;"|Class 4 Excavation
+
|align="left" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black;"|Class B Concrete
|align="right" style="border-top:1px solid gray; border-bottom:1px solid gray; border-right:1px solid gray"|cu. yard
+
|align="right" style="border-top:1px solid gray; border-bottom:1px solid gray; border-right:1px solid black"|cu. yard
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid gray; border-right:1px solid black" width="75pt"|&nbsp;
+
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|&nbsp;
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
+
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|&nbsp;
 +
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|&nbsp;
 +
|-
 +
|align="right"|[[Image:751.50 circled 2.gif]] <math>\, \big\{*</math>
 +
|align="left" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black;"|Safety Barrier Curb
 +
|align="right" style="border-top:1px solid gray; border-bottom:1px solid gray; border-right:1px solid black"|linear foot
 +
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|&nbsp;
 +
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|&nbsp;
 +
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|&nbsp;
 
|-
 
|-
 
|&nbsp;
 
|&nbsp;
|align="left" width="225pt" style="border-top:1px solid gray; border-bottom:3px solid black; border-left:3px solid black;"|&nbsp;
+
|align="left" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black;"|Reinforcing Steel (Bridges)
|align="right" style="border-top:1px solid gray; border-bottom:3px solid black; border-right:1px solid gray"| &nbsp;
+
|align="right" style="border-top:1px solid gray; border-bottom:1px solid gray; border-right:1px solid black"|pound
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid gray; border-right:1px solid black" width="75pt"|&nbsp;
+
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|&nbsp;
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
+
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|&nbsp;
 +
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|&nbsp;
 +
|-
 +
|align="right" rowspan="2"|[[Image:751.50 circled 3.gif]] <math>\, \Bigg\{</math>
 +
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black;"|&nbsp;
 +
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-right:1px solid black"|&nbsp;
 +
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|&nbsp;
 +
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|&nbsp;
 +
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|&nbsp;
 +
|-
 +
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:3px solid black;"| &nbsp;
 +
|style="border-top:1px solid gray; border-bottom:3px solid black; border-right:1px solid black"|&nbsp;
 +
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:1px solid black"|&nbsp;
 +
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:1px solid black"|&nbsp;
 +
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:3px solid black"|&nbsp;
 
|}
 
|}
  
  
<math>\, *</math> Note to Detailer:
 
:If distance from stream face of exterior wall to exterior wall is <math>\ge</math> 20' then should use (Culverts-Bridge) but if <math><</math> 20' should use Class B-1 Concrete (Culverts).
 
  
==== B3c. Slabs ====
+
{|
 +
|valign="top"|[[Image:751.50 circled 1.gif]]||The following note shall be placed under the estimated quantities box when steel piles are used in Seismic Performance Categories B, C & D.
 +
|}
 +
<div id="(B3.2)"></div>
 +
'''(B3.2)'''
 +
:Cost of L4x4 ASTM A709 Grade 36 HP pile anchors and 3/4-inch diameter ASTM F3125 Grade A325 bolts, complete in place, will be considered completely covered by the contract unit price for <u>Galvanized</u> Structural Steel Piles (<u>10 in.</u> <u>12 in.</u> <u>14 in.</u>).
  
The following table is to be placed on the design plans under the table of estimated quantities.
 
  
'''(B3.21) Table of Slab Quantities'''
+
{|
:{|border="0" style="text-align:center;" cellpadding="5" cellspacing="0"
+
|valign="top"|[[Image:751.50 circled 2.gif]]||Place an <math>\, *</math> next to the safety barrier curb in the quantity box and add the following note under the estimated quantities box.
|-
 
!colspan="3" style="border-top:3px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:3px solid black"|Estimated Quantities for<br/><u> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; </u>
 
|-
 
!colspan="2" width="225pt" style="border-top:1px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:1px solid black"|Item
 
!style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:3px solid black" width="75pt"|Total
 
|-
 
|align="left" width="225pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black;"|Class B-2 Concrete
 
|align="right" style="border-top:1px solid black; border-bottom:1px solid gray; border-right:1px solid black"|cu. yard
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
 
|-
 
|align="left" width="225pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black;"|Reinforcing Steel
 
|align="right" style="border-top:1px solid gray; border-bottom:1px solid gray; border-right:1px solid black"|pound
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
 
|-
 
|align="left" width="225pt" style="border-top:1px solid gray; border-bottom:3px solid black; border-left:3px solid black;"|Reinforcing Steel (Epoxy Coated)
 
|align="right" style="border-top:1px solid gray; border-bottom:3px solid black; border-right:1px solid black"|pound
 
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
 
 
|}
 
|}
Fill in the blank above and in note below with "'''Slab on Steel'''", "'''Slab on Concrete I-Girder'''", "'''Slab on Concrete Bulb-Tee Girder'''", "'''Slab on Semi-Deep Abutment'''" or "'''Reinforced Concrete Slab Overlay'''".
 
  
"'''Reinforced Concrete Slab Overlay'''" will be used with prestressed concrete voided slab beams, box girders and double-tees.
+
'''(B3.3)'''
 +
:<math>\, *</math> Safety barrier curb shall be cast-in-place <u>option or slip-form option</u>.
  
  
'''(B3.22)'''
+
{|
:The table of Estimated Quantities for <u> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; </u> &nbsp; represents the quantities used by the State in preparing the cost estimate for concrete slabsThe area of the concrete slab will be measured to the nearest square yard with the horizontal dimensions as shown on the plan of slab.  Payment for prestressed panels, stay-in-place forms, conventional forms, all concrete and coated and uncoated reinforcing steel will be considered completely covered by the contract unit price for the slabVariations may be encountered in the estimated quantities but the variations cannot be used for an adjustment in the contract unit price.
+
|valign="top"|[[Image:751.50 circled 3.gif]]||In special cases, entries are made to the quantities table by the Construction after plans are completedWhen notes are placed too close to the bottom of this table, additional quantities cannot be entered efficientlyThe request has been made that space be left for at least four (4) additional entries to the table before notes are placed on the plans.
 +
|}
  
'''(B3.23)'''
 
:Method of forming the slab<u>s</u> shall be as shown on the plans and in accordance with Sec 703.  All hardware for forming the slab to be left in place as a permanent part of the structure shall be coated in accordance with ASTM A123 or ASTM B633 with a thickness class SC 4 and a finish type I, II or III.
 
  
'''(B3.24) Use note for optional forming.'''
+
'''(B3.5) Use for CIP pile in all bridges except for continuous concrete slab bridges.'''
:Slab shall be cast-in-place with conventional forming or stay-in-place corrugated metal forms. Precast prestressed panels will not be permitted.
+
:All reinforcement in cast-in-place pile at <u>non-integral end bents</u> <u>and</u> <u>intermediate bents</u> is included in the substructure quantities.
  
 +
'''(B3.6) Use for CIP pile in continuous concrete slab bridges.'''
 +
:All reinforcement in cast-in-place pile at end bents <u>and</u> <u>pile cap intermediate bents</u> is included in the superstructure quantities <u>and all reinforcement in cast-in-place pile at open concrete intermediates bents is included in the substructure quantities</u>.
  
'''Stay-In-Place Forms:'''
+
'''Place an <math>\, **</math> next to the transverse diamond grooving in the quantity box and add the following note under the estimated quantities box.'''
  
'''(B3.30)'''
+
'''(B3.7)'''
:Permanent steel bridge deck forms, supports closure elements and accessories shall be in accordance with ASTM A446, Grades A thru F, having a coating class of G165 in accordance with ASTM A525.  Complete shop drawings of the permanent steel deck forms shall be required in accordance with Sec 1080.  
+
:<math>\, **</math> MoDOT will allow, at the contractor's discretion, longitudinal or transverse diamond grooving of the surface of the concrete bridge deck.
  
'''(B3.31)'''
+
==== B3b. Box Culverts====
:Corrugations of stay-in-place forms shall be filled with an expanded polystyrene material.  The polystyrene material shall be placed in the forms with an adhesive in accordance with the manufacturer's recommendations.
 
  
'''(B3.32)'''
+
Estimated Quantities Table for Box Culverts
:Form sheets shall not rest directly on the top of girders, stringers or floorbeams flanges.  Sheets shall be securely fastened to form supports with a minimum bearing length of one inch on each end.  Form supports shall be placed in direct contact with the flange.  Welding on or drilling holes in the flanges of the girders, stringers or floorbeams will not be permitted.  All steel fabrication and construction shall be in accordance with Sec's 1080 and 712.
 
  
 +
The quantities table on box culvert plans should show an extra column to the right in the table that is labeled "Final Quantities". Estimated quantities should be inserted to the left of this column in the usual manner by the detailer as shown in the example below.
  
'''Precast Prestressed Panels:'''
+
The four extra spaces at the bottom of the table are not required as specified before.
  
'''(B3.40)'''
+
'''(B3.11) <font color="purple">[MS Cell]</font color="purple">'''
:The Estimated Quantities for Slab on <u>Steel</u> <u>Concrete I-Girder</u> <u>Concrete Bulb-Tee Girder</u> are based on skewed precast prestressed end panels.
+
:{|border="1" style="text-align:center; border:3px solid black" cellpadding="5" cellspacing="0"
 +
|-
 +
!width="300" colspan=2 |Estimated Quantities||width="100"|Final Quantities
 +
|-
 +
| align="left"| Class 4 Excavation||cu. yard||
 +
|-
 +
|align="left"|Class B-1 Concrete<br/>(Culverts-Bridge)'''*'''||cu. yard||
 +
|-
 +
|align="left"|Reinforcing Steel (Culverts- <br/> Bridge)'''*'''||pound||
 +
|}
  
'''(B3.41) Use with Slab on Concrete I-Girder or Bulb-Tee Girder only.'''
+
<math>\, *</math> Note to Detailer:
:Class B-2 Concrete quantity is based on minimum top flange thickness and minimum joint material thickness.
+
:If distance from stream face of exterior wall to exterior wall is <math>\ge</math> 20' then should use (Culverts-Bridge) but if <math><</math> 20' should use (Culverts).
  
'''(B3.42)'''
+
==== B3c. Slabs on Steel, Concrete and Semi-Deep Abutment, and Reinforced Concrete Slab Overlays ====
:The prestressed panel quantities are not included in the table of Estimated Quantities for Slab on <u>Steel</u> <u>Concrete I-Girder</u> <u>Concrete Bulb-Tee Girder</u>.
 
 
 
==== B3d. Asphalt Wearing Surfaces ====
 
 
 
The following table shall be placed under the Table of Estimated Quantities on the design plans for alternate asphaltic concrete wearing surface.
 
  
 +
The following table is to be placed on the design plans under the table of estimated quantities.
  
'''(B3.50)'''
+
Use separate tables for multiple types of slabs on a structure.  
  
 +
'''(B3.21) <font color="purple">[MS Cell]</font color="purple"> Table of Slab Quantities'''
 
:{|border="0" style="text-align:center;" cellpadding="5" cellspacing="0"
 
:{|border="0" style="text-align:center;" cellpadding="5" cellspacing="0"
 
|-
 
|-
|rowspan="2"|&nbsp;
+
!colspan="3" style="border-top:3px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:3px solid black"|Estimated Quantities for<br/><u> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; </u>
!colspan="2" style="border-top:3px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:3px solid black"|Alternate Asphaltic<br/>Concrete Wearing Surface
 
|width="175pt"|&nbsp;
 
 
|-
 
|-
!width="225pt" style="border-top:1px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:1px solid black"|Type of Wearing Surface<br/>with Asphalt Binder Type
+
!colspan="2" width="225pt" style="border-top:1px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:1px solid black"|Item
!style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:3px solid black" width="75pt"|Mix Used<br/>(<math>\sqrt{}</math>)
+
!style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:3px solid black" width="75pt"|Total
 
|-
 
|-
|<math>\,*</math>
+
|align="left" width="225pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black;"|Class B-2 Concrete
|align="left" width="225pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black;"|SP125BSM Mix with PG 76-22
+
|align="right" style="border-top:1px solid black; border-bottom:1px solid gray; border-right:1px solid black"|cu. yard
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
 
|-
 
|-
|<math>\,*</math>
+
|align="left" width="225pt" style="border-top:1px solid gray; border-bottom:3px solid black; border-left:3px solid black;"|Reinforcing Steel (Epoxy Coated)
|align="left" width="225pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black;"|SP125BLP Mix with PG 76-22
+
|align="right" style="border-top:1px solid gray; border-bottom:3px solid black; border-right:1px solid black"|pound
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
+
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
|-
 
|<math>\,*</math>
 
|align="left" width="225pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black;"|SP125BSM Mix with PG 70-22
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
 
|-
 
|<math>\,*</math>
 
|align="left" width="225pt" style="border-top:1px solid gray; border-bottom:3px solid black; border-left:3px solid black; border-right:1px solid black;"|SP125CLP Mix with PG 70-22
 
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
 
|-
 
|&nbsp;
 
|align="left" colspan="3"|MoDOT construction personnel shall complete column labeled "Mix Used (<math>\sqrt{}</math>)".
 
 
|}
 
|}
 +
Fill in the blank above and in note below with "'''Slab on Steel'''", "'''Slab on Concrete I-Girder'''", "'''Slab on Concrete Bulb-Tee Girder'''", "'''Slab on Concrete NU-Girder'''", "'''Slab on Semi-Deep Abutment'''", '''"Slab on Concrete Beam"'''  or "'''Reinforced Concrete Slab Overlay'''".
  
 +
"'''Reinforced Concrete Slab Overlay'''" shall be used with double-tee girders and when specified on the Design Layout for solid slab beams, adjacent voided slab beams and adjacent box beams.
  
{|
+
Concrete shall be estimated to the nearest cubic yard instead of 0.1 cubic yard due to variances and assumptions used in this estimate. Reinforcing steel shall be estimated to the nearest 10 pounds.
|valign="top"|<math>\, *</math>
 
|The "SP" designates a superpave mixture; the "125" indicates the nominal mixture aggregate size is 12.5 mm, "B" or "C" indicates the design level, the "SM" indicates Stone Mastic Asphalt, and the "LP" indicates the mixture contains limestone/porphyry. See the Design Layout for the type of Superpave mixture required.
 
|-
 
|&nbsp;
 
|See the Design Layout for the asphalt binder required.
 
|}
 
  
 +
'''(B3.22) '''
 +
:The table of Estimated Quantities for <u> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; </u> &nbsp; represents the quantities used by the State in preparing the cost estimate for concrete slabs.  The area of the concrete slab will be measured to the nearest square yard longitudinally from end of slab to end of slab and transversely from out to out of bridge slab (or with the horizontal dimensions as shown on the plan of slab).  Payment for <u>prestressed panels,</u> <u>stay-in-place corrugated steel forms,</u> conventional forms, all concrete and epoxy coated reinforcing steel will be considered completely covered by the contract unit price for the slab.  Variations may be encountered in the estimated quantities but the variations cannot be used for an adjustment in the contract unit price.
  
 +
'''(B3.23)'''
 +
:Method of forming the slab<u>s</u> shall be as shown on the plans and in accordance with Sec 703.  All hardware for forming the slab to be left in place as a permanent part of the structure shall be coated in accordance with ASTM A123 or ASTM B633 with a thickness class SC 4 and a finish type I, II or III.
  
'''(B3.53)'''
+
'''(B3.24) Use note for optional forming.'''
:The contractor shall select one of the alternate asphaltic concrete wearing surfaces listed in the table.  The mixture shall be in accordance with Sec 403 and produced in accordance with Sec 404.
+
:Slab shall be cast-in-place with conventional forms or stay-in-place corrugated steel forms. Precast prestressed panels will not be permitted.
  
'''(B3.54)'''
+
'''(B3.25) Use note when vibratory screeds are allowed for deck finishing.  For guidance for allowing a vibratory screed, see [[751.10 General Superstructure#751.10.1.15 Deck Concrete Finishing|EPG 751.10.1.15 Deck Concrete Finishing]].'''
:The area of the asphaltic concrete wearing surface will be measured and computed to the nearest square yard.  This area will be measured transversely from out to out of overlay and longitudinally from end of slab to end of slab.
+
 +
:Bridge deck surface may be finished with a vibratory screed.
  
'''(B3.56)'''
+
'''Stay-In-Place Corrugated Steel Forms:'''
:Payment for alternate Asphaltic Concrete Wearing Surface will be considered completely covered by the contract unit price per square yard.
 
  
== C. Reinforcing Steel Notes ==
+
'''(B3.30)'''
 +
:Corrugated steel forms, supports, closure elements and accessories shall be in accordance with grade requirement and coating designation G165 of ASTM A653.  Complete shop drawings of the permanent steel deck forms shall be required in accordance with Sec 1080.  
  
 +
'''(B3.31)'''
 +
:Corrugations of stay-in-place forms shall be filled with an expanded polystyrene material.  The polystyrene material shall be placed in the forms with an adhesive in accordance with the manufacturer's recommendations.
  
=== C1. Bill of Reinforcing Steel ===
+
'''(B3.32)'''
 +
:Form sheets shall not rest directly on the top of <u>girder</u> <u>beam</u> <u>or floorbeam</u> flanges.  Sheets shall be securely fastened to form supports with a minimum bearing length of one inch on each end.  Form supports shall be placed in direct contact with the flange.  Welding on or drilling holes in the <u>girder</u> <u>beam</u> <u>or floorbeam</u> flanges will not be permitted.  All steel fabrication and construction shall be in accordance with Sec 1080 and 712. Certified field welders will not be required for welding of the form supports.
 +
<div id="(B3.33) Use"></div>
  
Place the following notes below or near the "'''Bill of Reinforcing Steel'''" when appropriate.
+
'''(B3.33) Use “4 psf” for form spans up to 10 feet beyond which a greater dead loading for form spans may need to be considered and used. '''
 +
:The design of stay-in-place corrugated steel forms is per manufacturer which shall be in accordance with Sec 703 for false work and forms. Maximum actual weight of corrugated steel forms allowed shall be 4 psf assumed for <u>girder</u> <u>beam</u> loading.
 +
<div id="(B3.34) Use this temporary note"></div>
 +
'''(B3.34) Use this temporary note until further notice when more is learned about what contractor’s methods are proposed and approved by the engineer.'''
  
'''(C1.1) Same marks used for unlike bars on different units.'''
+
:The contractor shall provide a method of preventing the direct contact of the stay-in-place forms and connection components with uncoated weathering steel members that is approved by the engineer.
:Bars in the above units are to be billed and tagged separately.
 
  
'''(C1.2) Incomplete bill (Or bill for different units placed on different sheets).'''
+
'''Precast Prestressed Panels:'''
:See Sheet No. <u> &nbsp; &nbsp; </u> &nbsp; for bill of reinforcing steel for <u> &nbsp; &nbsp; &nbsp; &nbsp; </u>.
 
  
 +
'''(B3.40) Use for skewed structures.'''
 +
:The Estimated Quantities for Slab on <u>Steel</u> <u>Concrete I-Girder</u> <u>Concrete Bulb-Tee Girder</u> <u>Concrete NU-Girder</u> <u>Concrete Beam</u> are based on skewed precast prestressed end panels.
  
'''BENDING BY CRSI STANDARDS'''
+
'''(B3.41) Use for concrete structures.'''
 +
:Class B-2 Concrete quantity is based on minimum top flange thickness and minimum joint material thickness.
  
'''(C1.3)'''
+
'''(B3.42)'''
:All standard hooks and bends other than 180 degree are to be bent with same procedure as for 90 degree standard hooks.
+
:The prestressed panel quantities are not included in the table of Estimated Quantities for Slab on <u>Steel</u> <u>Concrete I-Girder</u> <u>Concrete Bulb-Tee Girder</u> <u>Concrete NU-Girder</u> <u>Concrete Beam</u>.
  
'''(C1.4)'''
+
==== B3d. Asphalt Wearing Surfaces ====
:Hooks and bends shall be in accordance with the procedures as shown on this sheet.
 
  
'''(C1.5)'''
+
The following table shall be placed under the Table of Estimated Quantities on the design plans for alternate asphaltic concrete wearing surface.
:Nominal lengths are based on out to out dimensions shown in bending diagrams and are listed for fabricators use. (Nearest inch)
 
  
'''(C1.6)'''
 
:Payweights are based on actual lengths.
 
  
'''(C1.7)'''
+
'''(B3.50) <font color="purple">[MS Cell]</font color="purple">'''
:Unless otherwise noted, diameter "D" is the same for all bends and hooks on a bar.
 
  
'''(C1.8)'''
+
:{|border="0" style="text-align:center;" cellpadding="5" cellspacing="0"
:E = Epoxy coated reinforcement.
+
|-
 
+
|rowspan="2"|&nbsp;
'''(C1.9)'''
+
!colspan="2" style="border-top:3px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:3px solid black"|Alternate Asphaltic<br/>Concrete Wearing Surface
:S = Stirrup.
+
|width="175pt"|&nbsp;
 
+
|-
'''(C1.10)'''
+
!width="225pt" style="border-top:1px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:1px solid black"|Type of Wearing Surface<br/>with Asphalt Binder Type
:X = Bar is included in substructure quantities.
+
!style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:3px solid black" width="75pt"|Mix Used<br/>(<math>\sqrt{}</math>)
 +
|-
 +
|<math>\,*</math>
 +
|align="left" width="225pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black;"|SP125BSM Mix with PG 76-22
 +
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
 +
|-
 +
|<math>\,*</math>
 +
|align="left" width="225pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black;"|SP125BLP Mix with PG 76-22
 +
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
 +
|-
 +
|<math>\,*</math>
 +
|align="left" width="225pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black;"|SP125BSM Mix with PG 70-22
 +
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
 +
|-
 +
|<math>\,*</math>
 +
|align="left" width="225pt" style="border-top:1px solid gray; border-bottom:3px solid black; border-left:3px solid black; border-right:1px solid black;"|SP125CLP Mix with PG 70-22
 +
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
 +
|-
 +
|&nbsp;
 +
|align="left" colspan="3"|MoDOT construction personnel shall complete column labeled "Mix Used (<math>\sqrt{}</math>)".
 +
|}
  
'''(C1.11)'''
 
:Actual lengths are measured along centerline bar to the nearest inch.
 
  
'''(C1.12)'''
+
{|
:V = Bar dimensions vary in equal increments between dimensions shown on this line and the following line.
+
|valign="top"|<math>\, *</math>
 +
|The "SP" designates a superpave mixture; the "125" indicates the nominal mixture aggregate size is 12.5 mm, "B" or "C" indicates the design level, the "SM" indicates Stone Mastic Asphalt, and the "LP" indicates the mixture contains limestone/porphyry.  See the Design Layout for the type of Superpave mixture required.
 +
|-
 +
|&nbsp;
 +
|See the Design Layout for the asphalt binder required.
 +
|}
  
'''(C1.13)'''
 
:No. ea. = Number of bars of each length.
 
  
'''(C1.14)'''
 
:Four angle or channel spacers are required for each column spiral.  Spacers are to be placed on inside of spirals.  Length and weight of column spirals do not include splices or spacers.
 
  
'''(C1.15)'''
+
'''(B3.53)'''
:Reinforcing steel (Grade 60) fy = 60,000 psi.
+
:The contractor shall select one of the alternate asphaltic concrete wearing surfaces listed in the table.  The mixture shall be in accordance with Sec 403 and produced in accordance with Sec 404.
  
 +
'''(B3.54)'''
 +
:The area of the asphaltic concrete wearing surface will be measured and computed to the nearest square yard.  This area will be measured transversely from out to out of overlay and longitudinally from end of slab to end of slab.
  
 +
'''(B3.56)'''
 +
:Payment for alternate Asphaltic Concrete Wearing Surface will be considered completely covered by the contract unit price per square yard.
  
'''EPOXY COATED REINFORCING STEEL'''
+
== C. Reinforcing Steel Notes ==
  
'''Note to Detailer:'''<br/>All reinforcement in the slab and above, and all reinforcement that extends into the slab, shall be epoxy coated; Also, any wing reinforcement that extends into the safety barrier curb shall be epoxy coated.
 
  
(Two additional reinforcing bars of each bar size that is required to be epoxy coated, should be included in the bar bill for test purposes. These additional bars should be added to one of the required bar marks and not as a special bar. Test bars should, preferably, be 10 feet or more in length.  If a bar 10 foot long cannot be found, use the bar with the largest available straight section.
+
=== C1. Bill of Reinforcing Steel ===
  
 +
Place the following notes below or near the "'''Bill of Reinforcing Steel'''" when appropriate.
  
'''(C1.15)'''
+
'''(C1.1) Same marks used for unlike bars on different units.'''
:Two additional [[#(1)b|(1)]] are included in bar bill for testing.
+
:Bars in the above units are to be billed and tagged separately.
  
<div id="(1)b"></div>
+
'''(C1.2) Incomplete bill (Or bill for different units placed on different sheets).'''
(1) Bar mark of bars for which additional bars have been included.
+
:See Sheet No. <u> &nbsp; &nbsp; </u> &nbsp; for bill of reinforcing steel for <u> &nbsp; &nbsp; &nbsp; &nbsp; </u>.
  
=== C2. Prestressed Girders & Prestressed Panels ===
 
  
Place the following notes below or near the table "'''Bill of Reinforcing Steel - Each Girder'''" or under the heading "'''Reinforcing Steel'''" when appropiate.
+
'''BENDING BY CRSI STANDARDS'''
  
 +
'''(C1.3)'''
 +
:All standard hooks and bends other than 180 degree are to be bent with same procedure as for 90 degree standard hooks.
  
'''(C2.1)'''
+
'''(C1.4)'''
:All dimensions are out to out.
+
:Hooks and bends shall be in accordance with the procedures as shown on this sheet.
  
'''(C2.2)'''
+
'''(C1.5)'''
:Hooks and bends shall be in accordance with the CRSI Manual of Standard Practice for Detailing Reinforced Concrete Structures, Stirrup and Tie Dimensions.
+
:Nominal lengths are based on out to out dimensions shown in bending diagrams and are listed for fabricators use. (Nearest inch)
  
'''(C2.3)'''
+
'''(C1.6)'''
:Actual lengths are measured along centerline of bar to the nearest inch.
+
:Payweights are based on actual lengths.
  
 +
'''(C1.7)'''
 +
:Unless otherwise noted, diameter "D" is the same for all bends and hooks on a bar.
  
Place the following notes below or near the table "'''Bill of Reinforcing Steel - Each Girder'''" for Prestressed Concrete I-Girders only.
+
'''(C1.8)'''
 +
:E = Epoxy coated reinforcement.
  
 +
'''(C1.9)'''
 +
:S = Stirrup.
  
'''(C2.4)'''
+
'''(C1.10)'''
:Minimum clearance to reinforcing shall be 1".
+
:X = Bar is included in substructure quantities.
  
'''(C2.5)'''
+
'''(C1.11)'''
:All reinforcement shall be Grade 60.
+
:Actual lengths are measured along centerline bar to the nearest inch.
  
'''(C2.6)'''
+
'''(C1.12)'''
:The two D1 bars may be furnished as one bar at the fabricator's option.
+
:V = Bar dimensions vary in equal increments between dimensions shown on this line and the following line.
  
 +
'''(C1.13)'''
 +
:No. ea. = Number of bars of each length.
  
Place the following notes below or near the table "'''Bill of Reinforcing Steel - Each Girder'''" for Double-Tee Prestressed Concrete Girders only.
+
'''(C1.14)'''
 +
:Four angle or channel spacers are required for each column spiral.  Spacers are to be placed on inside of spirals.  Length and weight of column spirals do not include splices or spacers.
 +
<div id="(C1.15)"></div>
  
 +
'''(C1.15)'''
 +
:Reinforcing steel (Grade 60) fy = 60,000 psi.
  
'''(C2.7)'''
 
:Minimum clearance to reinforcing shall be 1", except for 4 x 4 - W4 x W4 <u>and U2 bar</u>. [[#C2-notes|(*)]]
 
  
'''(C2.8)'''
 
:All S and U reinforcing bars shall be epoxy coated.
 
  
'''(C2.9)'''
+
'''EPOXY COATED REINFORCING STEEL'''
:All reinforcement shall be Grade 60.
 
  
 +
'''Note to Detailer:'''<br/>For epoxy coated reinforcement requirements, see [[751.5 Structural Detailing Guidelines#751.5.9.2.2 Epoxy Coated Reinforcement Requirements|EPG 751.5.9.2.2 Epoxy Coated Reinforcement Requirements]].
  
Place the following notes with the above appropriate notes for prestressed panels.
+
=== C2. Prestressed Girders, Beams & Panels ===
  
'''(C2.10)'''
+
'''C2a. Notes for Girders, Beams and Panels  '''
:Minimum clearance to reinforcing steel shall be 1 1/2", unless otherwise shown.
 
  
'''(C2.11)'''
+
Place the C2a notes below or near the table "'''Bill of Reinforcing Steel - Each <u>Girder</u> <u>Beam</u>'''" or under the heading "'''Reinforcing Steel'''" when appropriate.  
:If U1 bars interfere with placement of slab steel, U1 loops may be bent over, as necessary, to clear slab steel.
 
  
'''(C2.12)'''
+
'''(C2a.1) '''
:Welded wire fabric or welded deformed bar mats providing a minimum area of reinforcing perpendicular to strands of 0.22 sq. in./ft., with spacing parallel to strands sufficient to insure proper handling, may be used in lieu of the #3-P2 bars shown.  Wire or bar diameter shall not be larger than 0.375 inches.  The above alternative reinforcement criteria may be used in lieu of the #3-P3 bars, when required, and placed over a width not less than 2 feet.
+
:All dimensions are out to out.  
  
'''(C2.13)'''
+
'''(C2a.2) '''
:The reinforcing steel shall be tied securely to the 3/8"&oslash; strands with the following maximum spacing in each direction:
+
:Hooks and bends shall be in accordance with the CRSI Manual of Standard Practice for Detailing Reinforced Concrete Structures, Stirrup and Tie Dimensions.  
: #3-P2 bars at 16 inches.
 
: Welded wire fabric or welded deformed bar mats at 2'-0".
 
  
'''(C2.14)'''
+
'''(C2a.3) Add <u>bar</u> for NU-girders. Note is no longer used for P/C P/S panels. '''  
:Tie the #3-U1 bars to the #3-P2 bars, to the welded wire fabric or the welded deformed bar mats at about 3'-0" centers.
+
:Actual <u>bar</u> lengths are measured along centerline of bar to the nearest inch.
  
'''(C2.15)'''
+
'''C2b. Additional Notes for Prestressed Girders and Beams  '''
:The prestressed panel quantities are not included in the table of estimated quantities for the slab.
 
  
<div id="C2-notes"></div>
+
Place the C2b notes below the C2a notes.
(*) Add U2 bar for skewed structures only.
 
  
=== C3. Mechanical Bar Splices ===
+
'''(C2b.1) Use for all girders and beams except double-tee girders.  Underline part only required for WWR reinforced NU-girders, box beams and voided slab beams.  '''
 +
:Minimum clearance to reinforcing shall be 1" <u>unless otherwise shown</u>. 
  
Place the following note near mechanical bar splice detail.
+
'''(C2b.2) Use only for double-tee girders.  Add <u>and U2 bar</u> for skewed structures only.  '''
 +
:Minimum clearance to reinforcing shall be 1", except for 4 x 4 - W4 x W4 <u>and U2 bar</u>.
  
'''(C3.1) Use mechanical bar splices when clearances do not allow for lap splices.'''
+
'''(C2b.10) Add <u>bar</u> for NU-girders and Double T'''
:The contractor shall use a mechanical bar splice for <u> &nbsp; &nbsp; &nbsp; </u> &nbsp; bars at the specified location.  The total bar lengths for bars indicated in the bill of reinforcing steel are determined based on the end of the bars being located flush to the face of the construction jointNo additional payment will be made for any additional bar lengths required for the mechanical bar splices.  Mechanical bar splices shall be in accordance with Sec 706 <u>except that no measurement will be made for mechanical bar splice and will be considered completely covered by the contract unit price for the reinforcing steel</u>.
+
:All <u>bar</u> reinforcement shall be Grade 60.
  
'''(Underlined portion to be used when the number of mechanical bar splices are less than 50.)'''
+
'''(C2b.11) Use only for NU-girders and Double T.  '''
 +
:Welded Wire Reinforcement (WWR) shall be in accordance with AASHTO M 221.
  
== D. Temporary Bridge Notes ==
+
'''(C2b.20) Use only for I-girders, bulb-tee girders and alternate bar reinforced NU-girders.  '''
 +
:The two D1 bars may be furnished as one bar at the fabricator's option.  
  
 +
'''(C2b.30) Use for all girders and beams except WWR reinforced NU-girders and double-tee girders.  Add <u>and C1</u> for bulb-tee girders only. Most likely will need to add more bars if girder steps exists.  '''
  
=== D1. General ===
+
:All B1 <u>and C1</u> bars shall be epoxy coated.
  
Place the following notes on the front sheet.
+
'''(C2b.31) Use only for WWR reinforced NU-girders'''
 +
:WWR shall not be epoxy coated. 
  
'''(D1.1)'''
+
'''(C2b.32) Use only for double-tee girders.  '''
:Timber:
+
:All S and U reinforcing bars shall be epoxy coated.  
:&nbsp; &nbsp; &nbsp; All timber shall be standard rough sawnAt the contractor's option, timber may be untreated or protected with commercially applied timber preservatives. All timber shall have a minimum strength of 1500 psi and shall be either douglas fir in accordance with paragraph 123B (MC-19), 124B (MC-19) and 130BB of the current edition of Standard Grading Rules for West Coast Lumber, southern pine in accordance with paragraphs 312 (MC-19), 342 (MC-19) and 405.1 of the current edition of Southern Pine Inspection Bureau Grading Rules, or a satisfactory grade of sound native oak.
+
   
 +
'''C2c. Additional Notes for Prestressed Panels '''
  
'''(D1.2)'''
+
Place the C2c notes below the C2a notes.
:Bolts:
 
:&nbsp; &nbsp; &nbsp; All bolts shall be high strength ASTM A325 except as noted.
 
  
'''(D1.3)'''
+
'''(C2c.1) '''
:Misc:
+
:Minimum clearance to reinforcing steel shall be 1 1/2", unless otherwise shown.  
:&nbsp; &nbsp; &nbsp; The superstructure <u>only</u> <u>& cap beam units</u> will be provided by the State and shall be transported from <u> &nbsp; &nbsp; &nbsp; &nbsp; </u> &nbsp;Maintenance Lot.  The superstructure shall be returned and stored at the same location as designated by the engineer after Bridge No. <u> &nbsp; &nbsp; &nbsp; &nbsp; </u> &nbsp;is open to traffic.
 
  
'''(D1.4)'''
+
'''(C2c.2) '''
:&nbsp; &nbsp; &nbsp; All structural steel shall be ASTM A709 Grade 50W except piles, sway bracing, thrie beam rail assembly and structural tubing.  Structural tubing coating shall be in accordance with Sec 718.
+
:If U1 bars interfere with placement of slab steel, U1 loops may be bent over, as necessary, to clear slab steel.  
  
'''(D1.11) Place with shim plate details on the bent sheet.'''
+
'''(C2c.3) '''
:Shim plates may be used between pile and channel at the end bents or angle at the intermediate bents. Shim plates may vary in thickness from 1/16" to thickness required.
+
:Deformed welded wire reinforcement (WWR) providing a minimum area of reinforcing perpendicular to strands of 0.22 sq in./ft, with spacing parallel to strands sufficient to ensure proper handling, may be used in lieu of the #3-P2 bars shown. Wire diameter shall not be larger than 0.375 inch. The above alternative reinforcement criteria may be used in lieu of the #3-P3 bars, when required, and placed over a width not less than 2 feet.
  
'''(D1.21) Place near half section of bridge flooring.'''
+
'''(C2c.4) '''
:Steel bridge flooring shall be Foster 5" RB/8.0 or American Bridge 5" Open I-Beam-Lok Type 8S open steel bridge flooringTrim bars shall be required at the sides and ends of each 39'-10 1/2" unit.
+
:The following reinforcing steel shall be tied securely to the strands with the following maximum spacing in each direction:
 +
:: #3-P2 bars at 16 inches
 +
::WWR at 24 inches.  
  
'''(D1.22)'''
+
'''(C2c.5) '''
:Note:  Field connections shall be 7/8"&oslash; high strength bolts with holes 1 1/16"&oslash; except as noted.
+
:The #3-U1 bars shall be tied securely to #3-P2 bars, to WWR or to strands (when placed between P1 bars) at about 3-foot centers.
  
'''(D1.23) Place near details of u-bolts lifting device.'''
+
'''(C2c.6) '''
:U-bolts lifting device shall be on the inside top flange at both ends of each exterior stringer of each unit.  U-bolts shall be removed during the time the bridge is open to traffic.  Position of the U-bolts may be shifted slightly to miss the bars in the flooring.
+
:Minimum reinforcement steel length shall be 2'-0".
  
== E. General Elevation and Plan Notes ==
+
== D. Temporary Bridge (Notes for Bridge Standard Drawings)==
  
  
=== E1. Excavation and Fill ===
+
=== D1. General ===
  
Remove Old Roadway Fill Under Structure (When specified on the Design Layout.)
+
Place the following notes on the front sheet.
  
'''(E1.1)'''
+
'''(D1.1) Place in General Notes on the front sheet under the heading “Timber:”. '''
:Old roadway fill under the ends of the bridge shall be removed to natural ground line or elevation <u> &nbsp; &nbsp; &nbsp; </u>Removal of old roadway fill will be considered completely covered by the contract unit price for roadway excavation.
+
:All timber shall be standard rough sawn.  At the contractor's option, timber may be untreated or protected with commercially applied timber preservativesAll timber shall have a minimum strength of 1500 psi and shall be either douglas fir in accordance with paragraph 123B (MC-19), 124B (MC-19) and 130BB of the current edition of Standard Grading Rules for West Coast Lumber, southern pine in accordance with paragraphs 312 (MC-19), 342 (MC-19) and 405.1 of the current edition of Southern Pine Inspection Bureau Grading Rules, or a satisfactory grade of sound native oak.
  
 +
'''(D1.2) Place in General Notes on the front sheet under the heading “Bolts:”. '''
 +
:All bolts shall be high strength ASTM A325 except as noted.
  
Removal of Roadway Fill at Side (When specified on the Design Layout.)
+
'''(D1.3) Place in General Notes on the front sheet under the heading “Miscellaneous:”. '''
 +
:The superstructure <u>only</u> <u>and cap beam units</u> will be provided by the State and shall be transported from <u> &nbsp; &nbsp; &nbsp; &nbsp; </u> &nbsp;Maintenance Lot.  The superstructure shall be returned and stored at the same location as designated by the engineer after Bridge No. <u> &nbsp; &nbsp; &nbsp; &nbsp; </u> &nbsp;is open to traffic.
  
'''(E1.2)'''
+
'''(D1.4) Place in General Notes on the front sheet under the heading “Structural Steel:”. '''
:Old roadway fill on the <u>left</u> <u>right</u> shall be removed to the natural ground line for the length of the new bridge as roadway excavation.  Removal of old roadway fill will be considered completely covered by the contract unit price for roadway excavation.
+
:All structural steel shall be ASTM A709 Grade 50W except piles, sway bracing, thrie beam rail assembly and structural tubing.  Structural tubing coating shall be in accordance with Sec 718.
 +
 
 +
'''(D1.5) Place in General Notes on the front sheet under the heading “Substructure:”. '''
 +
:All substructure items specified in Sec 718.3.1 except for the <u>pile point reinforcement and</u> sway bracing will be considered completely covered by the contract unit price for Structural Steel Piles (14 in.).
 +
 
 +
'''(D1.11) Place with shim plate details on the bent sheet.'''
 +
:Shim plates may be used between pile and channel at the end bents or angle at the intermediate bents.  Shim plates may vary in thickness from 1/16 inch to thickness required.
 +
 
 +
'''(D1.21) Place near half section of bridge flooring on the superstructure sheet.'''
 +
:Steel bridge flooring shall be Foster 5-Inch RB 8.2M open steel bridge flooring or equivalent. Trim bars shall be required at the sides and ends of each 39'-10 1/2" unit.
 +
 
 +
'''(D1.22) Place on the superstructure sheet.'''
 +
:Note: Field connections shall be 7/8-inch diameter high strength bolts with 1 1/16-inch diameter holes except as noted.
 +
 
 +
'''(D1.23) Place near details of U-bolts lifting device on the superstructure sheet.'''
 +
:U-bolts lifting device shall be on the inside top flange at both ends of each exterior beam of each unit.  U-bolts shall be removed during the time the bridge is open to traffic.  Position of the U-bolts may be shifted slightly to miss the bars in the flooring.
 +
 
 +
== E. General Elevation and Plan Notes ==
 +
 
 +
 
 +
=== E1. Excavation and Fill ===
 +
 
 +
Remove Old Roadway Fill Under Structure (When specified on the Design Layout.)
 +
 
 +
'''(E1.1)'''
 +
:Old roadway fill under the ends of the bridge shall be removed as shown.  Removal of old roadway fill will be considered completely covered by the contract unit price for roadway excavation.
  
  
Line 973: Line 1,067:
  
 
=== E2. Foundation Data Table ===
 
=== E2. Foundation Data Table ===
 +
  
 
The following table is to be placed on the design plans and filled out as indicated.
 
The following table is to be placed on the design plans and filled out as indicated.
  
'''(E2.1) (Example: Use the underlined parts for bridges having detached wing walls at end bents only.)'''
+
'''(E2.1) <font color="purple">[MS Cell] (E2.1)</font color="purple"> (Example: Use the underlined parts in the bent headings for bridges having detached wing walls at end bents only.) '''
  
:{|border="0" style="text-align:center;" cellpadding="5" cellspacing="0"
+
<center>
 +
{|border="1" style="text-align:center;" cellpadding="5" cellspacing="0"
 +
|-
 +
!colspan="8" style="background:#BEBEBE"| Foundation Data<sup>1</sup>
 +
|-
 +
!rowspan="2" style="background:#BEBEBE"|Type!!rowspan="2" style="background:#BEBEBE" colspan="2"|Design Data!!colspan="5" style="background:#BEBEBE"| Bent Number
 
|-
 
|-
!colspan="8" style="border-top:3px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:3px solid black"|<b>Foundation Data</b>  
+
!style="background:#BEBEBE"|1 <u>(Detached<br/>Wing Walls<br/>Only)</u> !!style="background:#BEBEBE"|1 <u>(Except<br/>Detached<br/>Wing Walls)</u> !!style="background:#BEBEBE"|2 !!style="background:#BEBEBE"| 3 !!style="background:#BEBEBE"|4
 
|-
 
|-
!valign="top" colspan="3" style="border-top:1px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:1px solid black"|Bent No.
+
|rowspan="11"|'''Load<br/>Bearing<br/>Pile'''|| colspan="2" align="left" width="300"|CECIP/OECIP/HP Pile Type and Size||CECIP 14"||CECIP 14"||CECIP 16"|| OECIP 24"||HP 10x42
!valign="top" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"|<u>1<br/>(Detached<br/>wing<br/>walls<br/>only)</u>
 
!valign="top" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"|1<br/><u>(Except<br/>detached<br/>wing<br/>walls)</u>
 
!valign="top" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"|2
 
!valign="top" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"|3
 
!valign="top" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:3px solid black" width="75pt"|4
 
 
|-
 
|-
|align="left" rowspan="10" width="150pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black;"|Driven Pile || align="left" width="150pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black;"|Type
+
|colspan="2" align="left" width="300"|Number [[image:751.50 ea.jpg|34px|right]]||6||8||15||12||6
|align="right" style="border-top:1px solid black; border-bottom:1px solid gray; border-right:1px solid black"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|Foundation
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|Foundation
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|Trestle
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
 
 
|-
 
|-
|align="left" width="150pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black;"|Kind
+
|colspan="2" align="left" width="300"|Approximate Length Per Each [[image:751.50 ft.jpg|20px|right]]||50||50||60||40||53
|align="right" style="border-top:1px solid black; border-bottom:1px solid gray; border-right:1px solid black"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|14" CIP
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|14" CIP
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|16" CIP
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|HP12x53
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|HP10x42
 
 
|-
 
|-
|align="left" width="150pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black;"|Number
+
|colspan="2" align="left" width="300"|Pile Point Reinforcement[[image:751.50 ea.jpg|34px|right]]||All||All|| - ||All||All
|align="right" style="border-top:1px solid black; border-bottom:1px solid gray; border-right:1px solid black"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|6
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|8
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|15
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|12
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|6
 
 
|-
 
|-
|align="left" width="150pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black;"|Approximate Length
+
|colspan="2" align="left" width="300"|Min. Galvanized Penetration (Elev.) [[image:751.50 ft.jpg|20px|right]]||303||295<sup>'''4'''</sup>||273||Full Length||300
|align="right" style="border-top:1px solid black; border-bottom:1px solid gray; border-right:1px solid black"|foot
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|40
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|40
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|25
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|67
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|53
 
 
|-
 
|-
|align="left" width="150pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black;"|Pile Driving Verification Method
+
|colspan="2" align="left" width="300"|Est. Max. Scour Depth 100<sup>'''2'''</sup> (Elev.) [[image:751.50 ft.jpg|20px|right]]|| - || - ||285 || - || -
|align="right" style="border-top:1px solid black; border-bottom:1px solid gray; border-right:1px solid black"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|Dynamic Pile Testing
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|Dynamic Pile Testing
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|Modified Gates Formula
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|Modified Gates Formula
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|Modified Gates Formula
 
 
|-
 
|-
|align="left" width="150pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black;"|Design Bearing or Nominal Axial Pile Conmpression Resistance
+
|colspan="2" align="left" width="300"|Minimum Tip Penetration (Elev.) [[image:751.50 ft.jpg|20px|right]]||285||303||270|| - || -
|align="right" style="border-top:1px solid black; border-bottom:1px solid gray; border-right:1px solid black"|kip
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
 
 
|-
 
|-
|align="left" width="150pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black;"|Minimum Tip Penetration
+
|colspan="2" align="left" width="300"|Criteria for Min. Tip Penetration ||Min. Embed.||Min. Embed.|| Scour || - || -
|align="right" style="border-top:1px solid black; border-bottom:1px solid gray; border-right:1px solid black"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|(*)
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|(*)
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|(*)
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|(*)
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|(*)
 
 
|-
 
|-
|align="left" width="150pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black;"|Criteria for Minimum Tip Penetration
+
|colspan="2" align="left" width="300"|Pile Driving Verification Method || DT ||DT ||DT||DT||WEAP
|align="right" style="border-top:1px solid black; border-bottom:1px solid gray; border-right:1px solid black"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
 
 
|-
 
|-
|align="left" width="150pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black;"|Pile Standard
+
|colspan="2" align="left" width="300"|<u>Design Bearing</u><sup>'''3'''</sup> <u>Minimum Nominal Axial</u><br/><u>Compressive Resistance</u> [[image:751.50 kip.jpg|27px|right]]||175||200||300||600||250
|align="right" style="border-top:1px solid black; border-bottom:1px solid gray; border-right:1px solid black"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
 
 
|-
 
|-
|align="left" width="150pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black;"|Hammer Energy Required
+
|colspan="2" align="left" width="300"|Hammer Energy Required [[image:751.50 ftlb.jpg|34px|right]]||8200||8200||9900||15,400||15,400
|align="right" style="border-top:1px solid black; border-bottom:1px solid gray; border-right:1px solid black"|ft-lbs
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
 
 
|-
 
|-
|align="left" rowspan="2" width="150pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black;"|Spread Footing || align="left" width="150pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black;"|Foundation Material
+
|rowspan="2"|'''Spread<br/>Footing||colspan="2" align="left"|Foundation Material || - || - ||Weak Rock||Rock|| -
|align="right" style="border-top:1px solid black; border-bottom:1px solid gray; border-right:1px solid black"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|Shale
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|Rock
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
 
 
|-
 
|-
|align="left" width="150pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black;"|Design Material
+
|colspan="2" align="left"|<u>Design Bearing</u> <u>Minimum Nominal</u><br/><u>Bearing Resistance</u> [[image:751.50 ksf.jpg|30px|right]]|| - || - ||10.2||22.6|| -
|align="right" style="border-top:1px solid black; border-bottom:1px solid gray; border-right:1px solid black"|ksf
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|10.2
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|22.6
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
 
 
|-
 
|-
|align="left" rowspan="3" width="150pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black;"|Rock Socket || align="left" width="150pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black;"|Foundation Material
+
|rowspan="8"|'''Rock<br/>Socket'''||colspan="2" align="left"|Number [[image:751.50 ea.jpg|34px|right]]|| - || - || 2 ||3|| -
|align="right" style="border-top:1px solid black; border-bottom:1px solid gray; border-right:1px solid black"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|Shale
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|Rock
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
 
 
|-
 
|-
|align="left" width="150pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black;"|Number
+
|rowspan="3" width="35"|[[image:751.50 Layer 1.jpg|center|24px]]||align="left" width="265"|Foundation Material|| - || - || Rock||Rock|| -
|align="right" style="border-top:1px solid black; border-bottom:1px solid gray; border-right:1px solid black"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|2
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|2
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
 
 
|-
 
|-
|align="left" width="150pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black;"|Design Side Friction
+
| align="left"|Elevation Range [[image:751.50 ft.jpg|20px|right]]|| - || - ||410-403||410-398|| -  
|align="right" style="border-top:1px solid black; border-bottom:1px solid gray; border-right:1px solid black"|ksf
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|5.6
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|8.0
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
 
 
|-
 
|-
|&nbsp;
+
| align="left"|<u>Design Side Friction</u><br/><u>Minimum Nominal Axial</u><br/><u>Compressive Resistance</u><br/><u>(Side Resistance)</u> [[image:751.50 ksf.jpg|30px|right]]|| - || - ||20.0||20.0|| -
|colspan="8" align="left"|<b>Notes:</b>
 
 
|-
 
|-
|&nbsp;
+
|rowspan="3"|[[image:751.50 Layer 2.jpg|center|21px]]|| align="left" |Foundation Material|| - || - ||Weak Rock|| - || -
|colspan="4" align="left"|Pile Driving Verification Method || colspan="4" align="left"|Modified Gates Formula
 
 
|-
 
|-
|&nbsp;
+
| align="left"|Elevation Range [[image:751.50 ft.jpg|20px|right]]|| - || - ||403-385|| - || -
|colspan="4" align="left"| || colspan="4" align="left"|Dynamic Pile Testing
 
 
|-
 
|-
|&nbsp;
+
| align="left"|<u>Design Side Friction</u><br/><u>Minimum Nominal Axial</u><br/><u>Compressive Resistance</u><br/><u>(Side Resistance)</u> [[image:751.50 ksf.jpg|30px|right]]|| - || - ||9.0|| - || -
|colspan="4" align="left"| || colspan="4" align="left"|Other
+
|-
 +
|colspan="2" align="left"|<u>Design End Bearing</u><br/><u>Minimum Nominal Axial</u><br/><u>Compressive Resistance</u><br/><u>(Tip Resistance)</u> [[image:751.50 ksf.jpg|30px|right]]|| - || - ||12||216|| -
 +
|-
 +
|colspan="8" align="left"|'''1'''  Show only required CECIP/OECIP/HP pile data for specific project.
 +
|-
 +
|colspan="8" align="left"|'''2''' Show maximum of total scour depths estimated for multiple return periods in years from Preliminary design which should be given on the Design Layout. Show the controlling return period (e.g. 100, 200, 500). If return periods are different for different bents, add a new line.
 +
|-
 +
|colspan="8" align="left"|'''3''' For LFD: For bridges in Seismic Performance Categories B, C and D, the design bearing values for load bearing piles given in the table should be the larger of the following two values: <br/> &nbsp; 1. Design bearing value for AASHTO group loads I thru VI. <br/> &nbsp; 2. Design bearing for seismic loads / 2.0
 +
|-
 +
|colspan="8" align="left"|'''4''' It is possible that min. tip penetration (elev.) can be higher than min. galvanized penetration (elev.).
 
|}
 
|}
  
{|
+
{|border="2" style="text-align:center;" cellpadding="5" cellspacing="0"
|valign="top"|[[Image:751.50 circled 1.gif]]||For bridges in Seismic Performance Categories B, C and D, the design bearing values for point bearing piles given in the table should be the larger of the following two values:
 
 
|-
 
|-
|&nbsp;||
+
| align="left"|'''Additional notes:'''<br/> On the plans, report the following definition(s) just below the foundation data table for the specific method(s) used:<br/>
#Design bearing value for AASHTO group loads I thru VI.
+
DT = Dynamic Testing<br/>
#Design bearing for seismic loads / 2.0
+
DF = FHWA-modified Gates Dynamic Formula<br/>
 +
WEAP = Wave Equation Analysis of Piles<br/><br/>On the plans, report the following definition(s) just below the foundation data table for CIP Pile:<br/>CECIP = Closed Ended Cast-In-Place concrete pile<br/>OECIP = Open Ended Cast-In-Place concrete pile<br/><br/>On the plans, report the following equation(s) just below the foundation data table for the specific foundation(s) used:<br/>'''Rock Socket (Drilled Shafts):'''<br/>Minimum Nominal Axial Compressive Resistance (Side Resistance + Tip Resistance) = Maximum Factored Loads/Resistance Factors<br/>'''Spread Footings:'''<br/>Minimum Nominal Bearing Resistance = Maximum Factored Loads/Resistance Factor <br/>'''Load Bearing Pile:'''<br/>Minimum Nominal Axial Compressive Resistance = Maximum Factored Loads/Resistance Factor
 
|}
 
|}
  
'''(E3.2) (Use when prebore is required and the natural ground line is not erratic.)'''
 
:Prebore for piles at Bent<u>s</u> <u> &nbsp; </u> &nbsp;<u>and &nbsp; </u> &nbsp;to elevation<u>s</u> <u> &nbsp;  &nbsp;  &nbsp; </u> &nbsp;<u>and</u> <u> &nbsp;  &nbsp;  &nbsp;  </u>, <u>respectively</u>.
 
 
'''(E3.3) (Use when prebore is required and the natural ground line is erratic.)'''
 
:Prebore to natural ground line.
 
 
'''(E3.4) (Use the following note when pile point reinforcement is required)'''
 
:Manufactured pile point reinforcement shall be used on <u>all</u> piles in <u>this structure</u> <u>at Bents &nbsp; and &nbsp; </u>.
 
  
 +
</center>
  
The following tables are to be placed on the design plans and filled out as indicated.
+
{|style="padding: 0.3em; margin-left:10px; border:1px solid #a9a9a9; text-align:left; font-size: 95%; background:#f5f5f5" width="700px" align="center"  
 
 
'''(E3.5) (Example: Use the underlined parts for bridges having detached wing walls at end bents only.)'''
 
:{|border="0" style="text-align:center;" cellpadding="5" cellspacing="0"
 
 
|-
 
|-
|rowspan="5"|&nbsp;
+
|colspan="3" align="left"|<b>Guidance for Using the Foundation Data Table:</b>
!colspan="8" style="border-top:3px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:3px solid black"|Footing Data
 
 
|-
 
|-
!valign="top" colspan="3" style="border-top:1px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:1px solid black"|Bent No.
+
|rowspan="18"| || rowspan="3"|Pile Driving Verification Method ||width="350px"|FHWA-Modified Gates Dynamic Formula
!valign="top" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"|<u>1<br/>(Detached<br/>wing<br/>walls<br/>only)</u>
 
!valign="top" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"|1<br/><u>(Except<br/>detached<br/>wing<br/>walls)</u>
 
!valign="top" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"|2
 
!valign="top" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"|3
 
!valign="top" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:3px solid black" width="75pt"|4
 
 
|-
 
|-
!rowspan="5" width="50pt" style="border-top:1px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:1px solid black"|Bearing<br/>Pile
+
|Dynamic Testing
|align="left" width="150pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black;"|Pile Type and Size
 
|align="right" style="border-top:1px solid black; border-bottom:1px solid gray; border-right:1px solid black"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|<u>HP10 x 42</u>
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|HP10 x 42
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"| &nbsp;
 
 
|-
 
|-
|align="left" width="150pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black;"|Number
+
|Other Method
|align="right" style="border-top:1px solid gray; border-bottom:1px solid gray; border-right:1px solid black"|&nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|<u>8</u>
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|4
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"| &nbsp;
 
 
|-
 
|-
|align="left" width="150pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black;"|Approximate Length
+
|colspan="7" style="background:#BEBEBE"|
|align="right" style="border-top:1px solid gray; border-bottom:1px solid gray; border-right:1px solid black"|foot
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|<u>35</u>
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|40
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"| &nbsp;
 
 
|-
 
|-
|[[Image:751.50 circled 1.gif]]
+
|rowspan="7"|Criteria for Minimum Tip Penetration ||Scour
|align="left" width="150pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black;"|Design Bearing
 
|align="right" style="border-top:1px solid gray; border-bottom:1px solid gray; border-right:1px solid black"|kip
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|<u>28</u>
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|35
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"| &nbsp;
 
 
|-
 
|-
|&nbsp;
+
|Tension or uplift resistance
|align="left" width="150pt" style="border-top:1px solid gray; border-bottom:1px solid black; border-left:1px solid black;"|Hammer Energy Required
 
|align="right" style="border-top:1px solid gray; border-bottom:1px solid black; border-right:1px solid black"|foot-pound
 
|style="border-top:1px solid gray; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"|<u>7,900</u>
 
|style="border-top:1px solid gray; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"|7,900
 
|style="border-top:1px solid gray; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid black; border-left:1px solid black; border-right:3px solid black" width="75pt"| &nbsp;
 
 
|-
 
|-
|rowspan="2"| &nbsp;
+
|Lateral stability
!rowspan="2" width="50pt" style="border-top:1px solid black; border-bottom:3px solid black; border-left:3px solid black; border-right:1px solid black"|Spread<br/>Footings
 
|align="left" width="150pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black;"|Foundation Material
 
|align="right" style="border-top:1px solid black; border-bottom:1px solid gray; border-right:1px solid black"| &nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|Rock
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|Rock
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|Rock
 
 
|-
 
|-
|align="left" width="150pt" style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black;"|Design Bearing
+
|Penetration anticipated soft geotechnical layers
|align="right" style="border-top:1px solid gray; border-bottom:3px solid black; border-right:1px solid black"|kip/sq. foot
 
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"|9.2
 
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"|9.4
 
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:3px solid black" width="75pt"|8.2
 
 
|-
 
|-
|&nbsp;
+
|Minimize post construction settlement
|colspan="8" align="left"|Minimum energy requirement of hammer is based on plan length and design bearing value of piles.
 
 
|-
 
|-
|&nbsp;
+
|Minimum embedment into natural ground
|colspan="8" align="left"|All piles shall be driven to practical refusal.
 
|}
 
 
 
{|
 
|valign="top"|[[Image:751.50 circled 1.gif]]||For bridges in Seismic Performance Categories B, C and D, the design bearing values for point bearing piles given in the table should be the larger of the following two values:
 
 
|-
 
|-
|&nbsp;||
+
|Other Reason
#Design bearing value for AASHTO group loads I thru VI.
 
#Design bearing for seismic loads / 2.0
 
|}
 
 
 
'''(E3.6) (Use when prebore is required and the natural ground line is not erratic.)'''
 
:Prebore for piles at Bent<u>s</u> &nbsp;<u> &nbsp; </u> &nbsp;<u>and &nbsp; </u> &nbsp;to elevation<u>s</u> <u> &nbsp;  &nbsp;  &nbsp; </u> &nbsp;<u>and</u> <u> &nbsp;  &nbsp; </u>, <u>respectively</u>.
 
 
 
'''(E3.7) (Use when prebore is required and the natural ground line is erratic.)'''
 
:Prebore to natural ground line.
 
 
 
'''(E3.8) (Use the following note when pile point reinforcement is required)'''
 
:Manufactured pile point reinforcement shall be used on <u>all</u> piles in <u>this structure</u> <u>at Bents &nbsp; &nbsp; and  &nbsp; &nbsp; </u>.
 
 
 
=== E4. Friction Pile Data Table (LFD) ===
 
 
 
The following table is to be placed on the design plans and filled out as indicated. When steel piles are used as friction piles, use the table but leave out "'''Type'''" and "'''Pile Standard'''".  Friction piles are not to be driven to refusal.
 
 
 
'''(E4.1) (Example: Use the underlined parts for bridges having detached wing walls at end bents only.)'''
 
:{|border="0" style="text-align:center;" cellpadding="5" cellspacing="0"
 
|-
 
|rowspan="4"|&nbsp;
 
!colspan="7" style="border-top:3px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:3px solid black"|Footing Data
 
|-
 
!valign="top" colspan="2" style="border-top:1px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:1px solid black"|Bent or Pier No.
 
!valign="top" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"|<u>1<br/>(Detached<br/>wing<br/>walls<br/>only)</u>
 
!valign="top" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"|1<br/><u>(Except<br/>detached<br/>wing<br/>walls)</u>
 
!valign="top" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"|2
 
!valign="top" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"|3
 
!valign="top" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:3px solid black" width="75pt"|4
 
|-
 
|align="left" width="150pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black;"|Pile
 
|align="right" style="border-top:1px solid black; border-bottom:1px solid gray; border-right:1px solid black"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|<u>Foundation</u>
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|Foundation
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|Trestle
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|Trestle
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|Foundation
 
|-
 
|align="left" width="150pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black;"|Kind
 
|align="right" style="border-top:1px solid gray; border-bottom:1px solid gray; border-right:1px solid black"|&nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|<u>CIP</u>
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|CIP
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|CIP
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|CIP
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|CIP
 
 
|-
 
|-
|[[Image:751.50 circled 1.gif]]
+
|colspan="7" style="background:#BEBEBE"|
|align="left" width="150pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black;"|Number
 
|align="right" style="border-top:1px solid gray; border-bottom:1px solid gray; border-right:1px solid black"|&nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|<u>8</u>
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|4
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|8
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|8
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|4
 
 
|-
 
|-
|&nbsp;
+
|Hammer Energy Required ||See [http://www.modot.org/business/standards_and_specs/SpecbookEPG.pdf#page=11 Sec 702.]
|align="left" width="150pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black;"|Approximate Length
 
|align="right" style="border-top:1px solid gray; border-bottom:1px solid gray; border-right:1px solid black"|foot
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|<u>35</u>
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|55
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|40
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|40
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|55
 
 
|-
 
|-
|[[Image:751.50 circled 2.gif]]
+
|colspan="7" style="background:#BEBEBE"|
|align="left" width="150pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black;"|Design Bearing
 
|align="right" style="border-top:1px solid gray; border-bottom:1px solid gray; border-right:1px solid black"|kip
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|<u>20</u>
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|25
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|32
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|32
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|25
 
 
|-
 
|-
|rowspan="3"|&nbsp;
+
|colspan="7"|'''Elevation reporting accuracy: Report to nearest foot for min. tip penetration, pile cleanout penetration, max. galvanized depth and est. max. scour depth. (Any more accuracy is acceptable but not warranted.)'''
|align="left" width="150pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black;"|Min. Tip Penetration
 
|align="right" style="border-top:1px solid gray; border-bottom:1px solid gray; border-right:1px solid black"|elev.
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|<u>500.00</u>
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|500.00
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|490.00
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|490.00
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|500.00
 
 
|-
 
|-
|align="left" width="150pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black;"|Pile Standard
+
|colspan="3"|'''For LFD Design'''
|align="right" style="border-top:1px solid gray; border-bottom:1px solid gray; border-right:1px solid black"|&nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|<u>702.02</u>
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|702.02
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|702.02
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|702.02
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|702.02
 
 
|-
 
|-
|align="left" width="150pt" style="border-top:1px solid gray; border-bottom:3px solid black; border-left:3px solid black;"|Hammer Energy Required
+
|colspan="3"|Use "Design Bearing" for load bearing pile and spread footing and use "Design Side Friction + Design End Bearing" for rock socket (drilled shaft).
|align="right" style="border-top:1px solid gray; border-bottom:3px solid black; border-right:1px solid black"|foot-pound
 
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"|<u>8,000</u>
 
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"|8,000
 
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"|8,000
 
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"|8,000
 
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:3px solid black" width="75pt"|8,000
 
 
|-
 
|-
|&nbsp;
+
|colspan="3"|'''For LRFD Design'''
|colspan="7" align="left"|Minimum energy requirement of hammer is based on plan length of piles.
 
 
|-
 
|-
|&nbsp;
+
|colspan="3"|Use "Minimum Nominal Axial Compressive Resistance" for load bearing pile, "Minimum Nominal Bearing Resistance" for spread footing and "Minimum Nominal Axial Compressive Resistance (Side Resistance + Tip Resistance)" for rock socket (drilled shaft).
|colspan="7" align="left"|All piles shall be driven to the minimum penetrations and to not less than the design bearings noted.
 
 
|}
 
|}
  
{|
+
'''Shallow Footings '''
|valign="top"|[[Image:751.50 circled 1.gif]]||This number should not include test piles. If test piles are specified, place an <math>\, *</math> beside the number of piles at the bents indicated.
+
 
|-
+
'''(E2.10) (Use when shallow footings are specified on the Design Layout.)'''
|valign="top"|[[Image:751.50 circled 2.gif]]||For bridges in Seismic Performance Categories B, C and D, the design bearing values for friction piles given in the table should be the larger of the following two values:
+
 
|-
+
:In no case shall footings of Bents No. <u> &nbsp;  &nbsp;  &nbsp;  </u> and <u> &nbsp;  &nbsp;  &nbsp;  </u> be placed higher than elevations shown <u> &nbsp;  &nbsp;  &nbsp;  </u> and  <u> &nbsp;  &nbsp;  &nbsp; </u>, respectively.
|&nbsp;||
+
 
#Design bearing value for AASHTO group loads I thru VI.
+
'''Driven Piles'''
#Design bearing for seismic loads / 2.0
 
|}
 
  
'''(E4.2) (Use when prebore is required and the natural ground line is not erratic.)'''
+
'''(E2.20) (Use when prebore is required and the natural ground line is not erratic.)'''
:Prebore for piles at Bent<u>s</u> <u> &nbsp; </u> &nbsp; <u>and &nbsp; </u> &nbsp; to elevation<u>s</u> <u> &nbsp; &nbsp; &nbsp; </u> &nbsp; <u>and &nbsp; &nbsp; &nbsp; </u>, <u>respectively</u>.
+
:Prebore for piles at Bent(s) No.<u> &nbsp;  &nbsp;  &nbsp;  </u> and <u> &nbsp; &nbsp; &nbsp; </u> to elevation(s) <u> &nbsp; &nbsp; &nbsp; </u> and <u> &nbsp; &nbsp; &nbsp; </u>, respectively.
  
'''(E4.3) (Use when prebore is required and the natural ground line is erratic.)'''
+
'''(E2.21) (Use when prebore is required and the natural ground line is erratic.)'''
 
:Prebore to natural ground line.
 
:Prebore to natural ground line.
 +
<div id="(E2.22) (Use the following note"></div>
 +
 +
'''(E2.22)  (Use when estimated maximum scour depth (elevation) for CIP piles is required.) (Use when estimated maximum scour depth (elevation) and dynamic pile testing for HP piles are required.)  '''
 +
:Estimated Maximum Scour Depth (Elevation) shown is for verifying <u>Minimum Nominal Axial Compressive Resistance</u> <u>Design Bearing</u> using dynamic testing only where pile resistance contribution above this elevation shall not be considered.
  
'''(E4.4) (Use when test piles are required.)'''
+
'''(E2.23) (Use when static test piles are required.) This number of piles in table should not include test piles. If test piles are specified, place an * beside the number of piles at the bents indicated.'''
:<math>\, *</math> <u> &nbsp; </u> concrete test pile<u>s</u> shall be driven in permanent position, one for each bent<u>s</u>, at Bent<u>s</u> No. <u> &nbsp; </u>, <u>&nbsp;</u> and <u> &nbsp; </u>.
+
:&nbsp;*One concrete test pile shall be driven in permanent position, one for each bent, at Bents No. <u> &nbsp; &nbsp;  &nbsp; </u> and <u> &nbsp; &nbsp;  &nbsp;  </u>.
 +
 +
'''(E2.24) '''
 +
:All piles shall be galvanized down to the minimum galvanized penetration (elevation).
  
'''(E4.5) (Use when CIP piles are used in Seismic Performance Categories B, C, or D.)'''
+
'''(E2.25) (Use for all HP pile and when pile point reinforcement is required for CIP pile.)'''
:Fluted type cast-in-place pile shall not be permitted.
+
:Pile point reinforcement need not be galvanized. Shop drawings will not be   required for pile point reinforcement.  
  
'''(E4.6)'''
+
'''(E2.26) (Use for LFD piling design when Design Bearing is determined from service loads and shown on the plans. This represents converting the Design Bearing to a Minimum Nominal Axial Compressive Resistance, P, for use in the dynamic formula in accordance with Sec 702. Example: Considered only for widenings, repairs and rehabilitations.) '''
:Manufactured pile point reinforcement shall be used on <u>all</u> piles in <u>this structure</u> <u>at Bents &nbsp; and &nbsp; </u>.
 
  
=== E5. Miscellaneous ===
+
:All  piling shall be driven to a minimum nominal axial compressive resistance equal to 3.5 times the Design Bearing as shown on the plans.
 +
<div id="(E2.27)"></div>
 +
'''(E2.27) Use for galvanized piles.'''
  
'''(E5.1) Horizontal curves (Bridges not of box culvert type)'''
+
:The contractor shall make every effort to achieve the minimum galvanized penetration (elevation) shown on the plans for all piles. Deviations in penetration less than 5 feet of the minimum will be considered acceptable provided the contractor makes the necessary corrections to ensure the minimum penetration is achieved on subsequent piles.
:<u>All bents are parallel.</u>
 
  
 +
<div id="Drilled Shafts"></div>
 +
'''Drilled Shafts'''
  
'''Boring Data'''
+
'''(E2.29)'''
 +
:Thickness of permanent steel casing shall be <u>as shown on the plans and</u> in accordance with Sec 701.
  
'''(E5.2) (Place on Front Sheet when borings are provided)'''
+
'''(E2.30) Note may not be required with drilled shafts for high mast tower lighting.'''
:[[Image:751.50 boring location mark.gif]] Indicates location of borings.<br/>'''Notice and Disclaimer Regarding Boring Log Data'''<br/>The locations of all subsurface borings for this structure are shown on the bridge plan sheet(s) for this structure.  Boring data for the numbered locations is shown on Sheet(s) No. <u> &nbsp; </u>.  The boring data for all locations indicated, as well as any other boring logs or other factual records of subsurface data and investigations performed by the department for the design of the project, is available from the Project Contact upon written request as outlined in the Project Special Provisions. No greater significance or weight should be given to the boring data depicted on the plan sheets than is subsurface data available from the district or elsewhere.<br/>&nbsp;<br/>The Commission does not represent or warrant that any such boring data accurately depicts the conditions to be encountered in constructing this project.  A contractor assumes all risks it may encounter in basing its bid prices, time or schedule of performance on the boring data depicted here or those available from the district, or on any other documentation not expressly warranted, which the contractor may obtain from the Commission.
+
:An additional 4 feet has been added to V-bar lengths and an additional __-#__-P-bars have been added in the quantities, if required, for possible change in drilled shaft or rock socket length. The additional V-bar length shall be cut off or included in the reinforcement lap if not required. The additional P-bars shall be spaced similarly to that shown in elevation, if required, or to a lesser spacing if not required, but not less than 6" cts.
  
'''(E5.3) (Place on all Retaining Wall Plans)'''
+
'''(E2.31) Note not required with drilled shafts for high mast tower lighting. '''
:The boring logs or other factual records of subsurface data and investigations performed by the department for the design of this project are available from the Project Contact upon written request as outlined in the Project Special Provisions.
 
  
'''(E5.4) (Place on the Boring Data Sheet)'''
+
:Sonic logging testing shall be performed on all drilled shafts and rock sockets.
:For location of borings see Sheet No. <u> &nbsp; </u>.
 
  
 +
'''(E2.32) Note to be used only with Drilled Shafts for High Mast Tower Lighting.'''
 +
:Drilling slurry, if used, shall require desanding.
  
'''Final clearance - Bridges over railroads'''
+
'''(E2.33) Note to be used only with Drilled Shafts for High Mast Tower Lighting. Drilled shaft diameter is required to be at least 21 in. greater than the largest anticipated anchor bolt circle diameter per the DSP - High Mast Tower Lighting.'''
 +
:The following non-factored base reactions were used to design the drilled shafts for the <u> &nbsp;  &nbsp;  &nbsp; </u> ft. high mast lighting towers: overturning moment = * kip-foot, base shear = * kip and axial force = * kip.
 +
 +
:&nbsp;*'''Values used in the design of the drilled shaft.'''
 +
 +
'''(E2.34) Use the following note only when the top of drilled shafts are < = 3'-0" below the ground surface at centerline column / drilled shaft. Otherwise excavation quantity to the top of drilled shafts needs to be figured. Excavation diameter limit will be the 3'-0" larger than the column diameter above the drilled shaft.'''
 +
:The cost of any required excavation to the top of the drilled shafts will be considered completely covered by the contract unit price for other items.
  
'''(E5.5)  Place an (<math>\, *</math>) in the vertical clearance dimension and the following note on the front sheet of bridge plans.'''
+
=== E3. Miscellaneous ===
:(<math>\, *</math>) Final vertical clearance from top of rails to bottom of superstructure shall be at least <math>\, **</math>.  Track elevations should be verified in the field prior to construction to determine if the final vertical clearance shown will be obtained.
 
  
:<math>\, **</math> Clearance specified on the Design Layout (23'-0" min.).
+
'''(E3.1) Horizontal curves (Bridges not of box culvert type)'''
 +
:<u>All bents are parallel.</u>
  
 +
<div id="Boring Data"></div>
 +
'''Boring Data'''
  
'''Seal Course (Use the following notes when Seal Course is specified on the Design Layout.)'''
+
'''(E3.2) <font color="purple">[MS Cell]</font color="purple"> (Place on Front Sheet of the plans when boring data is provided for bridges, retaining walls, MSE walls and any other structure.)'''
 +
:[[Image:751.50 E3.2 boring.jpg|12px]] Indicates location of borings.<br/>'''Notice and Disclaimer Regarding Boring Log Data'''<br/>The locations of all subsurface borings for this structure are shown on the  plan sheet(s) for this structure.  The boring data for all locations indicated, as well as any other boring logs or other factual records of subsurface data and investigations performed by the department for the design of the project, are shown on Sheet(s) No.___ and may be included in the Electronic Bridge Deliverables. They will also be available from the Project Contact upon written request.  No greater significance or weight should be given to the boring data depicted on the plan sheets than is given to the subsurface data available from the district or elsewhere.<br/>&nbsp;<br/>The Commission does not represent or warrant that any such boring data accurately depicts the conditions to be encountered in constructing this project.  A contractor assumes all risks it may encounter in basing its bid prices, time or schedule of performance on the boring data depicted here or those available from the district, or on any other documentation not expressly warranted, which the contractor may obtain from the Commission.
  
'''(E5.6)'''
+
'''(E3.4) (Place on the Boring Data Sheet)'''
:Seal course is designed for a water elevation of <u> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; </u>.
+
:For location of borings see Sheet(s) No. <u> &nbsp; </u>.
 +
<div id="Final clearance - Bridges over Railroads"></div>
 +
'''Final clearance - Bridges over Railroads'''
  
'''(E5.7)'''
+
'''(E3.5) In the general elevation detail, the vertical clearance dimension callout shall be the following asterisked note placed near the detail. '''
:If the seal course is omitted, by the approval of the engineer, then the bottom of footing shall be placed at elevation <u>[[#E5 notes|(1)]]</u>. <u>[[#E5 notes|(2)]] Payment will be made for materials required to lengthen columns and footings.  Footing length at elevation [[#E5 notes|(1)]] shall be [[#E5 notes|(3)]].</u>
 
  
<div id="E5 notes"></div>
+
<math>\, *</math> Final vertical clearance from top of rails to bottom of superstructure shall be <u> &nbsp; (1) &nbsp;</u> minimum. Track elevations should be verified in the field prior to construction to determine if the final vertical clearance shown will be obtained.
(1) Elevation as shown on the Design Layout.
+
::(1) Required clearance specified on the Bridge Memorandum.
  
(2) Do not use payment sentence when footing elevation remains the same.
+
'''Seal Course (Use the following notes when Seal Course is specified on the Design Layout.)'''
  
(3) Increase footing length when required by design.
+
'''(E3.6)'''
 +
:Seal course is designed for a water elevation of <u> &nbsp; &nbsp; &nbsp; &nbsp; &nbsp; </u>.
  
=== E6. Drilled Shafts ===
+
'''(E3.7)'''
 +
:If the seal course is omitted, by the approval of the engineer, bottom of footing shall be placed at the elevation shown on the plans.
  
'''(E6.1) The following table is to be placed on the design plans and filled out.'''
+
<div id="Bar placement in slabs"></div>
:{|border="0" style="text-align:center;" cellpadding="5" cellspacing="0"
+
'''Bar placement in slabs''' (Notes E3.8 – E3.9)
|-
 
!colspan="6" style="border-top:3px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:3px solid black"|<u>LRFD</u> Rock Socket Data
 
|-
 
!valign="top" colspan="2" style="border-top:1px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:1px solid black"|Bent No.
 
!valign="top" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"|2
 
!valign="top" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"|3
 
!valign="top" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"|4
 
!valign="top" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:3px solid black" width="75pt"|5
 
|-
 
|align="left" width="150pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black;"|Foundation Material
 
|align="right" style="border-top:1px solid black; border-bottom:1px solid gray; border-right:1px solid black"|&nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|Rock
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|Rock
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|Rock
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|Rock
 
|-
 
|align="left" width="150pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black;"|Number
 
|align="right" style="border-top:1px solid gray; border-bottom:1px solid gray; border-right:1px solid black"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"| &nbsp;
 
|-
 
|align="left" width="150pt" style="border-top:1px solid gray; border-bottom:3px solid black; border-left:3px solid black;"|Design Side Friction
 
|align="right" style="border-top:1px solid gray; border-bottom:3px solid black; border-right:1px solid black"|ksf
 
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
 
|}
 
  
'''(E6.2) Note may not be required with drilled shafts for high mast tower lighting.'''
+
'''Guidance Notes for Detailing:''' Indicate only the top longitudinal slab bars affected for tying the R4 barrier curb bar. It may be that only one bar needs to be indicated for shifting.  
:An additional 4 feet has been added to V-bar lengths for possible change in drilled shaft or rock socket depth. This excess length shall be cut-off or included in the reinforcement lap if not required.
 
  
'''(E6.3) Note not required with drilled shafts for high mast tower lighting.'''
+
'''(E3.8) Use note with detail drawing indicating which bars are to be shifted.'''
:Concrete coring shall be performed on <u> &nbsp;  &nbsp;  &nbsp;  &nbsp; </u> &nbsp;of the drilled shafts in accordance with Sec 701. Sonic logging testing shall be performed on all drilled shafts and rock sockets.
+
:Contractor may shift or swap bars as needed to tie R4 bar in barrier (4” min. bar spacing).
  
'''Note to designer:'''<br/> Coring shall be approximately 10% of the total number of drilled shafts (ie 1 in 10 shafts or 2 in 20 shafts) or only core one shaft for smaller structures unless additional cores would be prudent for a specific project.
+
'''(E3.9) Use note with detail drawing to indicate top edge longitudinal slab bar only.'''
 +
:Contractor may shift bar as needed to tie R3 bar in barrier.
  
'''(E6.4) Note to be used only with Drilled Shafts for High Mast Tower Lighting.'''
+
== F. Blank ==
:Drilling slurry, if used, shall require desanding.
 
  
'''(E6.5) Note to be used only with Drilled Shafts for High Mast Tower Lighting. Drilled shaft diameter is required to be at least 21" greater than the largest anticipated anchor bolt circle diameter per the DSP - High Mast Tower Lighting.'''
 
:The following non-factored base reactions were used to design the drilled shaft<u>s</u> for the <u> &nbsp; &nbsp; </u> ft high mast lighting tower<u>s</u>: overturning moment = <math>\, *</math> kip-foot, base shear = <math>\, *</math> kip and axial force = <math>\, *</math> kip.
 
  
:'''<math>\, *</math> Values used in the design of the drilled shaft.'''
+
== G. Substructure Notes ==
  
'''(E6.6) Use the following note only when the top of drilled shafts are < = 3'-0" below the ground surface at centerline column / drilled shaft. Otherwise excavation quantity to the top of drilled shafts needs to be figured. Excavation diameter limit will be the 3'-0" larger than the column diameter above the drilled shaft.'''
 
:The cost of any required excavation to the top of the drilled shafts will be considered completely covered by the contract unit price for other items.
 
  
=== E7. LRFD Driven Pile Table ===
+
=== G1. Concrete Bents ===
  
The following table is to be placed on the design plans and filled out as indicated.
+
'''Expansion Device at End Bents (G1.1 and G1.1.1)'''
 
 
'''(E7.1)'''
 
:{|border="0" style="text-align:center;" cellpadding="5" cellspacing="0"
 
|-
 
!colspan="4" valign="top" style="border-top:3px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:3px solid black"|Pile Data
 
|-
 
!align="left" valign="top" style="border-top:2px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:1px solid black"|Bent No.
 
!valign="top" style="border-top:2px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
!valign="top" style="border-top:2px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"|&nbsp;
 
!valign="top" style="border-top:2px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
 
|-
 
|align="left" width="300pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black;"|Type
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"| &nbsp;
 
|-
 
|align="left" width="300pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black;"|Kind
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"| &nbsp;
 
|-
 
|align="left" width="300pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black;"|Number
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"| &nbsp;
 
|-
 
|align="left" width="300pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black;"|Approximate Length
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"| &nbsp;
 
|-
 
|align="left" width="300pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black;"|Pile Driving Verification Method
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"| &nbsp;
 
|-
 
|align="left" width="300pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black;"|Nominal Axial Pile Compressive Resistance
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"| &nbsp;
 
|-
 
|align="left" width="300pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black;"|Minimum Tip Penetration
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|(*)
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"|(*)
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|(*)
 
|-
 
|align="left" width="300pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black;"|Criteria For Minimum Tip Penetration
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"| &nbsp;
 
|-
 
|align="left" width="300pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black;"|Pile Standard
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"| &nbsp;
 
|-
 
|align="left" width="300pt" style="border-top:1px solid gray; border-bottom:3px solid black; border-left:3px solid black; border-right:1px solid black;"|Hammer Energy Required
 
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:1px solid black" width="75pt"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:3px solid black" width="75pt"| &nbsp;
 
|-
 
|Colspan="4" align="left" width="525pt"|(*) If no minimum tip elevation is shown then piles are estimated to bear on rock or refusal material from soils information included in these plans.
 
|}
 
 
 
'''Note:'''<br/>Consult with Structural Project Manager or Liaison for information to include for Hammer Energy Required.
 
 
 
'''(E7.2) (Use when prebore is required and the natural ground line is not erratic.)'''
 
:Prebore for piles at Bent<u>s</u> <u> &nbsp; </u> &nbsp;<u>and &nbsp; </u> &nbsp;to elevation<u>s</u> <u> &nbsp;  &nbsp;  &nbsp; </u> &nbsp;<u>and</u> <u> &nbsp;  &nbsp;  &nbsp;  </u>, <u>respectively</u>.
 
 
 
'''(E7.3) (Use when prebore is required and the natural ground line is erratic.)'''
 
:Prebore to natural ground line.
 
 
 
'''(E7.4) (Use the following note when pile point reinforcement is required)'''
 
:Manufactured pile point reinforcement shall be used on <u>all</u> piles in <u>this structure</u> <u>at Bents &nbsp; and &nbsp; </u>.
 
 
 
== F. Blank ==
 
 
 
 
 
== G. Substructure Notes ==
 
 
 
 
 
=== G1. Concrete Bents ===
 
 
 
'''Expansion Device at End Bents'''
 
  
 
'''(G1.1)'''
 
'''(G1.1)'''
Line 1,553: Line 1,309:
  
  
'''Stub Bents'''
+
'''Stub Bents (G1.3 and G1.4) '''
  
 
'''(G1.3)'''
 
'''(G1.3)'''
Line 1,559: Line 1,315:
  
  
'''Stub Bents Embedded in Rock or on Footings'''
+
'''(G1.4) Use when embedded in rock or on a footing.'''
 
 
'''(G1.4)'''
 
 
:Rock shall be excavated to provide at least 6" of earth under the <u>beam and wings.</u>
 
:Rock shall be excavated to provide at least 6" of earth under the <u>beam and wings.</u>
  
  
'''End Bents with Turned-Back Wings'''
+
'''End Bents with Turned-Back Wings (G1.5 and G1.6)'''
  
'''(G1.5) (Use for Non-Integral End Bents only.)'''
+
'''(G1.5) Use for Non-Integral End Bents only.'''
 
:Field bending shall be required when necessary at the wings for #<u> &nbsp; </u>-H<u> &nbsp; </u>&nbsp;bars in the backwalls for skewed structures and for #<u> &nbsp; </u>-F<u> &nbsp; </u>&nbsp;bars in the wings for the slope of the wing.
 
:Field bending shall be required when necessary at the wings for #<u> &nbsp; </u>-H<u> &nbsp; </u>&nbsp;bars in the backwalls for skewed structures and for #<u> &nbsp; </u>-F<u> &nbsp; </u>&nbsp;bars in the wings for the slope of the wing.
  
'''(G1.6)'''
+
'''(G1.6) Add to sheet showing the typical section thru wing detail.'''
:For reinforcement of the safety barrier curb, see Sheet No. <u> &nbsp; &nbsp; </u>.
+
:For reinforcement of the safety barrier curb, see Sheet No. <u> &nbsp; &nbsp; </u> (1).
 +
 
 +
::(1) Use sheet number of the details of the safety barrier curb at end bents.
  
  
'''Integral End Bents'''
+
'''Integral End Bents (G1.7 thru G1.10)'''
  
'''(G1.7)'''
+
'''(G1.7) Second F bar required for skewed bents.'''
:Bend F<u> &nbsp; </u>&nbsp;bars in field to clear girders.
+
:The #6-F<u> &nbsp; &nbsp; </u><font color = "white">a</font color="white"> <u>and #6-F &nbsp; </u>  bars shall be bent in the field to clear <u>beams</u> <u>girders</u>.
 +
<div id="(G1.7.1) Use for skewed bents."></div>
  
'''(G1.7.1)'''
+
'''(G1.7.1) Use for skewed bents. The #5-H bars are the approach slab anchorage (L shaped) bars embedded 12” (Min.) @ 90⁰ into the end bent. Modify note as needed when bent details are on multiple sheets. '''
:All vertical reinforcing bars in the substructure beams or caps shall be field adjusted to clear piles by at least 1 1/2".
+
:The U bars, Pairs-V bars and #5-H<u> &nbsp; &nbsp; </u> bars shall be placed parallel to centerline of roadway.
  
 
'''(G1.8)'''
 
'''(G1.8)'''
 
:All concrete in the end bent above top of beam and below top of slab shall be Class B-2.
 
:All concrete in the end bent above top of beam and below top of slab shall be Class B-2.
  
'''(G1.8.1) Use for structures having detached wing walls at end bents and there is no Reinforcing Steel (Epoxy Coated) listed in the Estimated Quantities.'''
 
:The top two epoxy bars in the detached wing walls shall be included with the Superstructure Quantities for Slab on <u>Steel</u> <u>Concrete I-Girder</u> <u>Concrete Bulb-Tee Girder</u>.
 
  
'''(G1.9)'''
+
'''(G1.9) Use for P/S structures.'''
:Strands at end of the girder shall be field bent or, if necessary, cut in field to maintain 1 1/2" minimum clearance to fill face of end bent.
+
:Strands at end of the <u>girders</u> <u>beams</u> shall be field bent or, if necessary, cut in field to maintain 1 1/2" minimum clearance to fill face of end bent.
  
  
'''Integral End Bents (Steel structure without steel diaphragms at end bents)'''
+
'''(G1.10) Use for steel structures without steel diaphragms at end bents.'''
 
 
'''(G1.10)'''
 
 
:Concrete diaphragms at the integral end bents shall be poured a minimum of 12 hours before the slab is poured.
 
:Concrete diaphragms at the integral end bents shall be poured a minimum of 12 hours before the slab is poured.
  
  
'''Ground Line Within Semi-Deep Abutments'''
+
'''Semi-Deep Abutments (G1.11 thru G1.13) Place near the ground line and piling  in abutment detail. This detail and notes can be placed with abutment details or near the foundation table.'''
 
+
 
'''(G1.11)'''
 
'''(G1.11)'''
:In no case shall the earth within Abutments No. <u>&nbsp;&nbsp;</u> and <u>&nbsp;&nbsp;</u> be above the ground line below. Forms supporting the abutment slab may be left in place.
+
:Earth within abutment shall not be above the ground line shown . Forms supporting the abutment slab may be left in place.  
  
 
'''Pile Variation for Semi-Deep Abutments'''
 
  
 
'''(G1.12)'''
 
'''(G1.12)'''
:The maximum variation of the head of the pile and the battered face of the pile from the position shown on the plans shall be not more than 2 inches for piles under Abutments No. <u>&nbsp;&nbsp;</u> and <u>&nbsp;&nbsp;</u>.
+
:The maximum variation of the head of the pile and the battered face of the pile from the position shown shall be no  more than 2 inches.
  
 
'''Protective Coating for Steel Shells and Structural Steel Piles for Semi-Deep Abutments'''
 
  
 
'''(G1.13)'''
 
'''(G1.13)'''
 
:Exposed <u>steel piles</u> <u>steel pile shells</u> within the abutment shall be coated with a heavy coating of an approved bituminous paint.
 
:Exposed <u>steel piles</u> <u>steel pile shells</u> within the abutment shall be coated with a heavy coating of an approved bituminous paint.
  
 +
<div id="All Substructure Sheets with Anchor Bolts"></div>
  
'''All Substructure Sheets with Bearing Anchor Bolts'''
+
'''All Substructure Sheets with Anchor Bolts'''
  
'''(G1.15)'''
+
'''(G1.15A)'''
:All reinforcing bars in the tops of substructure beams or caps shall be spaced to clear anchor bolt wells for bearings by at least 1/2".
+
:Reinforcing steel shall be shifted to clear anchor bolt wells by at least 1/2".
  
 +
'''(G1.15B) Use unless only anchor bolt wells are preferred, i.e. uplift, congested reinforcement, etc. '''
  
'''All Substructure Sheets with Girder Chairs'''
+
:Holes for anchor bolts may be drilled into the substructure.
  
 +
 +
'''Beam/Girder Chairs (G1.16 thru G1.19). Notes G1.16 and G1.17 shall be placed near chair details. '''
 +
<div id="(G1.16)"></div>
 
'''(G1.16)'''
 
'''(G1.16)'''
:Cost of furnishing, fabricating and installing girder chairs will be considered completely covered by the contract unit price for Fabricated Structural <u>&nbsp;&nbsp;&nbsp;&nbsp;</u> Steel.
+
:Cost of furnishing, fabricating and installing chairs will be considered completely covered by the contract unit price for <u>(a)</u>.
 +
<center>
 +
{| style="margin: 1em auto 1em auto"
 +
|-
 +
|
 +
{| border="1" cellpadding="3"  cellspacing="1" style:"text-align:left"
 +
|+
 +
! style="background:#BEBEBE" |Condition!! style="background:#BEBEBE" |(a)
 +
|-
 +
|align="left" width="230"|Structures without steel beam or girder pay item  ||align="left" width="230"|Fabricated Structural Carbon Steel (Misc.)
 +
|-
 +
|align="left"|Structures with steel beam or girder pay item|| align="left"|Use beam or girder pay item
 +
|}
 +
||
 +
{| border="1" cellpadding="3"  cellspacing="1" style:"text-align:left"
 +
|-
 +
|width="250" align="left"|When there is no steel beam or girder pay item, the miscellaneous steel for the chair is a substructure pay item and should also be included in the bent substructure quantity box
 +
|}
 +
|}
 +
 
 +
</center>
 +
'''(G1.17) Use for P/S structures and for steel structures when the chair material is not the pay item material. '''
 +
:Steel for chairs shall be ASTM A709 Grade 36.
 +
 
 +
'''(G1.18) Use for structures with steel beam or girder pay items. Place below the substructure quantity box of all bents with chairs using the same pay item for (a) as used in Note G1.16. '''
 +
 
 +
:The weight of <u> &nbsp;</u>  pounds of chairs is included in the weight of (a).
 +
 
 +
'''(G1.19) Place with the other bent notes. Second sentence is required when the chair details are located with other bent details. '''
 +
 
 +
Reinforcing steel shall be shifted to clear chairs. <u>For details of chairs, see Sheet No. &nbsp; </u>.  
 +
 
 +
'''All Substructure Sheets with Pile Cap Bents. '''
 +
 
 +
'''(G1.20) '''
 +
:Reinforcing steel shall be shifted to clear piles. U bars shall clear piles by at least 1 1/2". 
 +
 
 +
'''Miscellaneous (G1.41 thru G1.43) '''
  
 
'''(G1.40)  Use the following note at all fixed intermediate bents on prestressed girder bridges with steps of 2" or more.'''
 
'''(G1.40)  Use the following note at all fixed intermediate bents on prestressed girder bridges with steps of 2" or more.'''
Line 1,634: Line 1,425:
  
 
'''(G1.42)  Place the following note on plans when using Optional Section for Column-Web beam joints.'''
 
'''(G1.42)  Place the following note on plans when using Optional Section for Column-Web beam joints.'''
:At the contractor's option, the details shown in optional Section <u>&nbsp;</u>-<u>&nbsp;</u> may be used for column-web beam or tie beam at intermediate Bent No. <u>&nbsp;&nbsp;</u>.  No additional payment will be made for this substitution.
+
:At the contractor's option, the details shown in optional Section __-__ may be used for column-web beam or tie beam at intermediate Bent No. <u>&nbsp;&nbsp;</u>.  No additional payment will be made for this substitution.
  
 
'''(G1.43)  Place the following note on plans when you have adjoining twin bridges.'''
 
'''(G1.43)  Place the following note on plans when you have adjoining twin bridges.'''
 
:Preformed compression joint seal shall be in accordance with Sec 717. Payment will be considered completely covered by the contract unit price for other items included in the contract.
 
:Preformed compression joint seal shall be in accordance with Sec 717. Payment will be considered completely covered by the contract unit price for other items included in the contract.
 +
 +
'''G1.44 Use with column closed circular stirrup/tie bar detail.'''
 +
 +
:Minimum lap ____ (Stagger adjacent bar splices)
  
 
=== G2. Deadman Anchors ===
 
=== G2. Deadman Anchors ===
Line 1,682: Line 1,477:
 
:Note: Reinforcing steel lengths are based on nominal lengths, out to out.
 
:Note: Reinforcing steel lengths are based on nominal lengths, out to out.
  
=== G3. Vertical Drain at End Bent ===
+
=== G3. Vertical Drain at End Bent (Notes for Bridge Standard Drawings)===
  
 +
'''(G3.0) '''
 +
:All drain pipe shall be sloped 1 to 2 percent.
  
 
'''(G3.1)'''
 
'''(G3.1)'''
:Drain pipe may be either 6" diameter corrugated metallic-coated steel pipe underdrain, 4" diameter corrugated polyvinyl chloride (PVC) drain pipe, or 4" diameter corrugated polyethylene (PE) drain pipe.
+
:Drain pipe may be either 6-inch diameter corrugated metallic-coated steel pipe underdrain, 4-inch diameter corrugated polyvinyl chloride (PVC) drain pipe, or 4-inch diameter corrugated polyethylene (PE) drain pipe.
  
 
'''(G3.2)'''
 
'''(G3.2)'''
:Place drain pipe at fill face of end bent and slope to lowest grade of ground line, also missing the lower beam of end bent by 1 1/2"(See elevation at end bent.)
+
:Drain pipe shall be placed at fill face of end bent and inside face of wings.  The pipe shall slope to lowest grade of ground line, also missing the lower beam of end bent by a minimum of 1 1/2 inches.   
  
 
'''(G3.3)'''
 
'''(G3.3)'''
:Perforated pipe shall be placed at fill face side at the bottom of end bent and plain pipe shall be used where the vertical drain ends to the exit at ground line.
+
:Perforated pipe shall be placed at fill face side and inside face of wings at the bottom of end bent and plain pipe shall be used where the vertical drain ends to the exit at ground line.
  
 
=== G4. Substructure Quantity Table ===
 
=== G4. Substructure Quantity Table ===
  
'''(B4.1)'''
+
'''(G4.1) <font color="purple">[MS Cell]</font color="purple">'''
 
:{|border="0" style="text-align:center;" cellpadding="5" cellspacing="0"
 
:{|border="0" style="text-align:center;" cellpadding="5" cellspacing="0"
 
|-
 
|-
Line 1,736: Line 1,533:
 
'''Note to Detailer:'''<br/>Place substructure quantity table on right side of substructure bent sheet.
 
'''Note to Detailer:'''<br/>Place substructure quantity table on right side of substructure bent sheet.
  
=== G5. 20" and 24" CIP Piles ===
+
=== G5. CIP Concrete Piles (Notes for Bridge Standard Drawings)===
  
'''(Do not use without approval of Structural Project Manager or Liaison)'''
 
  
'''(G5.1)'''
+
====G5a Closed Ended Cast-in Place (CECIP) Concrete Pile====
:All concrete for cast-in-place piles shall be Class B-1.
 
  
'''(G5.2)'''
+
'''(G5a1)'''
:Additional thickness may be required for thin shelled types to provide sufficient strength to withstand driving without injury and to resist harmful distortion or buckling due to soil pressure after being driven and the mandrel removed.
+
:Welded or seamless steel pipe shall be ASTM A252 Grade 2 (fy = 35,000 psi) or Grade 3 (fy = 45,000 psi) as shown in the Concrete Pile Data table.
  
'''(G5.3)'''
+
'''(G5a2)'''
:Where 3/4" closure plates are required for tips of pipe piles, the closure plates shall not project beyond the outside diameter of the pipe piles.  Satisfactory weldments may be made by beveling tip ends of pipe or by use of inside backing rings.  In either case, proper gaps shall be used to obtain weld penetration full thickness of pipe.
+
:Concrete for cast-in-place pile shall be Class B-1.
  
'''(G5.4)'''
+
'''(G5a3)'''
:Splice details for cast-in-place concrete piles shall be in accordance with the manufacturer's recommendations.
+
:Steel for closure plate shall be ASTM A709 Grade 50.
  
'''(G5.5)'''
+
'''(G5a4)'''
:All splices of shells for cast-in-place concrete piles shall be made watertight and to the full strength of the shell above and below the splice to permit hard driving without damage.  All shells damaged during driving shall be replaced without cost to the State.  Shell sections used for splicing shall be at least 5'-0" in length.  The splice at the tapered section shall  be at least 3'-0" below the streambed for intermediate trestle type bents.
+
:Steel for cruciform pile point reinforcement shall be ASTM A709 Grade 50.
  
'''(G5.6)'''
+
'''(G5a5)'''
:Waterjetting will be permitted with 20" or 24" piles.
+
:Steel casting for conical pile point reinforcement shall be <u>ASTM A27 Grade 65-35</u> <u>ASTM A148 Grade 90-60</u>.
  
'''(G5.7)'''
+
'''(G5a6)'''
:The minimum wall thickness of any spot or local area of any type shall not be more than 12.5% under the specified nominal wall thickness.
+
:The minimum wall thickness of any spot or local area of any type shall not be more than 12.5% under the specified nominal wall thickness.  
  
'''(G5.8)'''
+
'''(G5a7)'''
:Note: INDICATE IN REMARKS COLUMN:
+
:Closure plate shall be required for tip of pipe pile and shall not project beyond the outside diameter of the pipe pile. Satisfactory weldments may be made by beveling tip end of pipe or by use of inside backing rings. In either case, proper gaps shall be used to obtain weld penetration full thickness of pipe. Payment for furnishing and installing closure plate will be considered completely covered by the contract unit price for Galvanized Cast-In-Place Concrete Piles.
::A.) IF PILING WERE DRIVEN TO PRACTICAL REFUSAL.
 
::B.) PILE BATTER IF OTHER THAN SHOWN ON BENT DETAIL SHEET.
 
::C.) TYPE OF PILING USED.
 
  
'''(G5.9)'''
+
'''(G5a8)'''
:Note: THIS SHEET TO BE COMPLETED BY MoDOT CONSTRUCTION PERSONNEL.
+
:Splices of pipe for cast-in-place concrete pile shall be made watertight and to the full strength of the pipe above and below the splice to permit hard driving without damage. Pipe damaged during driving shall be replaced without cost to the state. Pipe sections used for splicing shall be at least 5 feet in length.
  
== H. Superstructure Notes ==
+
'''(G5a9)'''
 +
:At the contractor's option, the hooks of V-Bars embedded in the beam cap may be oriented inward or outward for Seismic Category A. Bending the hook outward, away from the pile core, is not preferred for Seismic Category B, C, or D.  
  
 +
'''(G5a10)'''
 +
:The hooks of V-Bars embedded in the pile cap footing should be oriented outward for all seismic categories.
  
=== H1. Steel ===
+
'''(G5a11)'''
 +
:Closure plate need not be galvanized.  
  
'''Plate Girders - (Shop welding)'''
+
'''(G5a12) '''
 +
:Reinforcing steel for cast-in-place pile is included in the Bill of Reinforcing Steel.
  
'''(H1.1) To be used only with the permission of the Structural Project Manager.'''
+
'''(G5a13) '''
:By approval of the engineer, the contractor may omit any shop flange splice by extending the heavier flange plate and providing approved modifications of details at field flange splices and elsewhere as required.  All cost of any required design, plan revisions or re-checking of shop drawings shall be borne by the contractor.  Payweight in any case will be based on material shown on Design Plans.
+
:All reinforcement for cast-in-place pile is included in the estimated quantities for bents.
  
  
'''Welded Shop Splices'''
+
====G5b Open Ended Cast-in Place (OECIP) Concrete Pile====
  
'''(H1.1.1) Place near Welded Shop Splice Details.'''
+
'''(G5b1)'''
:Welded shop web and flange splices may be permitted when detailed on the shop drawings and approved by the engineerNo additional payment will be made for optional welded shop web and flange splices.
+
:Welded or seamless steel pipe shall be ASTM A252 Grade 2 (fy = 35,000 psi) or Grade 3 (fy = 45,000 psi) as shown in the Concrete Pile Data table.
 +
   
 +
'''(G5b2)'''
 +
:Open ended pile shall be augered out to the minimum pile cleanout penetration elevation and filled with Class B-1 concrete.
  
'''(H1.2)'''
+
'''(G5b3)'''
:[[Image:751.50 circled 2.gif]] Weld to compression flange as located on the elevations of girder.
+
:Concrete for cast-in-place pile shall be Class B-1.
  
'''(H1.3) Add to note (H1.2), only when girders are built up with A514 or A517 steel flanges.'''
+
'''(G5b4)'''
:Intermediate web stiffeners shall not be welded to plates of A514 or A517 steel.
+
:Steel casting for open ended cutting shoe pile point reinforcement shall be <u>ASTM A27 Grade 65-35</u> <u>ASTM A148 Grade 90-60</u>.
  
 +
'''(G5b5)'''
 +
:The minimum wall thickness of any spot or local area of any type shall not be more than 12.5% under the specified nominal wall thickness.
  
'''Plate Girders with Camber'''
+
'''(G5b6)'''
 +
:Splices of pipe for cast-in-place pipe pile shall be made watertight and to the full strength of the pipe above and below the splice to permit hard driving without damage. Pipe damaged during driving shall be replaced without cost to the state. Pipe sections used for splicing shall be at least 5 feet in length.
  
'''(H1.4) Place near the elevation of girder.'''
+
'''(G5b7)'''
:Plate girders shall be fabricated to be in accordance with the camber diagram shown on Sheet No. <u>&nbsp;&nbsp;</u>.
+
:At the contractor's option, the hooks of V-Bars embedded in the beam cap may be oriented inward or outward for Seismic Category A. Bending the hook outward, away from the pile core, is not preferred for Seismic Category B, C, or D.
  
 +
'''(G5b8)'''
 +
:The hooks of V-Bars embedded in the pile cap footing should be oriented outward for all seismic categories.
  
'''Detail Camber Diagram with note (H1.5), Dead Load Deflection Diagram with notes (H1.6) and (H1.6.1), and Theoretical Slab Haunch with note (H1.7).'''
+
'''(G5b9)'''
 +
:Reinforcing steel for cast-in-place pile is included in the Bill of Reinforcing Steel.
  
'''(H1.5)'''
+
'''(G5b10)'''
:Camber includes allowance for <u>vertical curve,</u> <u>superelevation transition,</u>  <u>and for</u> dead load deflection due to concrete slab, <u>curb,</u> <u>asphalt,</u> <u>concrete wearing surface</u> and structural steel.
+
:All reinforcement for cast-in-place pile is included in the estimated quantities for bents.
  
'''(H1.6)'''
+
===G6. As-Built Pile and Drilled Shaft Data===
:<u>&nbsp;&nbsp;</u>% of dead load deflection is due to the weight of structural steel.
 
  
'''(H1.6.1)'''
+
'''(G6.1) Include A, B and C with all pile types. Include D and E along with bracketed guidance when piles are being dynamic tested.'''  
:Dead load deflection includes weight of structural steel, concrete slab, <u>and barrier curb</u>.
 
  
'''(H1.7)'''
+
:Indicate in remarks column:
:<u>&nbsp;&nbsp;&nbsp;&nbsp;</u> dimensions may vary if the girder camber after erection differs from plan camber by more or less than the % of Dead Load Deflection due to weight of structural steel.  No payment will be made for any adjustment in forming or additional concrete required for variation in haunching.
 
  
'''Note:''' Increase the haunch by 1/2"&plusmn; more than what is required to make one size shear connector work for both the C.I.P. and the S.I.P. Options.
+
:A. Pile type and grade
  
 +
:B. Batter
  
'''ASTM A709 Grade 50W Structural Steel (Uncoated)'''
+
:C. Driven to practical refusal
  
'''(H1.8) Place near detail of bolted field splice.'''
+
:D. PDA test pile
:Contact surfaces shall be in accordance with Sec 1081 for surface preparation.
 
  
 +
:E. Minimum tip elevation controlled
  
'''Structures without Longitudinal Section'''
+
:(Use when actual blow count is less than PDA blow count due to minimum tip elevation requirement.  A plus sign (+) shall be placed after the PDA nominal axial compressive resistance value indicating actual value is higher than PDA value.)
  
'''(H1.9) Place just above slab at part section near end diaphragm and draw an arrow to the top of diaphragm.'''
+
'''(G6.2) Use this note when only drilled shafts are shown on the sheet. '''
:Haunch slab to bear.
 
  
 +
:Indicate remarks in the remarks column.
  
'''Top of End Bent Backwall (Without expansion device)'''
+
'''(G6.3) '''
  
'''(H1.10)'''
+
:This sheet to be completed by MoDOT construction personnel.
:Two layers of 30# roofing felt.
 
  
 +
===G7. Steel HP Pile===
  
'''Section thru Spans'''
+
'''(G7.1) <font color="purple">[MS Cell]</font color="purple"> Use with Pile Splice Detail - Galvanized.'''
 +
:Galvanizing material shall be omitted or removed one inch clear of weld locations in accordance with [http://www.modot.org/business/standards_and_specs/2017%20Missouri%20Standard%20Specific%20-%20MHTC%20(Jul%202017).pdf Sec 702].
  
'''(H1.11) Place on the slab sheet when applicable.'''
+
'''(G7.2) Use with Pile Seismic Anchor Detail – Galvanized.'''
:For details of <u>safety barrier curb</u> <u>parapet</u> <u>median bridge rail</u> not shown, see Sheet No. <u>&nbsp;&nbsp;</u>.
+
:Galvanizing ∠4x4, ¾” diameter high strength bolts, washers and nuts will not be required.
 +
<div id="(G7.4) (Use the following note"></div>
 +
'''(G7.3) Use on all plans where HP piles are anticipated to be driven to refusal on rock at any depth.'''
  
 +
:HP piles are anticipated to be driven to refusal on rock. Review all borings for depth of rock and restrict driving as appropriate to comply with hard rock driving criteria in accordance with [http://www.modot.org/business/standards_and_specs/2017%20Missouri%20Standard%20Specific%20-%20MHTC%20(Jul%202017).pdf Sec 702].
  
'''Web Stiffeners'''
+
== H. Superstructure Notes ==
  
'''(H1.12)'''
 
:Whenever longitudinal stiffeners interfere with bolting the <u>diaphragms</u> <u>cross frames</u> in place, clip stiffeners.
 
  
'''(H1.13)'''
+
=== H1. Steel ===
:Longitudinal web stiffeners shall be placed on the outside of exterior girders and on the side opposite of the transverse web stiffener plates for interior girders.
 
  
'''(H1.14)'''
+
'''Plate Girders - (Shop welding)'''
:Transverse web stiffeners shall be located as shown in the plan of structural steel.
 
  
'''(H1.15)'''
+
'''(H1.1) To be used only with the permission of the Structural Project Manager.'''
:Intermediate web stiffener plate and diaphragm spacing may vary from plan dimensions by a maximum of 3" for diaphragm to connect to the intermediate web stiffener plate.
+
:By approval of the engineer, the contractor may omit any shop flange splice by extending the heavier flange plate and providing approved modifications of details at field flange splices and elsewhere as required.  All cost of any required design, plan revisions or re-checking of shop drawings shall be borne by the contractor.  Payweight in any case will be based on material shown on Design Plans.
  
  
'''Wide Flange Beams - (Shop Welding)'''
+
'''Welded Shop Splices'''
  
'''(H1.16) To be used only with permission of the Structural Project Manager.'''
+
'''(H1.1.1) Place near Welded Shop Splice Details.'''
:By approval of the engineer, the contractor may omit any shop splice by extending the heavier beam and providing an approved modification of details at the field splices.  All costs of any required redesign, plan revisions or rechecking of shop drawings shall be borne by the contractorPayweight in any case will be based on material shown on the design plans.
+
:Welded shop web and flange splices may be permitted when detailed on the shop drawings and approved by the engineerNo additional payment will be made for optional welded shop web and flange splices.
  
 +
'''(H1.2) Use for the welded connection of intermediate web stiffener to compression flange and intermediate diaphragm connection plate to compression flange.'''
 +
:(2) Weld to compression flange as located on Elevation of Girder.
  
'''Shear Connectors'''
+
<div id="(H1.3) Add to note (H1.2)"></div>
  
'''(H1.17) Include shear connectors in material which connectors are attached.'''
+
'''(H1.3) Add to note (H1.2), only when girders are built up with A514 or A517 steel flanges. Caution: Using this note means that these structural steels are already on the system. Any new construction using these structural steels requires permission of the State Bridge Engineer. Any construction involving these structural steels requires notification to the State Bridge Engineer.'''
:Weight of <u>&nbsp;&nbsp;&nbsp;</u> pounds of shear connectors is included in the weight of Fabricated Structural <u>&nbsp;&nbsp;&nbsp;</u> Steel.
 
  
'''(H1.18)'''
+
:Intermediate web stiffeners shall not be welded to plates of A514 or A517 steel.
:Shear connectors shall be in accordance with Sec 712, 1037 and 1080.
 
  
  
'''Notch Toughness for Wide Flange Beams
+
'''Plate Girders with Camber'''
:(Place an <math>\, *</math> with all the beam sizes indicated on the "Plan of Structural Steel".)
 
:(Place the following note near the "Plan of Structural Steel".)'''
 
  
'''(H1.19)'''
+
'''(H1.4) Place near the elevation of girder.'''
:<math>\, *</math> Notch toughness is required for all wide flange beams.
+
:Plate girders shall be fabricated to be in accordance with the camber diagram shown on Sheet No. <u>&nbsp;&nbsp;</u>.
  
  
'''(Place an <math>\, *</math> with the flange plate, pin plate or hanger bar size indicated on the "Detail of Flange Plates, Pin Plate Connection or Hanger Connection".)'''
+
'''Detail Camber Diagram with note (H1.5), Dead Load Deflection Diagram with notes (H1.6) and (H1.6.1), and Theoretical Slab Haunch with note (H1.7).'''
  
'''(H1.20)'''
+
'''(H1.5)'''
:<math>\, *</math> Notch toughness is required for all <u>welded flange plates</u> <u>pin plates</u> <u>hanger bars</u>.
+
:Camber includes allowance for <u>vertical curve,</u> <u>superelevation transition,</u>  <u>and for</u> dead load deflection due to concrete slab, <u>curb,</u> <u>asphalt,</u> <u>concrete wearing surface</u> and structural steel.
  
 +
'''(H1.6)'''
 +
:<u>&nbsp;&nbsp;</u>% of dead load deflection is due to the weight of structural steel.
  
'''Notch Toughness for Plate Girders
+
'''(H1.6.1)'''
:'''(Place the following note on the sheet with the Elevation of Girder.)'''
+
:Dead load deflection includes weight of structural steel, concrete slab, <u>and barrier curb</u>.
:'''(See [[751.5_Standard_Details#Plate Girder Example|Plate Girder Example]] for typical examples for the location of <math>\, ***</math> on details for plate girders.)'''
 
  
'''(H1.21)'''
 
:<math>\, ***</math> Indicates flange plates subject to notch toughness requirements.
 
:All web plates shall be subject to notch toughness requirements.
 
  
'''(H1.21.1)'''
+
'''(H1.7)'''
:The flange and web splice plates shall be subject to notch toughness requirements, when notch toughness is required for flanges on both sides of splice.
+
:'''*''' Dimension (bottom of slab to top of web)  may vary if the girder camber after erection differs from plan camber by more or less than the % of Dead Load Deflection due to weight of structural steel.  No payment will be made for any adjustment in forming or additional concrete required for variation in haunching.
 +
 
 +
'''Note:''' Increase the haunch by 1/2"&plusmn; more than what is required to make one size shear connector work for both the CIP and the SIP options.
  
  
'''(Place <math>\, ***</math> near the size of flange splice plates, pin plates or hanger bars and the following note near the detail of flange splice, pin plate connection or hanger connection.)'''
+
'''Bolted Field Splices for Plate Girders and Wide Flange Beams (All Structural Steel including Weathering Steel)'''
  
'''(H1.22)'''
+
'''Place the following notes near detail of bolted field splice:'''
:<math>\, ***</math> Indicates <u>flange splice plates</u> <u>pin plates</u> <u>hanger bars</u> subject to  notch toughness requirements.
 
  
 +
'''(H1.8)'''
 +
:Contact surfaces shall be in accordance with Sec 1081 for surface preparation.
  
'''Structural Steel for Wide Flange Beams and Plate Girder Structures'''
+
'''(H1.8.1)'''
 +
:Use 7/8ӯ high strength bolts with 15/16ӯ holes.
  
'''(H1.23)'''
 
:Fabricated structural steel shall be ASTM A709 Grade <u>36</u> <u>50</u>, except as noted.
 
  
 +
'''Structures without Longitudinal Section'''
  
'''Tangent Structures on Straight Grades (Details of Part-Longitudinal Sections at bents and at steel joints will be required on plans.)'''
+
'''(H1.9) Place just above slab at part section near end diaphragm and draw an arrow to the top of diaphragm.'''
 +
:Haunch slab to bear.
  
'''Plan of Structural Steel and Elevation of Stringers or Girders'''
 
  
'''(H1.24)'''
+
'''Top of End Bent Backwall (Without expansion device)'''
:Longitudinal dimensions are horizontal from centerline bearing to centerline bearing.
 
  
 +
'''(H1.10)'''
 +
:Two layers of 30-lb roofing felt.
  
'''Oversized Holes for Intermediate Diaphragms'''
 
 
'''Place the following note near the intermediate diaphragm detail on all tangent wide flange and plate girder structures.'''
 
  
'''(H1.26)'''
+
'''Section thru Spans'''
:At the contractor's option, holes in the diaphragm plate of non slab bearing diaphragms may be made 3/16" larger than the nominal diameter of the bolt.  A hardened washer shall be used under the bolt head and nut when this option is used.  Holes in the girder diaphragm connection plate or transverse web stiffener shall be standard size.
 
  
 +
'''(H1.11) Place on the slab sheet when applicable.'''
 +
:For details of <u>safety barrier curb</u> <u>parapet</u> <u>median bridge rail</u> not shown, see Sheet No. <u>&nbsp;&nbsp;</u>.
  
'''Slab drain attachment holes'''
 
 
'''Place the following note near the Elevation of Girder detail for plate girders or near the plan view for Wide Flange Beams when Slab Drains are used.'''
 
  
'''(H1.27)'''
+
'''Web Stiffeners'''
:For location of slab drain attachment holes, see slab drain details sheet.
 
  
 +
'''(H1.12)'''
 +
:Whenever longitudinal stiffeners interfere with bolting the <u>diaphragms</u> <u>cross frames</u> in place, clip stiffeners.
  
'''Tangent Structures on Vertical Curve Grades (Details of part-longitudinal sections at bents and at steel joints will be required on plans for bridges on vertical curves.)'''
+
'''(H1.13)'''
 +
:Longitudinal web stiffeners shall be placed on the outside of exterior girders and on the side opposite of the transverse web stiffener plates for interior girders.
  
'''Plan of Structural Steel'''
+
'''(H1.14)'''
+
:Transverse web stiffeners shall be located as shown in the plan of structural steel.
'''Dimensions given in plan should be identical to horizontal dimensions detailed in Part-Longitudinal Sections or blocking diagram.'''
 
  
'''(H1.28)'''
+
'''(H1.15)'''
:Longitudinal dimensions are horizontal from centerline brg. to centerline brg.  See Part-Longitudinal Sections on Sheet No. <u>&nbsp;&nbsp;</u>.
+
:Intermediate web stiffener plate and diaphragm spacing may vary from plan dimensions by a maximum of 3" for diaphragm to connect to the intermediate web stiffener plate.
  
  
'''Elevation of Constant Depth or Variable Depth Stringers or Girders'''
+
'''Wide Flange Beams - (Shop Welding)'''
  
'''(H1.29)'''
+
'''(H1.16) To be used only with permission of the Structural Project Manager.'''
:Longitudinal dimensions are horizontal from centerline brg. to centerline brgSee Part-Longitudinal Sections on Sheet No. <u>&nbsp;&nbsp;</u>.
+
:By approval of the engineer, the contractor may omit any shop splice by extending the heavier beam and providing an approved modification of details at the field splices. All costs of any required redesign, plan revisions or rechecking of shop drawings shall be borne by the contractorPayweight in any case will be based on material shown on the design plans.
  
  
'''Horizontally Curved Structures on Straight Grades (Details of Part-Longitudinal Sections at bents and at steel joints will be required on plans.)'''
+
'''Shear Connectors'''
 
'''Plan of Structural Steel'''
 
  
'''(H1.31)'''
+
'''(H1.17) Use only when "Fabricated Structural …Steel… " is included as a pay item.'''
:Longitudinal dimensions are horizontal arc dimensions from centeline brg. to centerline brg.
+
:Weight of <u>&nbsp;&nbsp;&nbsp;</u> pounds of shear connectors is included in the weight of Fabricated Structural <u>&nbsp;&nbsp;&nbsp;</u> Steel.
  
 +
'''(H1.18)'''
 +
:Shear connectors shall be in accordance with Sec 712, 1037 and 1080.
  
'''Horizontally Curved Structures on Straight Grades (Details of Part-Longitudinal Sections at bents and at steel joints will be required on plans.)'''
 
 
'''Elevation of Stringers or Girders'''
 
  
'''(H1.32)'''
+
'''Notch Toughness for Wide Flange Beams
:Longitudinal dimensions are horizontal arc dimensions from centerline brg. to centerline brg.
+
:(Place an <math>\, *</math> with all the beam sizes indicated on the "Plan of Structural Steel".)
 +
:(Place the following note near the "Plan of Structural Steel".)'''
  
 +
'''(H1.19)'''
 +
:<math>\, *</math> Notch toughness is required for all wide flange beams.
  
'''Horizontally Curved Structures on Vertical Curve Grades (Details of part-longitudinal sections at bents and at steel joints will be required on plans for bridges on vertical curves.)'''
 
  
'''Plan of Structural Steel'''
+
'''(Place an <math>\, *</math> with the flange plate, pin plate or hanger bar size indicated on the "Detail of Flange Plates, Pin Plate Connection or Hanger Connection".)'''
  
'''(H1.36)'''
+
'''(H1.20)'''
:Longitudinal dimensions are horizontal arc dimensions from centerline brg. to centerlline brg.  See Part-Longitudinal Sections on Sheet No. <u>&nbsp;&nbsp;</u>.
+
:<math>\, *</math> Notch toughness is required for all <u>welded flange plates</u> <u>pin plates</u> <u>hanger bars</u>.
  
  
'''Elevation of Constant Depth or Variable Depth Stringers or Girders'''
+
'''Notch Toughness for Plate Girders
 +
:'''(Place the following note on the sheet with the Elevation of Girder.)'''
 +
:'''(See [[751.5 Structural Detailing Guidelines#751.5.9.3.2 Notch Toughness|Plate Girder Example]] for typical examples for the location of <math>\, ***</math> on details for plate girders.)'''
  
'''(H1.37)'''
+
'''(H1.21)'''
:Longitudinal dimensions are horizontal arc dimensions from centerline brg. to centerline brg.  See Part-Longitudinal Sections on Sheet No. <u>&nbsp;&nbsp;</u>.
+
:<math>\, ***</math> Indicates flange plates subject to notch toughness requirements.
 +
:All web plates shall be subject to notch toughness requirements.
  
 +
'''(H1.21.1)'''
 +
:The flange and web splice plates shall be subject to notch toughness requirements, when notch toughness is required for flanges on both sides of splice.
  
'''Structures on Vertical Curve'''
 
  
'''(H1.39)'''
+
'''(Place <math>\, ***</math> near the size of flange splice plates, pin plates or hanger bars and the following note near the detail of flange splice, pin plate connection or hanger connection.)'''
:Elevations shown are at top of web before dead load deflection.
 
  
 +
'''(H1.22)'''
 +
:<math>\, ***</math> Indicates <u>flange splice plates</u> <u>pin plates</u> <u>hanger bars</u> subject to  notch toughness requirements.
  
'''6 x 6 x 3/8  Angle Connection to Top Flange'''
 
  
'''(H1.40)'''
+
'''Structural Steel for Wide Flange Beams and Plate Girder Structures'''
:The two 3/4"&oslash; high strength bolts that connect the 6 x 6 x 3/8 angle to the top flange shall be placed so the nut is on the inside of flange toward the web.
 
  
 +
'''(H1.23)'''
 +
:Fabricated structural steel shall be ASTM A709 Grade <u>36</u> <u>50</u>, except as noted.
  
'''6 x 6 x 3/8  Angle Connection to Top Flange for Structures on Vertical Curve'''
 
  
'''(H1.40.1)'''
+
'''Tangent Structures on Straight Grades (Details of Part-Longitudinal Sections at bents and at steel joints will be required on plans.)'''
:The 6 x 6 x 3/8 angle legs shall be adjusted to the variable angle between bearing stiffener and top flange created by girder tilt due to grade requirements.
 
  
 +
'''Plan of Structural Steel and Elevation of Beams or Girders'''
  
'''Bolted Field Splices for Plate Girders & Wide Flange Stringers'''
+
'''(H1.24)'''
 +
:Longitudinal dimensions are horizontal from centerline bearing to centerline bearing.
  
'''(H1.41)'''
 
:Use 7/8"&oslash; high strength bolts with 15/16"&oslash; holes.
 
  
 +
'''Oversized Holes for Intermediate Diaphragms'''
 +
 +
'''Place the following note near the intermediate diaphragm detail on all tangent wide flange and plate girder structures.'''
 +
 +
'''(H1.26)'''
 +
:At the contractor's option, holes in the diaphragm plate of non slab bearing diaphragms may be made 3/16" larger than the nominal diameter of the bolt.  A hardened washer shall be used under the bolt head and nut when this option is used.  Holes in the girder diaphragm connection plate or transverse web stiffener shall be standard size.
  
'''Place the following note near the Plan of Structural Steel for all bridges with stage construction or bridge widening projects.'''
 
  
'''(H1.42)'''
+
'''Slab drain attachment holes'''
:Bolts on intermediate diaphragms and cross frames that connect <u>girders</u> <u>stringers</u> under different construction stage slab pours shall be installed snug tight, then tightened after both adjacent slab pours are completed.
+
 +
'''Place the following note near the Elevation of Girder detail for plate girders or near the plan view for Wide Flange Beams when Slab Drains are used.'''
  
=== H2. Concrete ===
+
'''(H1.27)'''
 +
:For location of slab drain attachment holes, see slab drain details sheet.
  
  
==== H2a. Continuous Slab ====
+
'''Tangent Structures on Vertical Curve Grades (Details of part-longitudinal sections at bents and at steel joints will be required on plans for bridges on vertical curves.)'''
  
'''Tubes for Voids'''
+
'''Plan of Structural Steel'''
 +
 +
'''Dimensions given in plan should be identical to horizontal dimensions detailed in Part-Longitudinal Sections or blocking diagram.'''
  
'''(H2.1)'''
+
'''(H1.28)'''
:Tubes for producing voids shall have an outside diameter of [[Image:751.50 circled 1.gif]] and shall be anchored at not more than [[Image:751.50 circled 2.gif]] centersFiber tubes shall have a wall thickness of not less than [[Image:751.50 circled 3.gif]].
+
:Longitudinal dimensions are horizontal from centerline brg. to centerline brgSee Part-Longitudinal Sections on Sheet No. <u>&nbsp;&nbsp;</u>.
  
  
(*) See the following table for [[Image:751.50 circled 1.gif]], [[Image:751.50 circled 2.gif]], & [[Image:751.50 circled 3.gif]].
+
'''Elevation of Constant Depth or Variable Depth Beams or Girders'''
  
:{|border="0" style="text-align:center;" cellpadding="5" cellspacing="0"
+
'''(H1.29)'''
|+(Do not show this table on plans)
+
:Longitudinal dimensions are horizontal from centerline brg. to centerline brg. See Part-Longitudinal Sections on Sheet No. <u>&nbsp;&nbsp;</u>.
!style="border-top:3px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:1px solid black"|Voids
+
 
!style="border-top:3px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black"|[[Image:751.50 circled 1.gif]]
+
 
!style="border-top:3px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black"|[[Image:751.50 circled 2.gif]]
+
'''Horizontally Curved Structures on Straight Grades (Details of Part-Longitudinal Sections at bents and at steel joints will be required on plans.)'''
!style="border-top:3px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:3px solid black"|[[Image:751.50 circled 3.gif]]
+
|-
+
'''Plan of Structural Steel'''
|width="75pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"|7"
+
 
|width="50pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|7.0"
+
'''(H1.31)'''
|width="50pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|4'-0"
+
:Longitudinal dimensions are horizontal arc dimensions from centeline brg. to centerline brg.
|width="50pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|0.200"
+
 
|-
+
 
|width="75pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"|8"
+
'''Horizontally Curved Structures on Straight Grades (Details of Part-Longitudinal Sections at bents and at steel joints will be required on plans.)'''
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|8.0"
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|4'-0"
+
'''Elevation of Beams or Girders'''
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|0.200"
+
 
|-
+
'''(H1.32)'''
|width="75pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"|9"
+
:Longitudinal dimensions are horizontal arc dimensions from centerline brg. to centerline brg.
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|9.0"
+
 
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|4'-0"
+
 
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|0.200"
+
'''Horizontally Curved Structures on Vertical Curve Grades (Details of part-longitudinal sections at bents and at steel joints will be required on plans for bridges on vertical curves.)'''  
|-
+
 
|width="75pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"|10"
+
'''Plan of Structural Steel'''
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|10.0"
+
 
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|4'-0"
+
'''(H1.36)'''
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|0.225"
+
:Longitudinal dimensions are horizontal arc dimensions from centerline brg. to centerlline brg.  See Part-Longitudinal Sections on Sheet No. <u>&nbsp;&nbsp;</u>.
|-
+
 
|width="75pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"|11"
+
 
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|11.0"
+
'''Elevation of Constant Depth or Variable Depth Beams or Girders'''
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|4'-0"
+
 
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|0.225"
+
'''(H1.37)'''
|-
+
:Longitudinal dimensions are horizontal arc dimensions from centerline brg. to centerline brg.  See Part-Longitudinal Sections on Sheet No. <u>&nbsp;&nbsp;</u>.
|width="75pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"|12"
+
 
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|12.0"
+
 
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|4'-0"
+
'''Structures on Vertical Curve'''
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|0.225"
+
 
|-
+
'''(H1.39)'''
|width="75pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"|14"
+
:Elevations shown are at top of web before dead load deflection.
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|14.0"
+
 
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|4'-0"
+
 
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|0.250"
+
'''6 x 6 x 3/8  Angle Connection to Top Flange'''
|-
+
 
|width="75pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"|15 3/4"
+
'''(H1.40)'''
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|15.7"
+
:The two 3/4"&oslash; high strength bolts that connect the 6 x 6 x 3/8 angle to the top flange shall be placed so the nut is on the inside of flange toward the web.
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|3'-0"
+
 
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|0.300"
+
 
|-
+
'''6 x 6 x 3/8 Angle Connection to Top Flange for Structures on Vertical Curve'''
|width="75pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"|16 3/4"
+
 
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|16.7"
+
'''(H1.40.1)'''
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|3'-0"
+
:The 6 x 6 x 3/8 angle legs shall be adjusted to the variable angle between bearing stiffener and top flange created by girder tilt due to grade requirements.
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|0.300"
+
 
|-
+
 
|width="75pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"|18 3/4"
+
 
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|18.7"
+
'''(H1.42) Place the following note near the Plan of Structural Steel for all new bridges with staged construction or bridge widening projects. '''
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|2'-6"
+
:Bolts for intermediate diaphragms and cross frames that connect <u>girders</u> <u>beams</u> under different construction staged slab pours shall be installed snug tight, then tightened after both adjacent slab pours are completed.
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|0.300"
+
 
|-
+
'''(H1.43) Place the following note on the staging sheet for all bridge redecking projects with staged construction.'''
|width="75pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"|20 7/8"
+
:Existing <u>bolts</u> <u>rivets</u> on intermediate diaphragms and cross frames that connect <u>girders</u> <u>beams</u> under different construction staged slab pours shall be removed and replaced with new in kind high strength bolts installed snug tight and in accordance with Sec 712. The high strength bolts shall be tightened after both adjacent slab pours are completed. Cost will be considered incidental to other pay items.
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|20.85"
+
 
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|2'-0"
+
'''(H1.45) Place near Detail B and Optional Detail B with cross frame diaphragms. '''
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|0.350"
+
:('''*''') At the contractor's option, rectangular fill plates may be used in lieu of diamond fill plates as shown in Optional Detail B.
|-
 
|width="75pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"|21 7/8"
 
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|21.85"
 
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|21"
 
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|0.350"
 
|-
 
|width="75pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"|22 7/8"
 
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|22.85"
 
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|18"
 
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|0.375"
 
|-
 
|width="75pt" style="border-top:1px solid gray; border-bottom:3px solid black; border-left:3px solid black; border-right:1px solid black"|24 7/8"
 
|width="50pt" style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:1px solid black"|24.85"
 
|width="50pt" style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:1px solid black"|18"
 
|width="50pt" style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:3px solid black"|0.375"
 
|}
 
  
==== H2b. Precast Prestressed Panels ====
+
<div id="Deflection and Haunching:"></div>
 +
'''Deflection and Haunching: (Use for wide flange deck replacements.) '''
  
'''(H2.5)'''
+
'''(H1.50)'''
:Concrete for prestressed panels shall be Class A-1 with <math>\, f'_c</math> = 6,000 psi, <math>\, f'_{ci}</math> = 4,000 psi.
+
:The contractor shall determine dead load deflections and haunching based on field measurements and/or existing bridge plans and these may be adjusted based on the difference between the new and existing dead load weights.
  
'''(H2.6)'''
+
'''(H1.51)'''
:The top surface of all panels shall receive a scored finish with a depth of scoring of 1/8" perpendicular to the prestressing strands in the panels.
+
:Slab is to be considered at a uniform thickness as shown on the plans. Haunching will vary. See front sheet for slab thickness.
  
'''(H2.7)'''
+
'''(H1.52)'''
:Prestressing tendons shall be high-tensile strength uncoated seven-wire, low-relaxation strands for prestressed concrete in accordance with AASHTO M 203 Grade 270, with nominal diameter of strand = 3/8" and nominal area = 0.085 sq. in. and minimum ultimate strength = 22.95 kips (270 ksi).  Larger strands may be used with the same spacing and initial tension.
+
:In order to properly form the haunches for the new deck, the contractor shall shoot deck elevations along each beam line prior to deck removal followed by shooting elevations of the tops of the beams after deck removal.
  
'''(H2.8)'''
+
=== H2. Concrete ===
:Initial prestressing force = 17.2 kips/strand.
 
  
'''(H2.9)'''
 
:The method and sequence of releasing the strands shall be shown on the shop drawings.
 
  
'''(H2.10)'''
+
==== H2a. Continuous Slab ====
:Suitable anchorage devices for lifting panels may be cast in panels, provided the devices are shown on the shop drawings and approved by the engineer.  Panel lengths shall be determined by the contractor and shown on the shop drawings.
 
  
'''(H2.11)'''
+
'''(H2a.1) Use for voided slabs'''
:When square end panels are used at skewed bents, the skewed portion shall be cast full depthNo separate payment will be made for additional concrete and reinforcing required.
+
:Tubes for producing voids shall have an outside diameter of [[Image:751.50 circled 1.gif]] and shall be anchored at not more than [[Image:751.50 circled 2.gif]] centersFiber tubes shall have a wall thickness of not less than [[Image:751.50 circled 3.gif]].
  
'''(H2.12)'''
 
:Use #3-P3 bars if panel is skewed 45&deg; or greater.
 
  
'''(H2.13)'''
+
(*) See the following table for [[Image:751.50 circled 1.gif]], [[Image:751.50 circled 2.gif]], & [[Image:751.50 circled 3.gif]].
:All reinforcement other than prestressing strands shall be epoxy coated.
 
  
'''(H2.14''')
+
:{|border="0" style="text-align:center;" cellpadding="5" cellspacing="0"
:End panels shall be dimensioned 1" min. to 1 1/2" max. from the inside face of diaphragm.
+
|+(Do not show this table on plans)
 
+
!style="border-top:3px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:1px solid black"|Voids
'''(H2.15)'''
+
!style="border-top:3px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black"|[[Image:751.50 circled 1.gif]]
:S-bars shown are bottom steel in slab between panels and used with squared end panels only.
+
!style="border-top:3px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black"|[[Image:751.50 circled 2.gif]]
 
+
!style="border-top:3px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:3px solid black"|[[Image:751.50 circled 3.gif]]
'''(H2.16)'''
+
|-
:Cost of S-bars will be considered completely covered by the contract unit price for the slab.
+
|width="75pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"|7"
 
+
|width="50pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|7.0"
'''(H2.17)'''
+
|width="50pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|4'-0"
:S-bars are not listed in the bill of reinforcing.
+
|width="50pt" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|0.200"
 
+
|-
'''(H2.18)'''
+
|width="75pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"|8"
:All panel support pads shall be glued to the girder.  When support thickness exceeds 1 1/2 inches, the pads shall be glued top and bottom. The glue used shall be the type recommended by the panel support pads manufacturer.
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|8.0"
 
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|4'-0"
'''(H2.19)'''
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|0.200"
:Precast panels may be in contact with stirrup reinforcing in diaphragms.
+
|-
 
+
|width="75pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"|9"
'''(H2.20)'''
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|9.0"
:Extend S-Bars 18 inches beyond the front face of end bents only.
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|4'-0"
 
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|0.200"
'''(H2.21)'''
+
|-
:Any strand 2'-0" or shorter shall have a #4 reinforcing bar on each side of it, centered between strands.  Strands 2'-0" or shorter may then be debonded at the fabricator's option.
+
|width="75pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"|10"
 
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|10.0"
'''(H2.22)'''
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|4'-0"
:Support from diaphragm forms is required under the optional skewed end until cast-in-place concrete has reached 3,000 psi compressive strength.
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|0.225"
 
+
|-
 
+
|width="75pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"|11"
'''(Prestressed Spans)'''
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|11.0"
 
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|4'-0"
'''(H2.26)'''
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|0.225"
:Minimum preformed fiber expansion joint material or polystyrene bedding material thickness shall be 1 inch.  Thicker material may be used on one or both sides of the girder to reduce cast-in-place concrete thickness to within tolerances.  No more than 2 inches total thickness shall be used.
+
|-
 
+
|width="75pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"|12"
'''(H2.27)'''
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|12.0"
:The same thickness of preformed fiber expansion joint material shall be used under any one edge of any panel except at locations where top flange thickness may be stepped. The maximum change in thickness between adjacent panels shall be 1/4 inch. The polystyrene bedding material may be cut with a transition to match haunch height above top of flange.
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|4'-0"
 
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|0.225"
'''(H2.28)'''
+
|-
:At the contractor's option, the variation in slab thickness over prestressed panels may be eliminated or reduced by increasing and varying the girder top flange thickness.  Dimensions shall be shown on the shop drawings.
+
|width="75pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"|14"
 
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|14.0"
'''(H2.29)'''
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|4'-0"
:Slab thickness over prestressed panels varies due to girder camber.
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|0.250"
 
+
|-
'''(H2.30)'''
+
|width="75pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"|15 3/4"
:In order to maintain minimum slab thickness, it may be necessary to raise the grade uniformly throughout the structure.  No payment will be made for additional labor or materials required for necessary grade adjustment.
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|15.7"
 
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|3'-0"
'''(H2.31)'''
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|0.300"
:Use slab haunching diagram on Sheet No. <u>&nbsp;&nbsp;</u> for determining thickness of preformed fiber expansion joint material or polystyrene bedding material within the limits noted in general notes.
+
|-
 
+
|width="75pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"|16 3/4"
 
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|16.7"
'''(Steel Spans)'''
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|3'-0"
 
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|0.300"
'''(H2.34)'''
+
|-
:Minimum preformed fiber expansion joint material or polystyrene bedding material thickness shall be 1 inch, except over splice plates where minimum thickness shall be 1/4 inch.  When the material is less than 1/2 inch thick over a splice plate, the width of material at the splice shall be the same width as panel on splice.  Thicker material may be used on one or both sides of the girder to reduce cast-in-place concrete thickness to within tolerances. No more than 2" total thickness shall be used.
+
|width="75pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"|18 3/4"
 
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|18.7"
'''(H2.35)'''
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|2'-6"
:The same thickness of material shall be used under any one edge of any panel except at splices, and the maximum change in thickness between adjacent panels shall be 1/4 inch to correct for variations from girder camber diagram.  The polystyrene bedding material may be cut to match haunch height above top of flange.
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|0.300"
 
+
|-
'''(H2.36)'''
+
|width="75pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"|20 7/8"
:Adjustment in the slab thickness, preformed fiber expansion joint material or polystyrene bedding material thickness, or grade will be necessary if the girder camber after erection differs from plan camber by more than the % of dead load deflection due to the weight of structural steel.  No payment will be made for additional labor or materials for the adjustment.
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|20.85"
 
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|2'-0"
'''(H2.37)'''
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|0.350"
:S-bars shown are used with skewed end panels, or square end panels of square structures only.  The #5 S-bars shall extend the width of slab (2'-6" lap if necessary) or to within 3 inches of expansion device assemblies.
+
|-
 
+
|width="75pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"|21 7/8"
'''(H2.38)'''
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|21.85"
:The thickness of the preformed fiber expansion joint material or polystyrene bedding material shall be adjusted to achieve the slab haunching dimension found on Sheet No. <u>&nbsp;&nbsp;</u>.  These adjustments shall be within the limits noted in the general notes.
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|21"
 
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|0.350"
'''(H2.39)'''
+
|-
:U1 Bars may be oriented at right angles to location and spacing shown. U1 Bars shall be placed between P1 Bars.
+
|width="75pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"|22 7/8"
 
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|22.85"
'''(H2.40)'''
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"|18"
:The same thickness of material shall be used under any one edge of any panel except at locations where top flange thickness may be stepped. The maximum change in thickness between adjacent panels shall be 1/4 inch. The polystyrene bedding material may be cut to match haunch height above top of flange.
+
|width="50pt" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|0.375"
 
+
|-
==== H2c. Prestressed Girders ====
+
|width="75pt" style="border-top:1px solid gray; border-bottom:3px solid black; border-left:3px solid black; border-right:1px solid black"|24 7/8"
 
+
|width="50pt" style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:1px solid black"|24.85"
'''General Notes: Prestressed I Girders and Double-Tee Girders'''
+
|width="50pt" style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:1px solid black"|18"
 
+
|width="50pt" style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:3px solid black"|0.375"
'''(H2.41)'''
+
|}
:Concrete for prestressed girders shall be Class A-1 with <math>\, f'_c</math> = <u>&nbsp;&nbsp;&nbsp;&nbsp;</u> psi and <math>\, f'_{ci}</math> = <u>&nbsp;&nbsp;&nbsp;&nbsp;</u> psi.
 
 
 
'''(H2.42)'''
 
:(+) indicates prestressing strand.
 
 
 
'''(H2.43)'''
 
:Use <u>&nbsp;&nbsp;&nbsp;</u> strands with an initial prestress force of <u>&nbsp;&nbsp;&nbsp;</u> kips.
 
 
 
 
 
'''For Type 6 girders and Bulb-T may use 0.6" strands if required by design.'''
 
 
 
'''(H2.44)'''
 
:Prestressing tendons shall be uncoated, seven-wire, low-relaxation strands, <u>1/2</u>  <u>0.6</u> inch diameter in accordance with AASHTO M 203, Grade 270.  Pretensioned members shall be in accordance with Sec 1029.
 
 
 
 
 
'''Place the following notes with the above general notes for Prestressed I-Girders only.'''
 
 
 
'''(H2.45)'''
 
:Galvanize the 1/2" bearing plate (ASTM A709 Grade 36) in accordance with ASTM A123.
 
  
'''(H2.46)'''
+
==== H2b. Prestressed Panels (Notes for Bridge Standard Drawings)====
:Cost of furnishing, galvanizing and installing the 1/2" bearing plate (ASTM A709 Grade 36) and welded studs in the prestressed girder will be considered completely covered by the contract unit price for Prestressed Concrete I-Girder.
 
  
'''(H2.47)'''
+
'''H2b1. Notes for both Concrete and Steel Spans '''
:Cost of 3/4"&oslash; coil tie rods placed in diaphragms will be considered completely covered by the contract unit price for Prestressed Concrete I-Girder.
 
  
'''(H2.48) (Use only when applicable.)'''
+
'''(H2b1.1)'''
:Exterior and interior girders are the same, except for coil ties, <u>and</u> <u>coil inserts for slab drains</u> <u>and</u> <u>holes for steel intermediate</u> <u>diaphragms</u>.
+
:Concrete for prestressed panels shall be Class A-1 with f'<sub>c</sub> = 6,000 psi, f'<sub>ci</sub> = 4,000 psi.
  
'''(H2.49)'''
+
'''(H2b1.2)'''
:Coil ties shall be held in place in the forms by slotted wire-setting-studs projecting thru forms.  Studs are to be left in place or replaced with temporary plugs until girders are erected, then replaced by coil tie rods.
+
:The top surface of all panels shall receive a scored finish with a depth of scoring of 1/8" perpendicular to the prestressing strands in the panels.
  
'''(H2.50)'''
+
'''(H2b1.3)'''
:All B1 <u>and C1</u> bars shall be epoxy coated.
+
:Prestressing tendons shall be high-tensile strength uncoated seven-wire, low-relaxation strands for prestressed concrete in accordance with AASHTO M 203 Grade 270, with nominal diameter of strand = 3/8" and nominal area = 0.085 sq. in. and minimum ultimate strength = 22.95 kips (270 ksi).  Larger strands may be used with the same spacing and initial tension.
  
 +
'''(H2b1.4)'''
 +
:Initial prestressing force = 17.2 kips/strand.
  
'''Use the following note when the panel option is used. Place <math>\, ***</math> at the top corners of Girder at Girder Dimensions Detail.'''
+
'''(H2b1.5)'''
 +
:The method and sequence of releasing the strands shall be shown on the shop drawings.
  
'''(H2.51)'''
+
'''(H2b1.6)'''
:<math>\, ***</math> At contractor's option a 1 1/2" to 1 3/4" smooth finish strip is permitted to facilitate placement of preformed fiber expansion joint material or expanded or extruded polystyrene bedding material for the prestressed panels.
+
:Suitable anchorage devices for lifting panels may be cast in panels, provided the devices are shown on the shop drawings and approved by the engineer.  Panel lengths shall be determined by the contractor and shown on the shop drawings.
  
'''(H2.52) Not applicable when the number of bottom strands is equal to the number of Bent-up strands.'''
+
'''(H2b1.7)'''
:<math>\, **</math>  At the contractor's option the location for bent-up strands may be varied from that shown.  The total number of bent-up strands shall not be changed.  One strand tie bar is required for each layer of bent-up strands except at end bents which require one bar on the bottom layer of strands only.  No additional payment will be made if additional strand tie bars are required.
+
:When squared end panels are used at skewed bents, the skewed portion shall be cast full depth.  No separate payment will be made for additional concrete and reinforcing required.
  
<math>\, **</math> Place 2 asterisks next to note telling which strands are bent-up.
+
'''(H2b1.8) References the P3 bars shown in the Plans of Panels. '''
 +
:Use #3-P3 bars if panel is skewed 45&deg; or greater.
  
 +
'''(H2b1.9)'''
 +
:All reinforcement other than prestressing strands shall be epoxy coated.
  
'''Place the following notes with the above general notes for Prestressed Double-Tee Girders only.'''
+
'''(H2b1.10) References the panel extension into the diaphragms shown in the Plan of Panels Placement. '''
 +
:End panels shall be dimensioned 1/2" min. to 1 1/2" max. from the inside face of diaphragm.
  
'''(H2.53)'''
+
'''(H2b1.11) References the S-bars shown in the Plan of Panels Placement. '''
:Girders shall be handled and erected into position in a manner that will not impair the strength of the girder.
+
:S-bars shown are bottom steel in slab between panels and used with squared and truncated end panels only.
  
'''(H2.54)'''
+
'''(H2b1.12)'''
:The vertical face of the exterior girder that will be in contact with the slab shall be roughened by sand blasting, or other approved methods, to provide suitable bond between girder and slab.
+
:Cost of S-bars will be considered completely covered by the contract unit price for the slab.
  
'''(H2.55)'''
+
'''(H2b1.13)'''
:All exposed edges of concrete shall have a 1/2" radius or a 3/8" bevel, unless otherwise noted.
+
:S-bars are not listed in the bill of reinforcing.
  
'''(H2.56)'''
+
'''(H2b1.14) Place as fifth note under Joint Filler heading in the General Notes. '''
:Payment for edge block will be considered completely covered by the contract unit price for the double-tee girders.
+
:Joint filler shall be glued to the <u>girder</u> <u>beam</u>. When thickness exceeds 1 1/2 inches, the joint filler shall be glued top and bottom. The glue used shall be the type recommended by the joint filler manufacturer.
  
'''(H2.57) Place near diaphragm details.'''
+
'''(H2b1.15)'''
:Diaphragms at intermediate bents shall be built vertical.
+
:Precast panels may be in contact with stirrup reinforcing in diaphragms.
  
 +
'''(H2b1.16) References the transverse S-bars extension into integral end bents shown in the Plan of Panels Placement. '''
 +
:Extend S-Bars 18 inches beyond the front face of end bents and int. bents for squared and truncated end panels only.
  
'''Slab Haunching'''
+
'''(H2b1.17) References the 3/8-inch diameter strands shown in the Plans of Panels. '''
 +
:Any strand 2'-0" or shorter shall have a #4 reinforcing bar on each side of it, centered between strands.  Strands 2'-0" or shorter may then be debonded at the fabricator's option.
  
'''(H2.58) Use for all prestressed "double-tee" girder structures, except 34'-0" and 40'-0" (Unsymmetrical) roadways.'''
+
'''(H2b1.18)'''
:The slab thickness varies from <u>(1)</u> to <u>(2)</u> within the parabolic crown.
+
:Support from diaphragm forms is required under the optional skewed end until cast-in-place concrete has reached 3,000 psi compressive strength.
  
'''(1) Minimum slab thickness.'''<br/>
+
'''(H2b1.19) Place under the Bending Diagram for U1 Bar. '''
'''(2) Minimum slab thickness minus 1/4".'''
+
:U1 Bars may be oriented at right angles to location and spacing shown. U1 Bars shall be placed between P1 Bars.  
  
'''(H2.59) Place with camber diagram.'''
+
'''(H2b1.20) Place as last note under Joint Filler heading in the General Notes. '''
:Conversion factors for girder camber
+
:Edges of panels shall be uniformly seated on the joint filler before slab reinforcement is placed.
:::'''Use with spans 75' and greater in length.'''
 
:::0.1 pt. = 0.314 x 0.5 pt.
 
:::0.2 pt. = 0.593 x 0.5 pt.
 
:::0.3 pt. = 0.813 x 0.5 pt.
 
:::0.4 pt. = 0.952 x 0.5 pt.
 
  
:::'''Use  with spans less than 75' in length.'''
+
'''(H2b1.21)'''
:::0.25 pt. = 0.7125 x 0.5 pt.
+
:Prestressed panels shall be brought to saturated surface-dry (SSD) condition just prior to the deck pour. There shall be no free standing water on the panels or in the area to be cast.
  
'''(H2.60) Place near the slab haunching diagram. Omit parts as necessary for double-tee structures.'''
+
'''(H2b1.22)'''
:If girder camber is different from that shown in the camber diagram, <u>adjustment of the slab haunches,</u> an increase in slab thickness or a raise in grade uniformly throughout the structure shall be necessary.  No payment will be made for additional labor or materials required for variation in <u>haunching,</u> slab thickness or grade adjustment.
+
:The prestressed panel quantities are not included in the table of estimated quantities for the slab.
 +
 +
'''(H2b1.23) References the transverse S-bars extension beyond the edge of girder or beam shown in the Plan of Panels Placement.'''  
 +
:Extend S-bars 9 inches beyond edge of <u>girder</u> <u>beam (Typ.)</u>.
  
'''(H2.61)'''
+
'''(H2b1.24) References the panel overhang shown in Section A-A. '''
:Concrete in the slab haunches is included in the Estimated Quantities for Slab on <u>Steel</u> <u>Concrete I-Girders</u> <u>Concrete Bulb-tee Girders</u>.
+
:Contractor shall ensure proper consolidation under and between panels.
  
'''(H2.62) Use with non-integral bents for prestressed bridges only.'''
+
'''(H2b1.25) Place as first note under Joint Filler heading in the General Notes. '''
:Prestressing strands at End Bents No. <u>&nbsp;&nbsp;</u> and <u>&nbsp;&nbsp;</u> <u>and Intermediate</u> <u>Bents</u> No. <u>&nbsp;&nbsp;</u> and <u>&nbsp;&nbsp;</u> shall be trimmed to within 1/8 inch of concrete if exposed, or 1 inch of concrete if encased.  Exposed ends of girders shall be given 2 coats of an asphalt paint.  Ends of girders which will be encased in concrete diaphragms shall not be painted.
+
:Joint filler shall be preformed fiber expansion joint material in accordance with Sec 1057 or expanded or extruded polystyrene bedding material in accordance with Sec 1073.
  
'''(H2.64)'''
+
'''(H2b1.26) References the #3-P1 bars in the squared and truncated end panels only shown in the Plans of Squared Panel and Optional Truncated End Panel.'''
:(*) In lieu of 2 1/2" outside diameter washers, contractor may substitute a 3/16" (Min. thickness) plate with four 15/16"&oslash; holes and one hardened washer per bolt.
+
:For end panels only, P1 bars shall be 2’-0” in length and embedded 12”. P1 bars will not be required for panels at squared integral end bents.  
  
'''(H2.65)'''
+
'''(H2b1.27) References the four #3-P2 bars required below the strands shown in the plans of panels and the section thru the panel. '''
:(**) Bolts shall be tightened to provide a tension of one-half that specified in Sec 712 for high strength bolt installation.  A325 bolts may be substituted for and installed in accordance with the requirements for the specified A307 bolts.
+
: #3-P2 bars near edge of panel at bottom (under strands).
  
'''Note:''' For the location of (*) and (**), see [[751.22_P/S_Concrete_I_Girders#psi details|P/S Concrete I Girder Diaphragms]].
+
'''(H2b1.28) References the bottom transverse slab bars shown in the section near the expansion gap. Not required if there is not an expansion gap on the bridge. '''
 +
:S-bars shown are used with skewed end panels, or squared end panels of squared structures only. The #5 S-bars shall extend the width of slab (2'-6" lap if necessary) or to within 3 inches of expansion device assemblies.
  
'''(H2.66)'''
+
'''(H2b1.29) References #3-P1 bars required at expansion gaps shown in the Plan of Optional Skewed End Panel. Not required if there is not an expansion gap on the bridge. '''
:All diaphragm materials including bolts, nuts, and washers shall be galvanized.
+
:P1 bars not required for integral bents.
  
'''(H2.67)'''
+
'''(H2b1.30) References the min. steel reinforcement for openings in slab created by truncated end panels.'''
:Fabricated structural steel shall be ASTM A709 Grade 36 except as noted.
+
:For truncated end panels, use a min. of #5-S bars at 6” crossings in openings, or min. 4x4-W7xW7.
  
'''(H2.68)'''
 
:Payment for furnishing and installing steel intermediate diaphragms will be considered completely covered by the contract unit price for Steel Intermediate Diaphragm for P/S Concrete Girders.
 
  
'''(H2.69)'''
+
'''H2b2. Additional Notes for Panels on Concrete Spans'''
:Shop drawings will not be required for steel intermediate diaphragms and angle connections.
 
  
'''(H2.70) Place on the Prestressed I Girder sheet.'''
+
'''(H2b2.1) Place as third note under Joint Filler heading in the General Notes. '''
:The 1 1/2"&oslash; holes shall be cast in the web for steel intermediate diaphragms.  Drilling is not allowed.
+
:Thicker material may be used on one or both sides of the <u>girder</u> <u>beam</u> to reduce cast-in-place concrete thickness to within tolerances.
  
'''(H2.71)Place on the Prestressed I Girder sheet for stream crossing only.'''
+
'''(H2b2.6) Place as fourth note under Joint Filler heading in the General Notes. '''
:Place vent holes at or near upgrade 1/3 point of girders and clear reinforcing steel or strands by 1 1/2" minimum and steel intermediate diaphragms bolt connection by 6" minimum.
+
:The same thickness of preformed fiber expansion joint material shall be used under any one edge of any panel except at locations where top flange thickness may be stepped. The maximum change in thickness between adjacent panels shall be 1/4 inch. The polystyrene bedding material may be cut with a transition to match haunch height above top of flange.
  
 +
'''(H2b2.7) References the top flange thickness shown in Section A-A. '''
 +
:At the contractor's option, the variation in slab thickness over prestressed panels may be eliminated or reduced by increasing and varying the <u>girder</u> <u>beam</u> top flange thickness.  Dimensions shall be shown on the shop drawings.
  
'''Place the following notes on the Prestressed Double-Tee Girder slab sheet.'''
+
'''(H2b2.8) References the slab thickness above the panel shown in Section A-A. '''
 +
:Slab thickness over prestressed panels varies due to <u>girder</u> <u>beam</u> camber. In order to maintain minimum slab thickness, it may be necessary to raise the grade uniformly throughout the structure.  No payment will be made for additional labor or materials required for necessary grade adjustment.
  
'''(H2.80)'''
+
'''(H2b2.10) Place as second note under Joint Filler heading in the General Notes. '''
:Slab thickness shall be adjusted for any difference in girder camber from that shown in camber diagram.  Concrete in the slab is included in the estimated quantities as Class B-2 concrete.
+
:Use Slab Haunching Diagram on Sheet No. __ for determining thickness of joint filler within the limits noted in the table of Joint Filler Dimensions.  
  
'''(H2.81)'''
 
:The slab is to be built parallel to grade and to a minimum thickness of <u>&nbsp;&nbsp;</u>" (Except varies from <u>&nbsp;&nbsp;</u>" to <u>&nbsp;&nbsp;</u>" within parabolic crown).
 
  
 +
'''H2b3. Additional Notes for Panels on Steel Spans'''
  
'''Place the following notes with the appropriate prestressed "double-tee" girder general notes:.'''
+
'''(H2b3.1) Place as third note under Joint Filler heading in the General Notes. '''
 +
:Thicker material shall be used on one or both sides of the <u>girder</u> <u>beam</u> to reduce cast-in-place concrete thickness to within tolerances.
  
'''(H2.82)'''
+
'''(H2b3.2) Place as fourth note under Joint Filler heading in the General Notes. '''
:In order to maintain minimum slab thickness it may be necessary to raise the grade uniformly throughout the structureNo payment will be made for additional labor or materials required for variation in thickness or necessary grade adjustment.
+
:The same thickness of material shall be used under any one edge of any panel except at splices, and the maximum change in thickness between adjacent panels shall be 1/4 inch to correct for variations from <u>Girder</u> <u>Beam</u> Camber DiagramThe polystyrene bedding material may be cut to match haunch height above top of flange.
  
'''(H2.83)'''
+
'''(H2b3.3) References the slab thickness above the panel shown in Section A-A. '''
:See girder sheet for girder camber diagram.
+
:Adjustment in the slab thickness, joint filler, or grade will be necessary if the <u>girder</u> <u>beam</u> camber after erection differs from plan camber by more than the % of dead load deflection due to the weight of structural steel.  No payment will be made for additional labor or materials for the adjustment.
  
'''(H2.84)'''
+
'''(H2b3.5) Place as second note under Joint Filler heading in the General Notes. '''
:Lifting loops: Provide lifting loops in each end of double-tee girder, located near center of stem, 2 feet from each end.
+
:The thickness of the joint filler shall be adjusted to achieve the slab haunching dimension found on Sheet No. __. These adjustments shall be within the limits noted in the table of Joint Filler Dimensions.
  
'''(H2.85)'''
+
==== H2c. Prestressed Girders and Beams====
:Welded wire fabric:  Adequate reinforcing other than the specified welded wire fabric may be used with the approval of the engineer.
 
  
 +
'''H2c1. Notes for all Girders and Beams '''
  
'''Use the following notes when a prestressed "double-tee" girder is used with a thrie beam bridge rail.'''
+
'''Place general notes H2c1.1 thru H2c1.15 where space allows. '''
  
'''(H2.86)'''
+
'''(H2c1.1)'''
:See slab sheet for spacing of rail posts.
+
:Concrete for prestressed <u>girders</u> <u>beams</u> shall be Class A-1 with f'<sub>c</sub> = <u>&nbsp;&nbsp;&nbsp;&nbsp;</u> psi and f'<sub>ci</sub> = <u>&nbsp;&nbsp;&nbsp;&nbsp;</u> psi.
  
'''(H2.87)'''
+
'''(H2c1.2)'''
:See thrie beam rail sheet for details of bolt spacing at rail posts and anchor bolt lengths.
+
:(+) indicates prestressing strand.
  
'''(H2.88)'''
+
'''(H2c1.3)'''
:<math>\, *</math> Length of coil tie rods at exterior girders at end bents = <u>&nbsp;</u>'-<u>&nbsp;</u>".
+
:Use <u>&nbsp;&nbsp;&nbsp;</u> strands with an initial prestress force of <u>&nbsp;&nbsp;&nbsp;</u> kips.
  
'''(H2.89)'''
+
'''(H2c1.4) '''
:(<math>\, *</math>) At the contractor's option, rectangular fill plates may be used in lieu of diamond fill plates as shown in Optional Detail "B".
+
:Prestressing tendons shall be uncoated, seven-wire, low-relaxation strands, <u>1/2</u>  <u>0.6</u> inch diameter in accordance with AASHTO M 203, Grade 270.  Pretensioned members shall be in accordance with Sec 1029.
  
==== H2d. Prestressed NU Girders ====
+
'''(H2c1.5) '''
 +
:Fabricator shall be responsible for location and design of lifting devices.  
  
'''General Notes: Prestressed NU Girders'''
+
'''(H2c1.6) Use when the camber diagram is placed on another sheet. '''
 +
:For <u>Girder</u> <u>Beam</u> Camber Diagram, see Sheet No. __. 
 +
<div id="(H2c1.10)"></div>
 +
'''(H2c1.10) Use when steel intermediate diaphragms are present.'''
 +
:The 1 1/2"ø holes shall be cast in the web for steel intermediate diaphragms. Drilling is not allowed. For location of holes and details of steel intermediate diaphragms, see Sheet No. __.
  
'''(H2.90)'''
+
'''(H2c1.15) Use when slab drains are present.  Use <u>drain blockouts</u> for double-tee girders, otherwise use <u>coil inserts at slab drains</u>. '''
:Cost of furnishing, galvanizing and installing the 1/2" bearing plate (ASTM A709 Grade 36) and welded studs in the prestressed girder will be considered completely covered by the contract unit price for Prestressed Concrete NU-Girder.
+
:For location of <u>coil inserts at slab drains</u> <u>drain blockouts</u>, see Sheet No. __.  
  
'''(H2.91)'''
+
'''(H2c1.20) Place under the half elevation for all girders and beams except double-tee girders. Use top flange blockout for NU girders only. Use second sentence for NU girders only. Use third sentence for box beam structures only.'''
:Cost of 3/4"&oslash; coil tie rods placed in diaphragms will be considered completely covered by the contract unit price for Prestressed Concrete NU-Girder.
+
:Exterior and interior <u>girders</u> <u>beams</u> are the same, except for coil ties <u>,</u> <u>and</u> <u>top flange blockout</u> <u>,</u> <u>and</u> <u>coil inserts for slab drains</u> <u>and</u> <u>holes for steel intermediate diaphragms</u> <u>and holes for #6 bar</u>. <u>Reinforcement support strands not shown for clarity. See Sheet No. __ for spacing of U1 and U2 bars.</u>
  
'''(H2.92)'''
+
'''(H2c1.25) Place near vent hole details for stream crossings only for girder structures. Use <u>(one end only)</u> for flat grades otherwise use <u>upgrade</u>. '''
:Girders shall be lifted by devices designed by the fabricator.
+
:Place vent holes at or near <u>upgrade</u> 1/3 point of girders <u>(one end only)</u> and clear reinforcing steel and strands by 1 1/2" minimum <u>and steel intermediate diaphragms bolt connection by 6" minimum</u>.
  
'''(H2.93)'''
+
'''Place notes H2c1.30 and H2c1.31 near the bearing plate details.  '''
:<math>\, ***</math> Girder top flange shall be steel troweled to a smooth finish for 8" at the edges, as shown.  Bond breaker shall be applied to this region only.  The center portion shall be rough finished by scarifying the surface transversely with a wire brush, and no laitance shall remain on the surface.
+
 
 +
'''(H2c1.30) '''
 +
:Galvanize the 1/2" bearing plate (ASTM A709 Grade 36) in accordance with ASTM A123.
  
'''(H2.94)'''
+
'''(H2c1.31) '''
:Reinforcing steel shall conform to the requirements of AASHTO M 31, Grade 60.  Welded Wire Reinforcement (WWR) shall conform to the requirements of AASHTO M 221.
+
:Cost of furnishing, galvanizing and installing the 1/2" bearing plate (ASTM A709 Grade 36) and welded studs in the prestressed <u>girder</u> <u>beam</u> will be considered completely covered by the contract unit price for Prestressed Concrete <u>I-Girder</u> <u>Bulb-Tee Girder</u> <u>NU-Girder</u> <u>Spread Box Beam</u> <u>Adjacent Box Beam</u> <u>Spread Voided Slab Beam</u> <u>Adjacent Voided Slab Beam</u> <u>Solid Slab Beam</u>.  
  
'''(H2.95)'''
+
'''Place notes H2c1.35 thru H2c1.39 near the coil tie details.  Double-Tee girders and adjacent beams do not use coil ties.  '''
:The 1 1/2"&oslash; holes shall be cast in the web for steel intermediate diaphragms.
 
  
'''(H2.96)'''
+
'''(H2c1.35) Use with end spans when both interior and exterior girders or beams are detailed on the same sheet and the 2’-6”long tie rod will not fit in the exterior diaphragm portion. Place *** at the end of the note specifying the centerlines of the coil tie rods.  '''
:Drilling is not allowed.
 
  
 +
: '''***''' Length of coil tie rods at exterior face of exterior <u>girders</u> <u>beams</u> at end bents =  '- ". 
  
'''Note to Detailer:'''<br/>Use standard notes from Prestressed Girders & Prestressed Panels and Concrete - Prestressed Girders listed below.
+
'''(H2c1.36) '''
 +
:Cost of 3/4"ø coil tie rods placed in diaphragms will be considered completely covered by the contract unit price for Prestressed Concrete <u>I-Girder</u> <u>Bulb-Tee Girder</u> <u>NU-Girder</u> <u>Spread Box Beam</u> <u>Spread Voided Slab Beam</u>.
  
 +
'''(H2c1.37) '''
 +
:Coil ties shall be held in place in the forms by slotted wire-setting-studs projecting thru forms. Studs are to be left in place or replaced with temporary plugs until <u>girders</u> <u>beams</u> are erected, then replaced by coil tie rods.
 +
<div id="(H2c1.38)"></div>
 +
'''(H2c1.38) Use <u>and #6 bars</u> for Bulb-Tee girders and NU-girders. '''
 +
:For location of coil ties <u>and #6 bars</u> at concrete bent diaphragms, see Sheet<u>s</u> No. __<u>and</u> __. 
  
'''Prestressed Girders & Prestressed Panels:'''
+
'''(H2c1.39) Use for Bulb-Tee girders and NU-girders. '''
:C2.1, C2.2, C2.3 & C2.4
+
:Cast 1”Ø hole horizontally in girder for #6 bar 5’-6" long and clear reinforcing steel or strands by 1 1/2" minimum.
 +
 +
'''(H2c1.40) Use for P/S I-girders and prestressed panel slabs except NU-girders. Place * at the top corners of the girder in the girder dimensions detail. Use <u>1 1/2" to 1 3/4"</u> for Type 2, 3 and 4 P/S I-girders. Use <u>3" to 3 1/4"</u> for bulb-tee girders and Type 6 P/S I-girders. '''
 +
: '''*'''  At contractor's option a <u>1 1/2" to 1 3/4"</u> <u>3" to 3 1/4"</u> smooth finish strip is permitted to facilitate placement of preformed fiber expansion joint material or expanded or extruded polystyrene bedding material for the prestressed panels.
  
'''Concrete - Prestressed Girders'''
+
'''Place notes H2c1.45 and H2c1.46 near the strand details at girder ends. '''
:H2.41, H2.42, H2.43, H2.44, H2.45, H2.48, H2.49, H2.52, H2.71 & H2.88
 
  
=== H3. Bearings ===
+
'''(H2c1.45) Use when the bottom strands are not all bent-up.  Place ** at the end of the note specifying which strands are bent-up.  '''
 +
: '''**''' At the contractor's option the location for bent-up strands may be varied from that shown for fully bonded strands only. The total number of bent-up strands shall not be changed. One strand tie bar is required for each layer of bent-up strands except at end bents which require one bar on the bottom layer of strands only. No additional payment will be made if additional strand tie bars are required.  
  
 +
'''(H2c1.46) Use with non-integral bents only.  Adjust the details accordingly. '''
 +
:Prestressing strands at End Bents No. __ and __ <u>and Intermediate</u> <u>Bents</u> No.    and    shall be trimmed to within 1/8 inch of concrete if exposed, or 1 inch of concrete if encased. Exposed ends of girders shall be given 2 coats of an asphalt paint. Ends of girders which will be encased in concrete diaphragms shall not be painted. 
  
==== H3a. Type C & D ====
 
  
'''The following notes apply to Type "C" Bearings.'''
+
'''H2c2. Additional NU-Girder Notes'''  
  
'''(H3.1)'''
+
'''Place general notes H2c2.2 and H2c2.3 with H2c1 general notes where space allows. '''
:Anchor rods for Type "C" bearings shall be 1"&oslash; ASTM F1554 Grade 55 swedged rods, with no heads or nuts and shall extend 10" into the concrete.  Swedging shall be 1" less than the extension into the concrete.  Anchor rods shall be set during the placing of concrete or grouted in the anchor rod wells prior to the erection of steel.  The top of anchor rods shall be set approximately 1/4" below the top of bearing.
 
  
'''(H3.2)'''
+
<div id="(H2c2.2)"></div>
:Anchor rods shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum).
+
'''(H2c2.2) Use for NU 35 and NU 43 only '''
 +
:The contractor shall provide bracing necessary for lateral and torsional stability of the girders during construction of the concrete slab and remove the bracing after the slab has attained 75% design strength. Contractor shall not drill holes in the girders. The cost for furnishing, installing, and removing bracing will be considered completely covered by the contract unit price for Prestressed Concrete NU-Girder.
  
'''(H3.3)'''
+
'''(H2c2.3) '''
:Weight of the anchor rods for the bearings are included in the weight of the Fabricated Structural Steel.
+
:Alternate bar reinforcing steel details are provided and may be used. The same type of reinforcing steel shall be used for all girders in all spans.
  
'''(H3.4)'''
+
<div id="(H2c2.10)"></div>
:"[[Image:751.50 finish mark.gif]]" Indicates machine finish surface.
+
'''(H2c2.10) Place near girder dimensions detail. Place * at the top corners of the girder in the girder dimensions detail. Remove underline part for CIP slabs. '''
 +
: '''*''' Girder top flange shall be steel troweled to a smooth finish for 8" at the edges, as shown. Apply two layers of 30-lb roofing felt as a bond breaker to this region only <u>excluding where joint filler is applied</u>. The center portion shall be rough finished by scarifying the surface transversely with a wire brush, and no laitance shall remain on the surface.
  
'''(H3.5)'''
 
:Shop drawings are not required for the lead plates and the preformed fabric pads.
 
  
 +
'''H2c3. Additional Double-Tee Girder Notes  '''
  
'''The following notes apply to Type "D" Bearings.'''
+
'''Place general notes H2c3.1 thru H2c3.6 with H2c1 general notes where space allows. '''
  
'''(H3.6)'''
+
'''(H2c3.1) '''
:Anchor rods for Type "D" bearings shall be <u>1 1/4"&oslash;</u> <u>1 1/2"&oslash;</u> ASTM F1554 Grade 55 swedged rods and shall extend <u>12"</u> <u>15"</u> into the concrete with AASHTO M291 (ASTM A563) Grade A Hex or Heavy Hex nuts.  Actual manufacturer's certified mill test reports (chemical and mechanical) shall be provided.  Use ASTM F436 hardened washers for the fixed bearings and no heavy hexagon nuts or hardened washers for the expansion bearings.  Swedging shall be 1" less than extension into the concrete.
+
:Girders shall be handled and erected into position in a manner that will not impair the strength of the girder.  
  
'''(H3.7)'''
+
'''(H2c3.2) '''
:Anchor rods, hardened washers and heavy hexagon nuts shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum).  
+
:The vertical face of the exterior girder that will be in contact with the slab shall be roughened by sand blasting, or other approved methods, to provide suitable bond between girder and slab.  
  
'''(H3.8)'''
+
'''(H2c3.3) '''
:Weight of the anchor rods, hardened washers and heavy hexagon nuts for bearings are included in the weight of the Fabricated Structural Steel.
+
:All exposed edges of concrete shall have a 1/2" radius or a 3/8" bevel, unless otherwise noted.  
  
'''(H3.9)'''
+
'''(H2c3.4) '''
:"[[Image:751.50 finish mark.gif]]" Indicates machine finish surface.
+
:Payment for edge block will be considered completely covered by the contract unit price for the double-tee girders.  
  
'''(H3.10)'''
+
'''(H2c3.5) '''
:Shop drawings are not required for the lead plates and the preformed fabric pads.
+
:Provide lifting loops in each end of double-tee girder, located near center of stem, 2 feet from each end.
  
 +
'''(H2c3.6) '''
 +
:Adequate reinforcing other than the specified welded wire fabric may be used with the approval of the engineer. 
  
'''The following note applies to Type "D" Bearings Modified.'''
+
'''Use notes H2c3.10 and H2c3.11 when a thrie beam bridge rail is used.  '''
  
'''(H3.11)'''
+
'''(H2c3.10) '''
:Place the heads of 3/4"&oslash; bolts on the bottom side of the top bearing plate.
+
:See slab sheet for spacing of rail posts.
  
==== H3b. Type E ====
+
'''(H2c3.11) '''
 +
:See thrie beam rail sheet for details of bolt spacing at rail posts and anchor bolt lengths. 
  
'''The following notes apply to Type "E" Bearings.'''
+
<div id="H2c4. Additional Prestressed Concrete Box Beam Notes"></div>
  
'''(H3.15)'''
+
'''H2c4. Additional Prestressed Concrete Box Beam Notes'''
:Anchor rods for Type "E" bearings shall be <u>1 1/4"&oslash;</u> <u>1 1/2"&oslash;</u> ASTM F1554 Grade 55 swedged rods and shall extend <u>12"</u> <u>15"</u> into the concrete with AASHTO M291 (ASTM A563) Grade A Hex or Heavy Hex nuts.  Actual manufacturer's certified mill test reports (chemical and mechanical) shall be provided.  Use ASTM F436 hardened washers for the fixed bearings and no heavy hexagon nuts or hardened washers for the expansion bearings.  Swedging shall be 1" less than extension into the concrete.
 
  
'''(H3.16''')
+
'''(H2c4.1) Place near strand arrangement detail. Place * at the top corners of the beam in the strand arrangement detail. Remove underline part for CIP slabs. '''
:Anchor rods, hardened washers and heavy hexagon nuts shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum).  
+
: * Beam top flange shall be steel troweled to a smooth finish for 9” at the edges, as shown. Apply two layers of 30-lb roofing felt as a bond breaker to this region only <u>excluding where joint filler is applied</u>. The center portion shall be rough finished by scarifying the surface transversely with a wire brush, and no laitance shall remain on the surface.  
  
'''(H3.17)'''
+
'''(H2c4.3) '''
:Weight of the anchor rods, hardened washers and heavy hexagon nuts for bearings are included in the weight of the Fabricated Structural Steel.
+
:3/4”ø drain holes shall be provided at each end of each void, and shall be kept open at all times.  
  
'''(H3.18)'''
+
'''(H2c4.4) '''
:"[[Image:751.50 finish mark.gif]]" Indicates machine finish surface.
+
:Beams shall be kept upright at all times. Support shall be within 12 inches of the ends only.
  
'''(H3.19)'''
+
'''(H2c4.5) '''
:[[Image:751.50 circled 1.gif]] bonded lubricant
+
:Void filler shall be non-absorptive cellular polystyrene, according to ASTM C 578, designed to withstand the forces imposed upon them during fabrication without substantial deformation such as bulging, sagging, or collapsing. Cardboard void filler will not be allowed. The outside dimensions of void filler shall be as shown on the plans. When two or more sections of void filler are used to make up a required length, they shall be effectively taped or spliced together.
 +
 +
'''(H2c4.6) '''
 +
:Beams shall be finished similarly in accordance with Sec 1029, except as noted.
  
'''(H3.20)'''
 
:A lubricant coating shall be applied in the shop to both mating surfaces of the bearing assembly.  The lubricant, method of cleaning, and application shall meet the requirements of MIL-L-23398 and MIL-L-46147.  The coated areas shall be protected for shipping and erection.
 
  
'''(H3.21)'''
+
'''H2c5. Blank  '''
:Shop drawings are not required for the lead plates and the preformed fabric pads.
+
 +
 
 +
'''H2c6. Camber Diagram & Slab Haunching or Slab Thickness Diagram  '''
 +
<div id="(H2c6.1)"></div>
  
 +
'''(H2c6.1) Place with camber diagram for all girders and beams. '''
 +
:Conversion factors for <u>girder</u> <u>beam</u> camber (Estimated at 90 days): 
  
'''The following note apply to Type "E" Bearings Modified.'''
+
:'''Use with spans 75' and greater in length. '''
 +
:0.1 pt. = 0.314 x 0.5 pt.
 +
:0.2 pt. = 0.593 x 0.5 pt.
 +
:0.3 pt. = 0.813 x 0.5 pt.
 +
:0.4 pt. = 0.952 x 0.5 pt.
  
'''(H3.22)'''
+
:'''Use with spans less than 75' in length. '''
:Place the heads of 3/4"&oslash; bolts on the bottom side of the top bearing plate.
+
:0.25 pt. = 0.7125 x 0.5 pt.  
  
==== H3c. Type N PTFE ====
+
'''Place notes H2c6.10 thru H2c6.14 with slab haunching diagram (slab thickness diagram for double-tee girders and adjacent beams).  '''
  
'''(H3.25)'''
+
'''(H2c6.10) Use for all girders and beams. Omit underline parts for double-tee girders and adjacent beams.  '''
:Anchor rods shall be <u>1 1/2"&oslash;</u> <u>2"&oslash;</u> <u>2 1/2"&oslash;</u> <u>3"&oslash;</u> ASTM F1554 Grade 55 swedged rods and shall extend <u>15"</u> <u>18"</u> <u>25"</u> <u>&nbsp;&nbsp;"</u> into the concrete with AASHTO M291 (ASTM A563) Grade A Hex or Heavy Hex nuts.  Actual manufacturer's certified mill test reports (chemical and mechanical) shall be providedSwedging shall be 1" less than extension into the concrete.
+
:If <u>girder</u> <u>beam</u> camber is different from that shown in the camber diagram, in order to maintain minimum slab thickness, <u>an adjustment of the slab haunches,</u> an increase in slab thickness or a raise in grade uniformly throughout the structure shall be necessary. No payment will be made for additional labor or materials required for variation in <u>haunching,</u> slab thickness or grade adjustment.   
  
'''(H3.26)'''
+
'''(H2c6.11) Use for all girders and beams except for double-tee girders and adjacent beams.  '''
:All structural steel for the anchor rods and heavy hexagon nuts shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum).
+
:Concrete in the slab haunches is included in the Estimated Quantities for Slab on Concrete <u>I-Girder</u> <u>Bulb-Tee Girder</u> <u>NU-Girder</u> <u>Beam</u>.
  
'''(H3.27)'''
+
'''(H2c6.12) Use only for double-tee girders and adjacent beams. '''  
:Neoprene Elastomeric Pads shall be <u>60</u> <u>70</u> Durometer.
+
:Concrete in the slab overlay is included in the Estimated Quantities for Reinforced Concrete Slab Overlay.  
  
'''(H3.28)'''
+
'''(H2c6.13) Use only for double-tee girders and adjacent beams.  Underline part only required when the slab thickness within parabolic crown is less than the minimum slab thickness.  A = minimum slab thickness.  B = slab thickness at crown centerline.  '''
:Anchor rod shall be at the centerline of slotted hole at 60&deg;F. Bearing position shall be adjusted '''R''' for each 10&deg; fall or rise in temperature at installation.
+
:The slab is to be built parallel to grade and to a minimum thickness of '''''A''''' <u>(Except varies from '''''A''''' to '''''B''''' within parabolic crown)</u>.
  
 +
'''(H2c6.14) Use only if the camber diagram is located on the girder or beam sheet.  '''
 +
:See <u>girder</u> <u>beam</u> sheet for <u>girder</u> <u>beam</u> camber diagram. 
  
'''Use the following note when ASTM A709 Grade 50W steel is not used for superstructure.'''
 
  
'''(H3.29)  Use grade per Design Comps.'''
+
'''H2c7. Steel Intermediate Diaphragms '''  
:Structural steel for sole plate shall be ASTM A709 Grade <u>36</u> <u>50</u> and shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum).  The stainless steel plate shall be protected from any coating.
 
  
 +
'''(H2c7.1) For the location of (*), see [http://epg.modot.org/index.php?title=751.22_P/S_Concrete_I_Girders#751.22.3.13_Intermediate_Diaphragms EPG 751.22.3.13 Intermediate Diaphragms].  '''
 +
:(*) In lieu of 2 1/2" outside diameter washers, contractor may substitute a 3/16" (Min. thickness) plate with four 15/16"ø holes and one hardened washer per bolt.
  
'''Use the following note when ASTM A709 Grade 50W steel is used for superstructure.'''
+
'''(H2c7.2) For the location of (**), see [http://epg.modot.org/index.php?title=751.22_P/S_Concrete_I_Girders#751.22.3.13_Intermediate_Diaphragms EPG 751.22.3.13 Intermediate Diaphragms]. '''
 +
:(**) Bolts shall be tightened to provide a tension of one-half that specified in Sec 712 for high strength bolt installation. A325 bolts may be substituted for and installed in accordance with the requirements for the specified A307 bolts.
  
'''(H3.29.1)'''
+
'''(H2c7.3) '''
:Structural steel for sole plate shall be ASTM A709 Grade 50W.  The anchor rods and welds shall have corrosion resistance and weathering characteristics compatible with the base material.
+
:All diaphragm materials including bolts, nuts, and washers shall be galvanized.  
  
'''(H3.30)'''
+
'''(H2c7.4) '''
:Type N PTFE Bearings shall be in accordance with Sec 716.
+
:Fabricated structural steel shall be ASTM A709 Grade 36 except as noted.  
  
'''(H3.32)'''
+
'''(H2c7.5) '''
:Stopper plates <u>and straps</u> shall be provided to prevent loss of support due to creeping of PTFE bearings.  Payment for fabricating and installing the stopper plates <u>and straps</u> will be considered completely covered by the contract unit price for Type N PTFE Bearing.
+
:Payment for furnishing and installing steel intermediate diaphragms will be considered completely covered by the contract unit price for Steel Intermediate Diaphragm for P/S Concrete Girders.  
  
'''(H3.33)'''
+
'''(H2c7.6) '''
:The bottom face of the 1/8" stainless steel plate that is welded to the sole plate shall be lubricated with a lubricant that is approved by the bearing manufacturer.
+
:Shop drawings will not be required for steel intermediate diaphragms and angle connections.
 +
 
 +
   
 +
'''H2c8. Concrete Diaphragms at Intermediate Bents  '''
  
==== H3d. Laminated Neoprene Pad Assembly ====
+
'''(H2c8.1) Place near diaphragm details for all girders and beams except for double-tee girders at the following grades: 16” > 5%, 22” > 4% and 30” > 3%. '''
 +
:Diaphragms at intermediate bents shall be built vertical.
  
'''(H3.45)'''
+
=== H3. Bearings ===
:Anchor rods shall be <u>1 1/2"&oslash;</u> <u>2"&oslash;</u> <u>2 1/2"&oslash;</u> <u>3"&oslash;</u> ASTM F1554 Grade 55 swedged rods and shall extend <u>15"</u> <u>18"</u> <u>25"</u> <u>&nbsp;&nbsp;"</u> into the concrete with AASHTO M291 (ASTM A563) Grade A Hex or Heavy Hex nuts.  Actual manufacturer's certified mill test reports (chemical and mechanical) shall be provided.  Swedging shall be 1" less than extension into the concrete.
 
  
'''(H3.46)'''
 
:All structural steel for the anchor rods and heavy hexagon nuts shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum).
 
  
'''(H3.47)'''
+
==== H3a. Type C & D ====
:Neoprene Elastomeric Pads shall be <u>60</u> <u>70</u> Durometer.
 
  
'''(H3.48)'''
+
'''The following notes apply to Type C Bearings.'''
:Anchor rod shall be at the centerline of slotted hole at 60&deg;F. Bearing position shall be adjusted '''R''' for each 10&deg; fall or rise in temperature at installation.
 
  
'''(H3.49) Use grade per Design Comps. Use when ASTM A709 Grade 50W steel is not used for superstructure.'''
+
'''(H3.1)'''
:Structural steel for sole plate shall be ASTM A709 Grade <u>36</u> <u>50</u> and shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum).
+
:Anchor bolts for Type C bearings shall be 1"ø ASTM F1554 Grade 55 swedged bolts, with no heads or nuts and shall extend 10" into the concrete. Swedging shall be 1" less than the extension into the concrete. Anchor bolts shall be set in the drilling holes or in the anchor bolt wells and grouted prior to the erection of steel. The top of anchor bolts shall be set approximately 1/4" below the top of bearing.  
  
'''(H3.49.1) Use when ASTM A709 Grade 50W steel is used for superstructure.'''
+
'''(H3.2)'''
:Structural steel for sole plate shall be ASTM A709 Grade 50W.  The anchor rods and welds shall have corrosion resistance and weathering characteristics compatible with the base material.
+
:Anchor bolts shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum).
  
'''(H3.50)'''
+
'''(H3.3)'''
:Laminated Neoprene Bearing Pad Assembly shall be in accordance with Sec 716.
+
:Weight of the anchor bolts for the bearings are included in the weight of the Fabricated Structural Steel.
  
==== H3e. Flat Plate, Rolled Steel Plates (Deck Girders) & Carbon Steel Castings (Truss) ====
+
'''(H3.4) <font color="purple">[MS Cell]</font color="purple">'''
 +
:[[Image:751.50 finish mark.gif]] Indicates machine finish surface.
  
'''The following notes apply to Flat Plate Bearings.'''
+
'''(H3.5)'''
 +
:Shop drawings are not required for the lead plates and the preformed fabric pads.
  
'''(H3.65)'''
 
:Flat plate bearings shall be straightened to plane surfaces.
 
  
'''(H3.66)'''
+
'''The following notes apply to Type D Bearings.'''
:Anchor rods shall be 1"&oslash; ASTM F1554 Grade 55 swedged rods, 10" long with no heads or nuts.  Top of anchor rods shall be set approximately 1/2" above top of bottom flange.
 
  
'''(H3.67)'''
+
'''(H3.6)'''
:Bottom flange of beam <u>and bevel</u> plate shall have 1 1/4"&oslash; holes at fixed end and 1 1/4" x 2 1/2" slots at expansion end.
+
:Anchor bolts for Type D bearings shall be <u>1 1/4"&oslash;</u> <u>1 1/2"&oslash;</u> ASTM F1554 Grade 55 swedged bolts and shall extend <u>12"</u> <u>15"</u> into the concrete with ASTM A563 Grade A Hex or Heavy Hex nuts.  Actual manufacturer's certified mill test reports (chemical and mechanical) shall be provided.  Use ASTM F436 hardened washers for the fixed bearings and no heavy hexagon nuts or hardened washers for the expansion bearings.  Swedging shall be 1" less than extension into the concrete.
  
'''(H3.68)'''
+
'''(H3.7)'''
:Shop drawings are not required for the lead plates and the preformed fabric pads.
+
:Anchor bolts, hardened washers and heavy hexagon nuts shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum).  
  
'''(H3.69)'''
+
'''(H3.8)'''
:Weight of the anchor rods for bearings are included in the weight of the Fabricated Structural Steel.
+
:Weight of the anchor bolts, hardened washers and heavy hexagon nuts for bearings are included in the weight of the Fabricated Structural Steel.
  
 +
'''(H3.9) <font color="purple">[MS Cell]</font color="purple">'''
 +
:[[Image:751.50 finish mark.gif]] Indicates machine finish surface.
  
'''The following notes apply to Rolled Steel Bearing Plates (Deck Girder Repair and Widening).'''
+
'''(H3.10)'''
 +
:Shop drawings are not required for the lead plates and the preformed fabric pads.
  
'''(H3.70)'''
 
:Material shall be ASTM A709 Grade 36 steel.  Holes in 7/8" plates for 3/4" x 2 1/4" and 1 1/2" x 3" anchors shall be made for a driving fit.  After anchors are driven in place, anchors shall be lightly tack welded to the 7/8" plates.
 
  
'''(H3.71)'''
+
'''The following note applies to Type D Bearings Modified.'''
:Edge "A" shall be rounded (1/16" to 1/8" radius).
 
  
 +
'''(H3.11)'''
 +
:Place the heads of 3/4"&oslash; bolts on the bottom side of the top bearing plate.
  
'''The following notes apply to Carbon Steel Casting (Truss).'''
+
==== H3b. Type E ====
  
'''(H3.75)'''
+
'''The following notes apply to Type E Bearings.'''
:All fillets shall have a 3/4" radius.
 
  
'''(H3.76)'''
+
'''(H3.15)'''
:Anchor rods shall be 1 1/2"&oslash; ASTM F1554 Grade 55 swedge rods and shall extend 15" into concrete with AASHTO M291 (ASTM A563) Grade A Hex or Heavy Hex nuts.  Actual manufacturer's certified mill test reports (chemical and mechanical) shall be provided.  Furnish one 4"&oslash; pin, AISI C1042, with 2 heavy hexagon pin nuts.
+
:Anchor bolts for Type E bearings shall be <u>1 1/4"&oslash;</u> <u>1 1/2"&oslash;</u> ASTM F1554 Grade 55 swedged bolts and shall extend <u>12"</u> <u>15"</u> into the concrete with ASTM A563 Grade A Hex or Heavy Hex nuts.  Actual manufacturer's certified mill test reports (chemical and mechanical) shall be provided.  Use ASTM F436 hardened washers for the fixed bearings and no heavy hexagon nuts or hardened washers for the expansion bearings.  Swedging shall be 1" less than extension into the concrete.
  
'''(H3.77)'''
+
'''(H3.16''')
:Material for bearing shall be carbon steel castings and will be considered completely covered by the contract unit price for Carbon Steel Castings.  Pins, anchor rods, heavy hexagon nuts, pipe and rolled steel bearing plates will be considered completely covered by the contract unit price for Structural Carbon Steel.
+
:Anchor bolts, hardened washers and heavy hexagon nuts shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum).  
  
'''(H3.78)'''
+
'''(H3.17)'''
:Shop drawings are not required for the lead plates and the preformed fabric pads.
+
:Weight of the anchor bolts, hardened washers and heavy hexagon nuts for bearings are included in the weight of the Fabricated Structural Steel.
  
=== H4. Conduit System ===
+
'''(H3.18) <font color="purple">[MS Cell]</font color="purple">'''
 +
:[[Image:751.50 finish mark.gif]] Indicates machine finish surface.
  
'''(H4.1)'''
+
'''(H3.20)'''
:Cost of furnishing and placing anchor bolts for light standard will be considered completely covered by the contract unit price for other items.
+
:A lubricant coating shall be applied in the shop to both mating surfaces of the bearing assembly.  The lubricant, method of cleaning, and application shall meet the requirements of MIL-L-23398 and MIL-L-46147.  The coated areas shall be protected for shipping and erection.
  
'''(H4.2)(3" cover cannot be achieved when conduit is in the slab.)'''
+
'''(H3.21)'''
:All conduit shall be rigid non-metallic schedule 40 heavy wall PVC (polyvinyl chloride plastic) <u>with 3" minimum cover in concrete</u>.  Each section of conduit shall bear the Underwriters' Laboratories, Inc., (UL) label.
+
:Shop drawings are not required for the lead plates and the preformed fabric pads.
  
'''(H4.2.1)'''
 
:All Conduit Clamps shall be commercially available conduit clamp approved by the engineer.
 
  
'''(H4.3)'''
+
'''The following note applies to Type E Bearings Modified.'''
:Shift reinforcing steel in field where necessary to clear conduit and junction boxes.
 
  
'''(H4.4)'''
+
'''(H3.22)'''
:Light standards, wiring and fixtures shall be furnished and installed by others.
+
:Place the heads of 3/4"&oslash; bolts on the bottom side of the top bearing plate.
  
'''(H4.5)'''
+
==== H3c. Type N PTFE ====
:Top of light standard supports shall be made horizontal; anchor bolts shall be placed vertically.
 
  
'''(H4.6)'''
+
'''(H3.24)'''  
:For details of <u>light standards,</u> <u>underdeck lighting,</u> <u>and wiring</u>, see electrical plans.
+
:Design coefficient of friction equals 0.06.
  
'''(H4.7)'''
+
'''(H3.25)'''
:Expansion fittings shall provide a minimum movement in either direction of <u>&nbsp;&nbsp;&nbsp;</u> <u>at open joints</u> <u>and</u> <u>&nbsp;&nbsp;&nbsp; at filled joints</u>.  Expansion fittings shall be equal to Carlon Electrical Construction Products or Cantex, Inc.
+
:Anchor bolts shall be <u>1 1/2"&oslash;</u> <u>2"&oslash;</u> <u>2 1/2"&oslash;</u> ASTM F1554 Grade 55 swedged bolts and shall extend <u>15"</u> <u>18"</u> <u>25"</u> into the concrete with ASTM A563 Grade A Hex or Heavy Hex nutsActual manufacturer's certified mill test reports (chemical and mechanical) shall be provided.  Swedging shall be 1" less than extension into the concrete.
  
'''(H4.7.1)'''
+
'''(H3.26)'''
:Anchor bolts and nuts shall be AASHTO M314-90 Grade 55. Anchor bolts, nuts and washers shall be fully galvanized.
+
:All structural steel for the anchor bolts and heavy hexagon nuts shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum).
  
'''(H4.8) (Surface mount junction boxes, except on sidewalks, when existing concrete is present.  Flush mount junction boxes in new concrete.)'''
+
'''(H3.27)'''
:All end bent and <u>parapet,</u> <u>sidewalk,</u> <u>safety barrier curb</u> junction boxes shall be PVC molded <u>flush</u> <u>surface</u> mounted and equal to Carlon Electrical Construction Products or Cantex, Inc.  The conduit terminations shall be permanent or separable.  The terminations and covers shall be of watertight construction and shall meet requirements for NEMA 4 enclosure.
+
:Neoprene Elastomeric Pads shall be <u>60</u> <u>70</u> Durometer.
  
'''(H4.9) Add for all structures with conduit.'''
+
'''(H3.28)'''
:Weepholes shall be provided at appropriated locations to drain any moisture in the conduit system.
+
:Anchor bolts shall be at the centerline of slotted hole at 60&deg;F. Bearing position shall be adjusted '''R''' for each 10&deg; fall or rise in temperature at installation.
  
'''(H4.10) Use for conduit not encased in concrete.'''
 
:Conduit shall be secured to concrete with clamps at about 5'-0" cts.  Concrete anchors for clamps shall be in accordance with Federal Specification FF-S-325, Group II, Type 4, Class I and shall be galvanized in accordance with ASTM -153, B695-91 Class 50 or stainless steel.  Minimum embedment in concrete shall be 1 3/4".  The supplier shall furnish a manufacturer's certification that the concrete anchors meet the required material and galvanizing specifications.
 
  
'''(H4.11) Use for payment of Conduit System.'''
+
'''Use the following note when ASTM A709 Grade 50W steel is not used for superstructure.'''
:Payment for furnishing and installing Conduit System, complete-in-place, will be considered completely covered by the contract lump sum price for Conduit System on Structure.
 
  
=== H5. Expansion Devices ===
+
'''(H3.29)  Use grade per Design Comps.'''
 +
:Structural steel for sole plate shall be ASTM A709 Grade <u>36</u> <u>50</u> and shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum).  The stainless steel plate shall be protected from any coating.
  
  
==== H5a. Finger Plate ====
+
'''Use the following note when ASTM A709 Grade 50W steel is used for superstructure.'''
 +
<div id="(H3.29.1)"></div>
 +
'''(H3.29.1)'''
 +
:Structural steel for sole plate shall be ASTM A709 Grade 50W.  The welds shall have corrosion resistance and weathering characteristics compatible with the base material.  
  
'''(H5.1) For stage construction or other special cases, see Structural Project Manager.'''
+
'''(H3.30)'''
:Finger plate shall be cut with a machine guided gas torch from one plate.  The plate from which fingers are cut may be spliced before fingers are cut.  The surface of cut shall be perpendicular to the surface of plate.  The cut shall not exceed 1/8" in width.  The centerline of cut shall not deviate more than 1/16" from the position of centerline of cut shown.  No splicing of finger plate or finger plate assembly will be allowed after fingers are cut.  The expansion device shall be fabricated and installed to the crown and grade of the roadway.
+
:Type N PTFE Bearings shall be in accordance with Sec 716.
  
'''(H5.2)'''
+
'''(H3.31)'''
:Plan dimensions are based on installation at 60&deg;F. The expansion gap and other dimensions shall be increased or decreased <u>&nbsp;&nbsp;&nbsp;</u>" for each 10&deg; fall or rise in temperature at installation.
+
:PTFE surface shall be fabricated as a single piece. Splicing will not be permitted.  
  
'''(H5.3)'''
+
'''(H3.32)'''
:Material for the expansion device shall be ASTM A709 Grade 36 structural steelAnchors for the expansion device shall be in accordance with Sec 1037.
+
:Stopper plates <u>and straps</u> shall be provided to prevent loss of support due to creeping of PTFE bearingsPayment for fabricating and installing the stopper plates <u>and straps</u> will be considered completely covered by the contract unit price for Type N PTFE Bearing.
  
'''(H5.4)'''
+
'''(H3.33)'''
:Structural steel for the expansion device and curb plate shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum) or galvanized in accordance with ASTM A123.  Anchors need not be protected from overspray.
+
:The bottom face of the 1/8" stainless steel plate that is welded to the sole plate shall be lubricated with a lubricant that is approved by the bearing manufacturer.
  
'''(H5.5)'''
+
==== H3d. Laminated Neoprene Pad Assembly ====
:Payment for furnishing, coating or galvanizing and installing the structural steel for the expansion device will be considered completely covered by the contract unit price for Expansion Device (Finger Plate) per linear foot.
 
  
'''(H5.6)'''
+
'''(H3.45)'''
:Concrete shall be forced under and around finger plate supporting hardware, anchors, angles and bars. Proper consolidation shall be achieved by localized internal vibration.
+
:Anchor bolts shall be <u>1 1/2"&oslash;</u> <u>2"&oslash;</u> <u>2 1/2"&oslash;</u> ASTM F1554 Grade 55 swedged bolts and shall extend <u>15"</u> <u>18"</u> <u>25"</u> into the concrete with ASTM A563 Grade A Hex or Heavy Hex nuts.  Actual manufacturer's certified mill test reports (chemical and mechanical) shall be provided. Swedging shall be 1" less than extension into the concrete.
  
'''(H5.7) Use note for steel structures.'''
+
'''(H3.46)'''
:All holes shown for connections to be subpunched 11/16"&oslash; (shop or field drill) and reamed to 13/16"&oslash; in field.
+
:All structural steel for the anchor bolts and heavy hexagon nuts shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum).
  
'''(H5.8) Place note near "Plan of Slab".'''
+
'''(H3.47)'''
:'''"the web of W14 x 43" is for steel structures'''
+
:Neoprene Elastomeric Pads shall be <u>60</u> <u>70</u> Durometer.
:'''"the 3/4" vertical mounting plate" is for P/S structures.'''
 
:Longitudinal reinforcing steel shall be placed so that ends shall not be more than &plusmn;1" from <u>the web of W14 x 43</u> <u>and</u> <u>the 3/4" vertical mounting plate</u> at the expansion device.
 
  
'''(H5.9)'''
+
'''(H3.48)'''
:Complete joint penetration welds utilized in the fabrication of the expansion device shall be nondestructively tested by an approved method.
+
:Anchor bolts shall be at the centerline of slotted hole at 60&deg;F. Bearing position shall be adjusted '''R''' for each 10&deg; fall or rise in temperature at installation.
  
==== H5b. Flat Plate ====
+
'''(H3.49)  Use grade per Design Comps. Use when ASTM A709 Grade 50W steel is not used for superstructure.'''
 +
:Structural steel for sole plate shall be ASTM A709 Grade <u>36</u> <u>50</u> and shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum).
  
'''(H5.16)'''
+
'''(H3.49.1) Use when ASTM A709 Grade 50W steel is used for superstructure.'''
:Expansion device shall be fabricated in one section, except for stage construction and when the length is over 50 feet.  A complete joint penetration groove welded splice shall be required.  Welds shall be ground flush to provide a smooth surface.  The expansion device shall be fabricated and installed to the crown and grade of the roadway.
+
:Structural steel for sole plate shall be ASTM A709 Grade 50W.  The welds shall have corrosion resistance and weathering characteristics compatible with the base material.  
  
'''(H5.17)'''
+
'''(H3.50)'''
:Plan dimensions are based on installation at 60&deg;F.  The expansion gap and other dimensions shall be increased or decreased <u>&nbsp;&nbsp;&nbsp;</u>" for each 10&deg; fall or rise in temperature at installation.
+
:Laminated Neoprene Bearing Pad Assembly shall be in accordance with Sec 716.
  
'''(H5.18)'''
+
==== H3e. Flat Plate, Rolled Steel Plates (Deck Girders) & Carbon Steel Castings (Truss) ====
:Material for the expansion device shall be ASTM A709 Grade 36 structural steel.  Anchors for the expansion device shall be in accordance with Sec 1037.
 
  
'''(H5.19)'''
+
'''The following notes apply to Flat Plate Bearings.'''
:Structural steel for the expansion device and curb plate shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum) or galvanized in accordance with ASTM A123. Anchors need not be protected from overspray.
 
  
'''(H5.20)'''
+
'''(H3.65)'''
:Payment for furnishing, coating or galvanizing and installing the structural steel for the expansion device will be considered completely covered by the contract unit price for Expansion Device (Flat Plate) per linear foot.
+
:Flat plate bearings shall be straightened to plane surfaces.
  
'''(H5.21)'''
+
'''(H3.66)'''
:Concrete shall be forced under and around the flat plate, anchors and anglesProper consolidation shall be achieved by localized internal vibration.  Finishing of the concrete shall be achieved by hand finishing within one foot of the expansion device.  The vertical and horizontal concrete vent holes shall be offset from each other.  Do not alternate holes at the 12" spacing.
+
:Anchor bolts shall be 1"&oslash; ASTM F1554 Grade 55 swedged bolts, 10" long with no heads or nutsTop of anchor bolts shall be set approximately 1/2" above top of bottom flange.
  
'''(H5.22) Use this note when expansion device is at an end bent.'''
+
'''(H3.67)'''
:Bevel plates shall be used at end bents when the grade of the slab at the expansion device is 3% or more.
+
:Bottom flange of beam <u>and bevel</u> plate shall have 1 1/4"&oslash; holes at fixed end and 1 1/4" x 2 1/2" slots at expansion end.
  
'''(H5.23) Place this note near "Plan of Slab".'''
+
'''(H3.68)'''
:Longitudinal reinforcing steel shall be placed so that ends shall not be more than &plusmn;1" from <u>vertical plate</u> <u>and</u> <u>the vertical leg of the angle</u> at the expansion device.
+
:Shop drawings are not required for the lead plates and the preformed fabric pads.
  
'''(H5.24)'''
+
'''(H3.69)'''
:Complete joint penetration welds utilized in the fabrication of the expansion device shall be nondestructively tested by an approved method.
+
:Weight of the anchor bolts for bearings are included in the weight of the Fabricated Structural Steel.
  
==== H5c. Preformed Compression Joint Seal ====
 
  
'''(H5.31)'''
+
'''The following notes apply to Rolled Steel Bearing Plates (Deck Girder Repair and Widening).'''
:Expansion joint system shall be fabricated in one section, except for stage construction and when the length is over 50 feet.  A complete joint penetration groove welded splice shall be required.  Welds shall be ground flush to provide a smooth surface.  The expansion joint system shall be fabricated and installed to the crown and grade of the roadway.
 
  
'''(H5.32)'''
+
'''(H3.70)'''
:Plan dimensions are based on installation at 60&deg;FThe expansion gap and other dimensions shall be increased or decreased <u>&nbsp;&nbsp;&nbsp;</u>" for each 10&deg; fall or rise in temperature at installation.
+
:Material shall be ASTM A709 Grade 36 steelHoles in 7/8" plates for 3/4" x 2 1/4" and 1 1/2" x 3" anchors shall be made for a driving fit.  After anchors are driven in place, anchors shall be lightly tack welded to the 7/8" plates.
  
'''(H5.33)'''
+
'''(H3.71)'''
:Structural steel for the expansion joint system shall be ASTM A709 Grade 36.  Anchors for the expansion joint system shall be in accordance with Sec 1037.  Preformed compression seal expansion joint system shall be in accordance with Sec 717.
+
:Edge A shall be rounded (1/16" to 1/8" radius).
  
'''(H5.34)'''
 
:Structural steel for the expansion joint system and curb plate shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum) or galvanized in accordance with ASTM A123.  Anchors need not be protected from overspray.
 
  
'''(H5.35)'''
+
'''The following notes apply to Carbon Steel Casting (Truss).'''
:Concrete shall be forced under armor angle and around anchors. Proper consolidation of the concrete shall be achieved by localized internal vibration.
 
  
'''(H5.36) Place this note near "Plan of Slab".'''
+
'''(H3.75)'''
:Longitudinal reinforcing steel shall be placed so that ends shall not be more than &plusmn;1" from vertical leg of angle at the expansion joint system.
+
:All fillets shall have a 3/4" radius.
  
'''(H5.37)'''
+
'''(H3.76)'''
:Curb plate anchors shall be a drilled cone expansion or a cast-in-place wing type threaded insertThe minimum ultimate pullout capacity for these anchors shall be 2700 lbs in f'c = 4000 psi concrete.  Lead anchors will not be permittedHoles in the barrier curb for anchors shall not be drilled until the concrete is at least 7 days old.
+
:Anchor bolts shall be 1 1/2"&oslash; ASTM F1554 Grade 55 swedge bolts and shall extend 15" into concrete with ASTM A563 Grade A Hex or Heavy Hex nutsActual manufacturer's certified mill test reports (chemical and mechanical) shall be providedFurnish one 4"&oslash; pin, AISI C1042, with 2 heavy hexagon pin nuts.
  
 +
'''(H3.77)'''
 +
:Material for bearing shall be carbon steel castings and will be considered completely covered by the contract unit price for Carbon Steel Castings.  Pins, anchor bolts, heavy hexagon nuts, pipe and rolled steel bearing plates will be considered completely covered by the contract unit price for Structural Carbon Steel.
  
'''Place the following notes near the "Tables of Transverse Bridge Seal Dimensions".'''
+
'''(H3.78)'''
 +
:Shop drawings are not required for the lead plates and the preformed fabric pads.
  
'''(H5.38)'''
+
=== H4. Conduit System ===
:Size of armor angle:  Vertical leg of angle shall be a minimum of [[Image:751.50 circled 2.gif]] + 3/4".  Horizontal leg of angle shall be a minimum of 3".  Minimum thickness of angle shall be 1/2".
 
  
'''(H5.39)'''
+
'''(H4.1)'''
:If a seal size larger than that indicated on the plans is used, the movement range, the opening at 60&deg; and all dimensions for the armor angles shall be shown on the shop drawings.
+
:Cost of furnishing and placing anchor bolts for light standard will be considered completely covered by the contract unit price for other items.
  
'''(H5.40)'''  
+
'''(H4.2) Use for all conduits, except if encased in concrete, 3 in. minimum cover is not possible in slab.'''
:Payment for furnishing, coating or galvanizing and installing the structural steel for the expansion joint will be considered completely covered by the contract unit price for Preformed Compression Seal Expansion Joint System.
+
:All conduits shall be rigid nonmetallic schedule 40 heavy wall polyvinyl chloride (PVC) <u>with 3" minimum cover in concrete</u>.  Each section of conduit shall bear the Underwriters Laboratories (UL) label.
  
==== H5d. Strip Seal ====
+
'''Use Notes (H.4.2.1) and (H4.2.2) for all conduits when conduit clamps are required.'''
  
'''(H5.46)'''
+
'''(H4.2.1)'''
:Expansion joint system shall be fabricated in one section, except for stage construction and when the length is over 50 feet. A complete joint penetration groove welded splice shall be required. Welds shall be ground flush to provide a smooth surface. The expansion joint system shall be fabricated and installed to the crown and grade of the roadway.
+
:All conduit clamps shall be commercially-available, nonmetallic conduit clamps and approved by the engineer.
+
 
:The strip seal gland shall be installed in joints in one continuous piece without field splices. Factory splicing will be permitted for joints in excess of 53 feet.
+
'''(H4.2.2)'''
 +
:Anchor bolts and nuts shall be ASTM F1554 Grade 55. Anchor bolts, nuts and washers shall be fully galvanized.  
  
'''(H5.47)'''
+
'''(H4.3)'''
:Plan dimensions are based on installation at 60&deg;F.  The expansion gap and other dimensions shall be increased or decreased <u>&nbsp;&nbsp;&nbsp;</u>" for each 10&deg; fall or rise in temperature at installation.
+
:Shift reinforcing steel in field where necessary to clear conduit and junction boxes.
  
'''(H5.48''')
+
'''(H4.4)'''
:Structural steel for the expansion joint system shall be ASTM A709 Grade 36 except the steel armor may be ASTM A709 Grade 50W.  Anchors for the expansion joint system shall be in accordance with Sec 1037. Strip seal expansion joint system shall be in accordance with Sec 717.
+
:Light standards, wiring and fixtures shall be furnished and installed by others.
  
'''(H5.49)'''
+
'''(H4.5)'''
:Structural steel for the expansion joint system and curb plate shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum) or galvanized in accordance with ASTM A123. Anchors need not be protected from overspray.
+
:Top of light standard supports shall be made horizontal; anchor bolts shall be placed vertically.
  
'''(H5.50)'''
+
'''(H4.6)'''
:Concrete shall be forced under and around steel armor and anchors. Proper consolidation of the concrete shall be achieved by localized internal vibration.
+
:For details of <u>light standards,</u> <u>underdeck lighting,</u> <u>and wiring</u>, see electrical plans.
  
'''(H5.51) Place this note near "Plan of Slab".'''
+
'''(H4.7) Use for conduits to be encased in concrete at open, closed or filled joints. Use 150°F, 120°F for steel superstructure.  Use 120°F, 110°F for concrete superstructure.  Modify note to include giving the total expansion movement per expansion fitting if multiple fittings are used and movement is different, and delineate fittings on plans.'''
:Longitudinal reinforcing steel shall be placed so that ends shall not be more than &plusmn;1" from vertical leg of the steel armor at the expansion joint system.
+
:Expansion fittings shall be placed as shown and set in accordance with the manufacturer's requirements and based on the air temperature at the time of setting given an estimated total expansion movement of<u>&nbsp;&nbsp;&nbsp; inches at open joints</u> <u>and</u> <u>&nbsp;&nbsp;&nbsp; inches at filled joints</u> using a maximum temperature range of <u>150</u> <u>120</u>°F and a maximum temperature of <u>120</u> <u>110</u>°F.
  
'''(H5.52)'''
+
'''(H4.7.1) Use for conduits not to be encased in concrete and for structures with open or closed joints in the superstructure.'''
:Curb plate anchors shall be a drilled cone expansion or a cast-in-place wing type threaded insert. The minimum ultimate pullout capacity for these anchors shall be 2700 lbs in f'c = 4000 psi concrete.  Lead anchors will not be permitted.  Holes in the barrier curb for anchors shall not be drilled until the concrete is at least 7 days old.
+
:Expansion fittings shall be placed as shown and set in accordance with the manufacturer's requirements and based on the air temperature at the time of setting given an estimated total expansion movement of<u>&nbsp;&nbsp;&nbsp; inches at open joints</u> <u>and</u> <u>&nbsp;&nbsp;&nbsp; inches at closed joints</u> using a maximum temperature range of 110°F. Additional expansion fittings beyond what is specified on the bridge plans shall be provided and placed in accordance with the conduit manufacturer’s recommendations.
  
'''(H5.53)  Use note with polymer concrete next to strip seal.'''
+
'''(H.4.7.2)  Use for conduits not to be encased in concrete and for structures without open or closed joints in the superstructure.'''
:Polymer concrete shall be in accordance with Sec 623.
+
:Additional expansion fittings beyond what is specified on the bridge plans shall be provided and placed in accordance with the conduit manufacturer’s recommendations.
  
'''(H5.54)'''  
+
'''(H4.7.3) Use for multiple conduits to be encased in concrete.'''  
:Payment for furnishing, coating or galvanizing and installing the structural steel for the expansion joint will be considered completely covered by the contract unit price for Strip Seal Expansion Joint System.
+
:Minimum clearance preferred between conduits placed in the safety barrier curb shall be 1”.  
  
==== H5e. Silicone Expansion Joint Sealant ====
+
'''(H4.8) Use "surface" mounting, except adjacent to sidewalks, where mounting box on existing concrete.  Use "flush" mounting where box is to be encased in concrete.'''
 +
:All end bent <u>and safety barrier curb</u> junction boxes shall be PVC molded in accordance with Sec 1062 and designed for <u>flush</u> <u>surface</u> mounting.  The conduit terminations shall be permanent or separable.  The terminations and covers shall be of watertight construction and shall meet requirements for NEMA 4 enclosure.
  
'''(H5.61)'''
+
'''(H4.8.1) Use for all junction boxes to be encased in concrete at the roadway face of the safety barrier curb.'''
:Expansion joint system shall be fabricated in one section, except for stage construction and when the length is over 50 feet.  A complete joint penetration groove welded splice shall be required.  Welds shall be ground flush to provide a smooth surfaceThe expansion joint system shall be fabricated and installed to the crown and grade of the roadway.
+
:Placement of junction boxes and covers, complete in place, shall be flush with the roadway face of the safety barrier curbJunction boxes and covers may be recessed up to ¼”.
  
'''(H5.62)'''
+
'''(H4.9) Use for all conduits not to be encased in concrete.'''
:Plan dimensions are based on installation at 60&deg;FThe expansion gap and other dimensions shall be increased or decreased <u>&nbsp;&nbsp;&nbsp;</u>" for each 10&deg; fall or rise in temperature at installation.
+
:Weep holes shall be provided at low points or other critical locations to drain any moisture in the conduit systemConduit shall be sloped to drain.
  
'''(H5.63)'''
+
'''(H4.9.1) Use for all conduits to be encased in concrete.'''  
:Structural steel for the expansion joint system shall be ASTM A709 Grade 36.  Anchors for the expansion joint system shall be in accordance with Sec 1037Silicone Expansion Joint Sealant Systems shall be in accordance with Sec 717.
+
:Drainage shall be provided at low points or other critical locations of all conduits and all junction boxes in accordance with Sec 707All conduits shall be sloped to drain where possible.
  
'''(H5.64)'''
+
'''(H4.10) Use for conduit not encased in concrete.'''
:Structural steel for the expansion joint system and curb plate shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum) or galvanized in accordance with ASTM A123. Anchors need not be protected from overspray.
+
:All conduits shall be secured to concrete with nonmetallic clamps at about 5'-0" cts.  Concrete anchors for clamps shall be in accordance with Federal Specification FF-S-325, Group II, Type 4, Class I and shall be galvanized in accordance with ASTM A153, B695-91 Class 50 or stainless steel. Minimum embedment in concrete shall be 1 3/4".  The supplier shall furnish a manufacturer's certification that the concrete anchors meet the required material and galvanizing specifications.
  
'''(H5.65)'''
+
'''(H4.11) Use for junction box. '''
:Concrete shall be forced under armor angle and around anchors. Proper consolidation of the concrete shall be achieved by localized internal vibration.
+
:Junction box size shown on plan may require special order. No other size may be substituted.
  
'''(H5.66) Place this note near "Plan of Slab".'''
+
'''(H4.12)   '''
:Longitudinal reinforcing steel shall be placed so that ends shall not be more than &plusmn;1" from vertical leg of angle at the expansion joint system.
+
:MoDOT Construction Personnel: Indicate in field and on bridge plans for future work the exact location of buried conduit at ends of bridge that are capped and not immediately used.
  
'''(H5.67)'''
+
'''(H4.13) Use for payment of Conduit System.'''
:Curb plate anchors shall be a drilled cone expansion or a cast-in-place wing type threaded insert.  The minimum ultimate pullout capacity for these anchors shall be 2700 lbs in f'c = 4000 psi concrete.  Lead anchors will not be permitted.  Holes in the barrier curb for anchors shall not be drilled until the concrete is at least 7 days old.
+
:Payment for furnishing and installing Conduit System, complete in place, will be considered completely covered by the contract lump sum price for Conduit System on Structure.
  
'''(H5.68)  Use note with polymer concrete next to silicone sealant.'''
+
=== H5. Expansion Joint Systems ===
:Polymer concrete shall be in accordance with Sec 623.
 
  
'''(H5.69)'''
 
:Payment for furnishing, coating or galvanizing and installing the structural steel for the expansion joint will be considered completely covered by the contract unit price for Silicone Expansion Joint Sealant System.
 
  
==== H5f. Alternate Expansion Joint Systems ====
+
==== H5a. Finger Plate ====
  
'''(H5.70Use the following table and notes with alternate expansion joint system.'''
+
'''(H5.1For stage construction or other special cases, see Structural Project Manager.'''
:{|border="0" style="text-align:center;" cellpadding="5" cellspacing="0"
+
:Finger plate shall be cut with a machine guided gas torch from one plate.  The plate from which fingers are cut may be spliced before fingers are cut.  The surface of cut shall be perpendicular to the surface of plate.  The cut shall not exceed 1/8" in width.  The centerline of cut shall not deviate more than 1/16" from the position of centerline of cut shownNo splicing of finger plate or finger plate assembly will be allowed after fingers are cut.  The expansion device shall be fabricated and installed to the crown and grade of the roadway.
|-
 
!colspan="2" style="border-top:3px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:3px solid black"|Alternate Expansion Joint System
 
|-
 
!style="border-top:1px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:1px solid black; border-right:1px solid black;"|Type of Expansion Joint System
 
!style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:3px solid black" width="75pt"|Type Used<br/>(<math>\, \sqrt{}</math>)
 
|-
 
|align="left" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black;"|Preformed Compression Seal Expansion Joint System
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
 
|-
 
|align="left" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black;"|Silicone Expansion Joint Sealant System
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
 
|-
 
|align="left" style="border-top:1px solid gray; border-bottom:3px solid black; border-left:3px solid black; border-right:1px solid black;"|&nbsp;
 
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:3px solid black" width="75pt"|&nbsp;
 
|}
 
:MoDOT construction personnel will complete column labeled "Type Used (<math>\, \sqrt{}</math>)".
 
   
 
:The contractor shall select one of the alternate expansion joint system listed in the table.  The alternate expansion joint system method of measurement and basis of payment shall be in accordance with Sec 717.
 
  
=== H6. Pouring and Finishing Concrete Slabs ===
+
'''(H5.2)'''
 +
:Plan dimensions are based on installation at 60&deg;F.  The expansion gap and other dimensions shall be increased or decreased <u>&nbsp;&nbsp;&nbsp;</u>" for each 10&deg; fall or rise in temperature at installation.
  
'''I-Beam, Plate Girder Bridges - Continuous Slabs'''
+
'''(H5.3)'''
 +
:Material for the expansion device shall be ASTM A709 Grade 36 structural steel.  Anchors for the expansion device shall be in accordance with Sec 1037.
  
'''(H6.1)'''
+
'''(H5.4)'''
:The contractor shall pour and satisfactorily finish the slab pours at the rate given.  Retarder, if used, shall be an approved type and retard the set of concrete to 2.5 hours.
+
:Structural steel for the expansion device and curb plate shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum) or galvanized in accordance with ASTM A123. Anchors need not be protected from overspray.
  
 +
'''(H5.5)'''
 +
:Payment for furnishing, coating or galvanizing and installing the structural steel for the expansion device will be considered completely covered by the contract unit price for Expansion Device (Finger Plate) per linear foot.
  
'''Prestressed Concrete Structures - Continuous Spans'''
+
'''(H5.6)'''
 +
:Concrete shall be forced under and around finger plate supporting hardware, anchors, angles and bars. Proper consolidation shall be achieved by localized internal vibration.
  
'''(H6.4)'''
+
'''(H5.7) Use note for steel structures.'''
:The contractor shall furnish an approved retarder to retard the set of the concrete to 2.5 hours and shall pour and satisfactorily finish the slab pours at the rate given.
+
:All holes shown for connections to be subpunched 11/16"&oslash; (shop or field drill) and reamed to 13/16"&oslash; in field.
  
'''(H6.5)'''
+
'''(H5.8) Place note near "Plan of Slab".'''
:End diaphragms at expansion devices may be poured with a construction joint between the diaphragm and slab, or monolithic with the slab.
+
:'''"the web of W14 x 43" is for steel structures'''
 +
:'''"the 3/4" vertical mounting plate" is for P/S structures.'''
 +
:Longitudinal reinforcing steel shall be placed so that ends shall not be more than &plusmn;1" from <u>the web of W14 x 43</u> <u>and</u> <u>the 3/4" vertical mounting plate</u> at the expansion device.
  
'''(H6.6) Omit underlined part on non-integral end bents.'''
+
'''(H5.9)'''
:The concrete diaphragm at the intermediate bents <u>and integral</u> <u>end bents</u> shall be poured a minimum of 30 minutes and a maximum of 2 hours before the slab is poured.
+
:Complete joint penetration welds utilized in the fabrication of the expansion device shall be nondestructively tested by an approved method.
  
 +
'''(H5.10)'''
 +
:Curb plate anchors shall be a drilled cone expansion or a cast-in-place wing type threaded insert. The minimum ultimate pullout capacity for these anchors shall be 2700 lbs in f'c = 4000 psi concrete. Lead anchors will not be permitted. Holes in the barrier curb for anchors shall not be drilled until the concrete is at least 7 days old.
  
'''Prestressed Double-Tee Concrete Structures'''
+
==== H5b. Flat Plate ====
  
'''(H6.9)'''
+
'''(H5.16)'''
:The diaphragms at the intermediate and end bents shall be poured a minimum of 30 minutes and a maximum of 2 hours before the slab is poured across the diaphragm at bents.
+
:Expansion device shall be fabricated in one section, except for stage construction and when the length is over 50 feet.  A complete joint penetration groove welded splice shall be required.  Welds shall be ground flush to provide a smooth surface.  The expansion device shall be fabricated and installed to the crown and grade of the roadway.
  
'''(H6.10)'''
+
'''(H5.17)'''
:The contractor shall furnish an approved retarder to retard the set of the concrete to 2.5 hours and shall pour and satisfactorily finish the slab pours at not less than 25 cubic yards per hour.
+
:Plan dimensions are based on installation at 60&deg;F.  The expansion gap and other dimensions shall be increased or decreased <u>&nbsp;&nbsp;&nbsp;</u>" for each 10&deg; fall or rise in temperature at installation.
  
 +
'''(H5.18)'''
 +
:Material for the expansion device shall be ASTM A709 Grade 36 structural steel.  Anchors for the expansion device shall be in accordance with Sec 1037.
  
'''Solid or Voided Slab Structure - Continuous and Simple Spans'''
+
'''(H5.19)'''
 +
:Structural steel for the expansion device and curb plate shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum) or galvanized in accordance with ASTM A123. Anchors need not be protected from overspray.
  
'''(H6.13) [[751.10_General_Superstructure#751.10.1.12_Slab_Pouring_Sequences|(*) See 751.10.1.12 Slab Pouring Sequences]]'''
+
'''(H5.20)'''
:The contractor shall furnish an approved retarder to retard the set of the concrete to 2.5 hours and shall pour and satisfactorily finish the roadway slab at a rate of not less than <u>(*)</u> cubic yards per hour.  The contractor shall observe the transverse construction joints shown on the plans, unless the contractor is equipped to pour and satisfactorily finish the roadway slab at a rate which permits a continuous pouring through some or all joints as approved by the engineer.
+
:Payment for furnishing, coating or galvanizing and installing the structural steel for the expansion device will be considered completely covered by the contract unit price for Expansion Device (Flat Plate) per linear foot.
  
 +
'''(H5.21)'''
 +
:Concrete shall be forced under and around the flat plate, anchors and angles.  Proper consolidation shall be achieved by localized internal vibration.  Finishing of the concrete shall be achieved by hand finishing within one foot of the expansion device.  The vertical and horizontal concrete vent holes shall be offset from each other.  Do not alternate holes at the 12" spacing.
  
'''Steel and Prestressed Structures - Simple Spans'''
+
'''(H5.22)  Use this note when expansion device is at an end bent.'''
 +
:Bevel plates shall be used at end bents when the grade of the slab at the expansion device is 3% or more.
  
'''(H6.15)'''
+
'''(H5.23) Place this note near "Plan of Slab".'''
:The contractor shall pour and satisfactorily finish the roadway slab at a rate of not less than 25 cubic yards per hour.
+
:Longitudinal reinforcing steel shall be placed so that ends shall not be more than &plusmn;1" from <u>vertical plate</u> <u>and</u> <u>the vertical leg of the angle</u> at the expansion device.
  
 +
'''(H5.24)'''
 +
:Complete joint penetration welds utilized in the fabrication of the expansion device shall be nondestructively tested by an approved method.
  
Widen, Extension, Repair, and Stage Construction
+
'''(H5.25)'''
 +
:Curb plate anchors shall be a drilled cone expansion or a cast-in-place wing type threaded insert.  The minimum ultimate pullout capacity for these anchors shall be 2700 lbs in f'c = 4000 psi concrete.  Lead anchors will not be permitted.  Holes in the barrier curb for anchors shall not be drilled until the concrete is at least 7 days old.
  
'''(H6.17) Underline part not required when forms stay in place permanently. Place note on the plans when the closure pour is specified on the design layout.'''
+
==== H5c. Preformed Compression Seal ([[#G3. Vertical Drain at End Bent (Notes for Bridge Standard Drawings)|Notes for Bridge Standard Drawings]]) ====
:Expansive Class B-2 concrete shall be used in the closure pour.  <u>Forms shall be released before the closure pour.</u>
 
  
 +
'''(H5.31)'''
 +
:Expansion joint system shall be fabricated in one section, except for staged construction and when the length is over 50 feet.  A complete joint penetration groove welded splice shall be required.  Welds shall be ground flush to provide a smooth surface.  The expansion joint system shall be fabricated and installed to the crown and grade of the roadway.
  
'''All Structures with Longitudinal Construction Joints'''
+
'''(H5.33)'''
 +
:Structural steel for the expansion joint system shall be ASTM A709 Grade 36.  Anchors for the expansion joint system shall be in accordance with Sec 1037.  Preformed compression seal expansion joint system shall be in accordance with Sec 717.
  
'''(H6.18) The following note shall be used on all structures with slabs wider than 54' containing a longitudinal construction joint.  [[Image:751.50 circled 1.gif]] shall be replaced by the value corresponding to the total roadway width divided by the larger pour width when the construction joint is used.'''
+
'''(H5.34)'''
:The longitudinal construction joint may be omitted with the approval of the engineerWhen the longitudinal construction joint is omitted, the minimum rate of pour for alternate pouring sequences shall be increased by a factor of &nbsp;[[Image:751.50 circled 1.gif]]&nbsp;.
+
:Structural steel for the expansion joint system shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum) or galvanized in accordance with ASTM A123Anchors need not be protected from overspray.
  
=== H7. Slab Drains ===
+
'''(H5.35)'''
 +
:Concrete shall be forced under armor angle and around anchors. Proper consolidation of the concrete shall be achieved by localized internal vibration.
  
'''(H7.1)'''
+
'''(H5.36) Place this note near "Plan of Slab" also.'''  
:Slab drains may be fabricated of either 1/4" welded sheets of ASTM A709 Grade 36 steel or from 1/4" structural steel tubing ASTM A500 or A501.
+
:Longitudinal reinforcing steel shall be placed so that ends shall be 1" from the vertical leg of the angle at the expansion joint system.  
  
'''(H7.1.1)'''
 
:Slab drain bracket assembly shall be ASTM A709 Grade 36 steel.
 
  
'''(H7.2) Use with wearing surface.'''
+
'''Place the following notes (H5.37 and H5.38) near the "Table of Transverse Preformed Compression Seal Expansion Joint System Dimensions".'''
:Outside dimensions of drain<u>s are 8" x 4"</u> <u>piece "A" is 8 3/4" x 4 3/4" and piece "B" = 8" x 4"</u>.
 
  
'''(H7.3) Use with wearing surface.'''
+
'''(H5.37)'''
:Piece "A" shall be cast in the concrete.  Prior to placement of wearing surface, piece "B" shall be inserted into piece "A".
+
:Depth of seal shall not be less than width of seal.
  
'''(H7.4)'''
+
'''(H5.38) '''
:Locate drain<u>s piece "A"</u>(*) in slab by dimensions shown in Part Section Near Drain.
+
:Size of armor angle: Vertical leg of angle shall be a minimum of Manufacturer’s Recommended Height ③ + 3/4". Horizontal leg of angle shall be a minimum of 3". Minimum thickness of angle shall be 1/2".  
  
'''(H7.5)'''
+
'''(H5.39)'''
:Shift reinforcing steel in field where necessary to clear drains.
+
:The installation temperature shall be taken as the actual air temperature averaged over the 24-hour period immediately preceding installation.  
  
'''(H7.6)'''
+
'''(H5.40)'''
:The drain<u>s pieces "A" and "B",</u> (*) <u>coil inserts</u> <u>and bracket assembly</u> shall be galvanized in accordance with ASTM A123.
+
:MoDOT Construction personnel will indicate the preformed compression seal expansion joint system installed.
  
'''(H7.7)'''
+
==== H5d. Strip Seal ([[#G3. Vertical Drain at End Bent (Notes for Bridge Standard Drawings)|Notes for Bridge Standard Drawings]])====
:All bolts, hardened washers, lock washers and nuts shall be galvanized in accordance with ASTM A153.
 
  
'''(H7.8)'''
+
'''(H5.46)'''
:The <u>coil insert required</u> <u>bolt hole</u> for the bracket assembly attachment shall be located on the <u>Prestressed I-Girder</u> <u>Prestressed Bulb-tee</u> <u>Plate Girder</u> <u>Wide Flange Beam</u> shop drawings.
+
:Expansion joint system shall be fabricated in one section, except for staged construction and when the length is over 50 feet.  A complete joint penetration groove welded splice shall be required.  Welds shall be ground flush to provide a smooth surface. The expansion joint system shall be fabricated and installed to the crown and grade of the roadway.
 +
 +
:The strip seal gland shall be installed in joints in one continuous piece without field splices.  Factory splicing will be permitted for joints in excess of 53 feet.
  
'''(H7.9)'''
+
'''(H5.48''')
:Shop drawings will not be required for the slab drains <u>and the</u> <u>bracket assembly</u>.
+
:Structural steel for the expansion joint system shall be ASTM A709 Grade 36 except the steel armor may be ASTM A709 Grade 50W.  Anchors for the expansion joint system shall be in accordance with Sec 1037. Strip seal expansion joint system shall be in accordance with Sec 717.
  
(*) Use with wearing surface.
+
'''(H5.49)'''
 +
:Structural steel for the expansion joint system shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum) or galvanized in accordance with ASTM A123. Anchors need not be protected from overspray.
  
 +
'''(H5.50)'''
 +
:Concrete shall be forced under and around steel armor and anchors. Proper consolidation of the concrete shall be achieved by localized internal vibration.
  
'''Place the following notes (H7.10) and (H7.11) on the Prestressed I Girder slab drain standard.'''
+
'''(H5.51) Place this note near "Plan of Slab" also.'''
 +
:Longitudinal reinforcing steel shall be placed so that ends shall be  1" from the vertical leg of the steel armor at the expansion joint system.
  
'''(H7.10)'''
+
'''(H5.52)'''  
:Coil inserts shall have a concrete pull-out strength (Ultimate load) of at least 2,500 pounds in 5,000 psi concrete.
+
:The installation temperature shall be taken as the actual air temperature averaged over the 24-hour period immediately preceding installation.  
  
'''(H7.11)'''
+
'''(H5.53)'''
:The bolt required to attach the slab drain bracket assembly to the prestressed girder web shall be supplied by the prestressed I-Girder fabricator.
+
:MoDOT Construction personnel will indicate the strip seal expansion joint system installed.
  
'''(H7.12)'''
+
'''(H5.54)'''
:The bolt for the bracket assembly attachment shall be located on the plate girder shop drawings.
+
:Steel armor may also be referred to as extrusion or rail.
  
=== H8. Blank ===
+
'''(H5.55)  Use this note when polymer concrete is to be used next to strip seal.'''
 +
:Polymer concrete shall be in accordance with Sec 623.
  
 +
====H5e. [[751.13 Expansion Devices#751.13.1.1 General|Preformed Silicone or EPDM Seal]] ([[#G3. Vertical Drain at End Bent (Notes for Bridge Standard Drawings)|Notes for Bridge Standard Drawings]])====
  
=== H9. Thrie Beam Rail ===
+
'''(H5.56)'''
 +
:The preformed silicone or EPDM seal gland shall be installed in joints in one continuous piece without field splices. Factory splicing will be permitted for joints in excess of 53 feet.  
  
'''(H9.2)'''
+
'''(H5.58)'''  
:Panel lengths of channel members shall be attached continuously to a minimum of four posts and a maximum of six posts (except at end bents).
+
:The installation temperature shall be taken as the actual air temperature averaged over the 24-hour period immediately preceding installation.  
  
'''(H9.3)'''
+
'''(H5.59)'''
:All bolts, nuts, washers, <u>and</u> plates <u>and elastomeric materials</u> will be considered completely covered by the contract unit price for <u>Bridge Guardrail (Thrie Beam)</u> <u>other items</u>.
+
:MoDOT Construction personnel will indicate the preformed silicone or EPDM seal expansion joint system installed.
  
'''(H9.4) Use underline part for temporary bridges.'''
+
'''(H5.60) Use this note when polymer concrete is to be used next to Preformed Silicone or EPDM Seal. '''
:All steel connecting bolts and fasteners for posts and railing, and all anchor bolts, nuts, washers and plates shall be galvanized after fabrication <u>except for bottom plate</u>.  Protective coating and material requirement of steel railing shall be in accordance with Sec 1040.
+
:Polymer concrete shall be in accordance with Sec 623.
  
'''(H9.5) Use post instead of blockout for temporary bridges'''.
+
'''(H5.61) Use this note when joint gap (opening) is wider than 3”.'''
:Rail posts shall be set perpendicular to roadway profile grade, vertically in cross section and aligned in accordance with Sec 713 except that the rail posts shall be aligned by the use of shims such that the post deviates not more than 1/2 inch from true horizontal alignment after final adjustment.  The shims shall be 3" x 1 3/4"  and placed between the <u>blockout</u> <u>post</u> and the thrie beam rail. The thickness of the shims shall be determined by the contractor and verified by the engineer before ordering material for this work.
+
:Joint gap (opening) wider than 3" during installation may require use of backer rod to keep seal in place while adhesive is curing.
  
'''(H9.6) Use only when a base plate is used.'''
+
=== H6. Pouring and Finishing Concrete Slabs ===
:Rail posts shall be seated on elastomeric pads having the same dimensions as the post base plate and 1/16" thickness.  Such pads may be any elastomeric material, plain or fibered, having hardness (Durometer) of 50 or above, as certified by the manufacturer.  Additional pads or half pads may be used in shimming for alignment.  Post heights shown will increase by the thickness of the pad.
 
  
'''(H9.7)'''
+
'''I-Beam, Plate Girder Bridges - Continuous Slabs'''
:At the expansion slots in the thrie beam rails and channels, the bolts shall be tightened and backed off one-half turn and the threads shall be burred.
 
  
'''(H9.8)'''
+
'''(H6.1)'''
:At the thrie beam connection to blockout on wings, the bolts shall be tightened and backed off one-half turn and the threads shall be burred.
+
:The contractor shall pour and satisfactorily finish the slab pours at the rate given.  Retarder, if used, shall be an approved type and retard the set of concrete to 2.5 hours.
  
'''(H9.9)'''
 
:Minimum length of thrie beam sections is equal to one post space.
 
  
'''(H9.10)'''
+
'''Prestressed Concrete Structures - Continuous Spans'''
:5/8"&oslash; button-head, oval shoulder bolts with 3/8" min. thickness hex nuts shall be used at all slots.
 
  
'''(H9.11)'''
+
'''(H6.4)'''
:Thrie beam guardrail on the bridge shall be 12 gage steel.
+
:The contractor shall furnish an approved retarder to retard the set of the concrete to 2.5 hours and shall pour and satisfactorily finish the slab pours at the rate given.
  
'''(H9.12) Use top plates instead of cap rail angles for temporary bridges.'''
+
'''(H6.5)'''
:Posts, <u>cap rail angles,</u> <u>top plates,</u> base plates, channels and channel splice plates shall be fabricated from ASTM A709 Grade 36 steel and galvanized.
+
:End diaphragms at expansion devices may be poured with a construction joint between the diaphragm and slab, or monolithic with the slab.
  
'''(H9.15Use post instead of blockout for temporary bridges.'''
+
'''(H6.6Omit integral end bents with non-integral end bents and intermediate bents with single spans.  Make bents singular if applicable.'''
:Washers shall be used at all post bolts between the bolt head and beam.  The flat washers shall be rectangular in shape, 3" x 1 3/4" x 3/16" minimum and with a 11/16" x 1" slot, or when necessary of such design as to fit the contour of the beam.  A 3" x 1 3/4" x 5/8" rectangular washer shall be used between the <u>blockout</u> and the thrie beam rail.
+
:The concrete diaphragm at the <u>intermediate bents</u> <u>and integral</u> <u>end bents</u> shall be poured a minimum of 30 minutes and a maximum of 2 hours before the slab is poured.
  
'''(H9.16)'''
 
:Special drilling of the thrie beam may be required at the splices.  All drilling details shall be shown on the shop drawings.
 
  
'''(H9.17''')
+
'''Prestressed Double-Tee Concrete Structures'''
:Fabrication of structural steel shall be in accordance with Sec 1080.
 
  
'''(H9.18) Do not use with prestress double-tee or temporary bridge structures.'''
+
'''(H6.9)'''
:Expansion splices in the thrie beam rail shall be made at either the first or second post on either side of the joint and on structure at bridge ends.  When the splice is made at the second post, an expansion slot shall be provided in the thrie beam rail for connection to the first post to allow for movement.
+
:The diaphragms at the intermediate and end bents shall be poured a minimum of 30 minutes and a maximum of 2 hours before the slab is poured across the diaphragm at bents.
  
'''(H9.19) Do not with prestress double-tee or temporary bridge structures.'''
+
'''(H6.10)'''
:In addition to the expansion provisions at the expansion joints, expansion splices in the thrie beam rail and the channel shall be provided at other locations so that the maximum length without expansion provisions does not exceed 200 ft.
+
:The contractor shall furnish an approved retarder to retard the set of the concrete to 2.5 hours and shall pour and satisfactorily finish the slab pours at not less than 25 cubic yards per hour.
  
  
'''Do not use any of the following notes for temporary bridges.'''
+
'''Solid or Voided Slab Structure - Continuous and Simple Spans'''
  
'''(H9.20) Use with prestress double-tee structures.'''
+
'''(H6.13) [[751.10_General_Superstructure#751.10.1.12_Slab_Pouring_Sequences_and_Construction_Joints|(*) See EPG 751.10.1.12 Slab Pouring Sequences and Construction Joints]]'''
:Expansion splices in the thrie beam rail and the channel shall be provided at locations so that the maximum length without expansion provisions does not exceed 200 ft.
+
:The contractor shall furnish an approved retarder to retard the set of the concrete to 2.5 hours and shall pour and satisfactorily finish the roadway slab at a rate of not less than <u>(*)</u> cubic yards per hour.  The contractor shall observe the transverse construction joints shown on the plans, unless the contractor is equipped to pour and satisfactorily finish the roadway slab at a rate which permits a continuous pouring through some or all joints as approved by the engineer.
  
'''(H9.21)'''
 
:Shim plates 6" x 6" x 1/16" may be used between the top of the post and the channel member as required for vertical alignment.
 
  
'''(H9.22)'''
+
'''Steel and Prestressed Structures - Simple Spans'''
:See slab sheet for rail post spacing.
 
  
'''(H9.23)'''
+
'''(H6.15)'''
:See Missouri Standard Plans drawing 606.00 for details not shown.
+
:The contractor shall pour and satisfactorily finish the roadway slab at a rate of not less than 25 cubic yards per hour.
  
'''(H9.24)'''
 
:Bolt shall not be bent in slab depths greater than 14", use 12" straight embeddment.
 
  
'''(H9.25)'''
+
Widen, Extension, Repair, and Stage Construction
:Shim plates 6" x 3" x 1/16" may be used between post W6x20 and 1/2" bent plate connection as required for horizontal alignment.
 
  
'''(H9.26)'''
+
'''(H6.17) Underline part not required when forms stay-in-place permanently. Place note on the plans when the closure pour is specified on the design layout.'''
:Shim plate shall be galvanized after fabrication.
+
:Expansive Class B-2 concrete shall be used in the closure pour.  <u>Forms shall be released before the closure pour.</u>
  
'''(H9.27)'''
 
:Shim plates 6" x 6" x 1/16" may be used between post W6x20 and 6" x 6" x 3/8" plate and shim plates 6" x 3 1/2" x 1/16" may be used between post W6x20 and 1/2" bent plate connection as required for horizontal alignment.
 
  
'''(H9.28)'''
+
'''All Structures with Longitudinal Construction Joints'''
:Bar supports shall be Beam Bolsters (BB-ref. CRSI) and shall be galvanized. See Sec 706.
+
 
 +
'''(H6.18) The following note shall be used on all structures with slabs wider than 54' containing a longitudinal construction joint.  The blank space shall be replaced by the value corresponding to the total roadway width divided by the larger pour width when the construction joint is used.'''
 +
:The longitudinal construction joint may be omitted with the approval of the engineer. When the longitudinal construction joint is omitted, the minimum rate of pour for alternate pouring sequences shall be increased by a factor of ____.
  
  
'''Use the following notes where required and with temporary bridges thrie beam sheet.'''
+
<div id="Wide Flange Deck Replacements"></div>
 +
'''Wide Flange Deck Replacements'''
 +
 +
'''(H6.20)'''
 +
:The contractor shall provide bracing necessary for lateral and torsional stability of the beams during construction of the concrete slab and remove the bracing after the slab has attained 75% design strength. Contractor shall not weld on or drill holes in the beams. The cost for furnishing, installing, and removing bracing will be considered completely covered by the contract unit price for Slab on Steel.
  
'''(H9.30''')
+
'''(H6.21)'''
:Grade A321 threaded rods with 2 hex nuts and washers may be substituted for the A307 anchor bolts.
+
:Slab shall be poured upgrade from end to end at a minimum rate of 25 cubic yards per hour.
  
'''(H9.31)'''
+
'''(H6.22)'''
:If type "A" guardrail is not attached to ends of the temporary structure, flared ends shall be required. The existing thrie beam rails shall be modified to accept flared ends. Cost for furnishing and installing flared ends will be considered completely covered by the contract unit price for other items.
+
:Alternate pour sequences may be submitted to the engineer for approval. Keyed construction joints shall be provided between pours.
  
'''(H9.32)'''
 
:Contractor shall verify all dimensions in field before ordering materials.
 
  
'''(H9.33)'''
+
=== H7. Slab Drains (Notes for Bridge Standard Drawings)===
:See preceding sheet for rail post spacing.
 
  
'''(H9.34)'''
+
'''When steel slab drains are used place Notes H7.1, H7.1.3 and H7.2 under the heading of Notes for Steel Drain. Place remaining notes thru Note H7.11 under the heading of General Notes.'''
:At the bridge ends for head to head traffic, guardrail shall be used at all four corners and for single directional traffic, guardrail shall be used at the entrance ends only unless required at the exit.
 
  
'''(H9.35)'''
+
'''(H7.1)'''
:Bottom plate shall be fabricated from ASTM A709 Grade 50W steel and welded to two 5" floor bars.  Bottom plate shall not be galvanized.
+
:Slab drains may be fabricated of either 1/4" welded sheets of ASTM A709 Grade 36 steel or from 1/4" structural steel tubing ASTM A500 or A501.
  
'''(H9.36)'''
+
'''(H7.1.1) Note not required for continuous concrete slab bridges. '''
:The size of the base and bottom plate may be increased depending on which grid option is used.
+
:Slab drain bracket assembly shall be ASTM A709 Grade 36 steel.
  
'''(H9.37)'''
+
'''(H7.1.3) Use underlined portion with a wearing surface. '''
:Optional welding of the post to the base plate, in lieu of the weld shown, is a 5/16" fillet weld all around, including the edges of the post flanges.
+
:The drain<u>s Pieces A and B</u> shall be galvanized in accordance with ASTM A123.
  
'''(H9.38)'''
+
'''(H7.2) Use first choice without a wearing surface and second choice with a wearing surface.'''
:Semi-circular notches centered on the axis of the post web ends may be made to facilitate galvanizing.
+
:Outside dimensions of drain<u>s are 8" x 4"</u> <u>Piece A is 8 3/4" x 4 3/4" and Piece B is 8" x 4"</u>.
  
=== H10. Barrier Curbs ===
+
'''(H7.3) Use note with new wearing surface over new slab.'''
 +
:Piece A shall be cast in the concrete slab.  Prior to placement of wearing surface, Piece B shall be inserted into Piece A.
  
==== H10a. Safety, Median, Type C & D ====
+
'''(H7.4) Use underlined portion with a wearing surface. '''
 +
:Locate drain<u>s Piece A</u> in slab by dimensions shown in Part Section Near Drain.
  
'''(H10.1)'''
+
'''(H7.5)'''
:Top of <u>safety</u> <u>median</u> barrier curb <u>(Type C)</u> <u>(Type D)</u> <u>and median barrier curb</u> shall be built parallel to grade with barrier curb joints <u>(Except at end bents)</u> normal to grade.
+
:Reinforcing steel shall be shifted to clear drains.
  
'''(H10.2)'''
+
'''(H7.6) Use underlined portion with prestressed girders and beams. Note not required for continuous concrete slab bridges. '''
:All exposed edges of <u>safety</u> <u>median</u> barrier curb <u>(Type C)</u> <u>(Type D)</u> and median shall have either a 1/2" radius or a 3/8" bevel, unless otherwise noted.
+
:The <u>coil inserts and</u> bracket assembly shall be galvanized in accordance with ASTM A123.
  
'''(H10.3)'''
+
'''(H7.7) Use underlined portion with weathering steel girders and beams. Note not required for continuous concrete slab bridges. '''
:Payment for all concrete and reinforcement, complete-in-place will be considered completely covered by the contract unit price for <u>safety</u> <u>median</u> barrier curb <u>(Type C)</u> <u>(Type D)</u> per linear foot.
+
:All bolts, hardened washers, lock washers and nuts shall be galvanized in accordance with ASTM A153<u>, except as shown</u>.
  
'''(H10.4)'''
+
'''(H7.8) Use note when attaching to new girders and beams. Use “coil insert required” for prestressed girders, “coil inserts required” for prestressed beams and “bolt hole” for steel structures. '''
:Concrete in the <u>safety</u> <u>median</u> barrier curb <u>(Type C)</u> <u>(Type D)</u> shall be Class B-1.
+
:The <u>coil inserts required</u> <u>bolt hole</u> for the bracket assembly attachment shall be located on the <u>prestressed girder</u> <u>prestressed beam</u> <u>plate girder</u> <u>wide flange beam</u> shop drawings.
  
'''(H10.5) Use for safety barrier curb.'''
+
'''(H7.8.1) Use note when attaching to existing steel girders and beams.'''  
:Measurement of safety barrier curb is to the nearest linear foot for each structure, measured along the outside top of slab from end of wing to end of wing.
+
:The bolt hole for the bracket assembly attachment shall be shifted to the minimum extent necessary to field drill in the existing web.  
  
'''(H10.6) Use for safety barrier curb or barrier curb (Type D) near median.'''
+
'''(H7.9) Use the underline portion for all bridges except continuous concrete slab bridges. '''
:Measurement of <u>safety</u> barrier curb <u>(Type D)</u> is to the nearest linear foot for each structure, measured along the outside top of slab from <u>end of slab to end of slab</u> <u>centerline to centerline of sleeper slab</u>.
+
:Shop drawings will not be required for the slab drains <u>and the bracket assembly</u>.
  
'''(H10.7) Note shall be used for median barrier curb and median barrier curb (Type C).'''
 
:Measurement of median barrier curb <u>(Type C)</u> is to the nearest linear foot for each structure, measured along the top of slab from <u>end of slab to end of slab</u> <u>centerline to centerline of sleeper slab</u>.
 
  
'''(H10.7.1) Note shall be used on all barrier curbs.'''
+
'''Place Notes H7.10 and H7.11 with prestressed girder and prestressed beam slab drain details.'''
:Concrete traffic barrier delineators shall be placed on top of the <u>safety</u> <u>median</u> barrier curb <u>(Type C)</u> <u>(Type D)</u> as shown on Missouri Standard Plans 617.10 and in accordance with Sec 617. Concrete traffic barrier delineators will be considered completely covered by the contract unit price for "<u>Safety</u> <u>Median</u> Barrier Curb <u>(Type C)</u> <u>(Type D)</u>".
 
  
 +
'''(H7.10)'''
 +
:Coil inserts shall have a concrete pull-out strength (ultimate load) of at least 2,500 pounds in 5,000 psi concrete.
  
'''The following notes shall be placed under cross-section thru safety barrier or median barrier curb.'''
+
'''(H7.11) Bolts is plural for Prestressed box and slab beams that require two bolts.'''
 +
:The bolt<u>s</u> required to attach the slab drain bracket assembly to the prestressed <u>girder web</u> <u>beam</u> shall be supplied by the prestressed <u>girder</u> <u>beam</u> fabricator.
  
'''(H10.8)'''
 
:Use a minimum lap of 2'-11" for #5 horizontal <u>safety</u> <u>median</u> barrier curb <u>(Type C)</u> <u>(Type D)</u> bars.
 
  
'''(H10.9)'''
+
'''Use Notes H7.13 thru H7.21 when fiberglass reinforced polymer (FRP) slab drains are used. Place Note H7.13 as the first note under the heading of General Notes. Place remaining notes under the heading of Notes for FRP Drain.'''
:The cross-sectional area <u>for each curb</u> above the slab = <u>(*)</u> sq. ft.
 
  
:{|
+
'''(H7.13) '''
|(*)||2.28 for a 16" safety barrier curb.
+
:Contractor shall have the option to construct either steel or FRP slab drains. All drains shall be of same type.  
|-
 
|||2.96 for a median barrier curb.
 
|-
 
|||3.49 for a barrier curb (Type D).
 
|-
 
|||4.70 for a median barrier curb (Type C).
 
|}
 
  
 +
'''(H7.14) '''
 +
:Drains shall be machine filament-wound thermosetting resin tubing meeting the requirements of ASTM D2996 with the following exceptions:
  
'''The following notes shall be used for double-tee structures.'''
+
'''(H7.15) '''
 +
:Shape of  drains shall be rectangular with outside interior nominal dimensions of 8” x 4”.
  
'''(H10.10)'''
+
'''(H7.16) '''
:Coil inserts shall have a concrete ultimate pullout strength of not less than 36,000 pounds in 5000 psi concrete and an ultimate tensile strength of not less than 36,000 pounds.
+
:Minimum reinforced wall thickness shall be of 1/4 inch.
  
'''(H10.11)'''
+
'''(H7.17) '''
:Threaded coil rods shall have an ultimate capacity of 36,000 pounds.  All coil inserts and threaded coil rods shall be galvanized in accordance with ASTM A153.
+
:The resin used shall be ultraviolet (UV) resistant and/or have UV inhibitors mixed throughout. Drains may have an exterior coating for additional UV resistance.
  
'''(H10.12)'''
+
'''(H7.18) The standard color shall be Gray (Federal Standard #26373). Optional colors which are the same colors allowed for steel superstructures include <u>Brown (Federal Standard #30045)</u> <u>Black (Federal Standard #17038)</u> <u>Dark Blue (Federal Standard #25052)</u> <u>Bright Blue (Federal Standard #25095)</u>. Consult with FRP drain manufacturer/supplier to verify optional color availability and cost.'''
:Payment for furnishing and installing coil inserts and threaded coil rods will be considered completely covered by the contract unit price for <u>Safety</u> <u>Median</u> Barrier Curb <u>(Type C)</u> <u>(Type D)</u>.
+
:The color of the slab drain shall be <u>Gray (Federal Standard 26373)</u>. The color shall be uniform throughout the resin and any coating used.
  
 +
'''(H7.19) '''
 +
:The combination of materials used in the manufacture of the drains shall be tested for UV resistance in accordance with ASTM D4239 Cycle A. The representative material shall withstand at least 500 hours of testing with only minor discoloration and without any physical deterioration. The contractor shall furnish the results of the required ultraviolet testing prior to acceptance of the slab drains.
  
'''Elevation of Safety Barrier Curb'''
+
'''(H7.20) '''
 +
:At the contractor’s option, drains may be field cut. The method of cutting FRP slab drains shall be as recommended by the manufacturer to ensure a smooth, chip free cut.
 +
 +
'''(H7.21) Use only for angled drains. '''
 +
:Both upper and lower drain pieces shall be rigidly connected to each other. Drain flow shall not be obstructed. Approval of the engineer is required.
  
'''(H10.12.1)'''
+
=== H8. Blank ===
:Longitudinal dimensions are <u>horizontal</u> <u>arc dimensions</u>.
 
  
'''(H10.12.2)'''
 
:Longitudinal dimensions are along top of <u>safety barrier curb</u> <u>outside</u> <u>edge of slab</u> parallel to grade.
 
  
'''(H10.13)'''
+
=== H9. Thrie Beam and Other Rail Types (Notes for Bridge Standard Drawings)===
:(<math>\, **</math>) The <u>R3</u> <u>M3</u> bar and #5 bottom transverse slab bar in cantilever (P/S panels only) combination may be furnished as one bar as shown, at the contractor's option.
+
'''Place in General Notes on the rail sheet unless otherwise specified.'''
  
'''(H10.14)'''
+
'''(H9.1a) Use for all W-Beam, Thrie Beam, Two Tube and Single Tube (Low Profile) Structural Steel Guardrails without cap rail.  (See [[620.5 Delineators (MUTCD Chapter 3F)#620.5.5 Guardrail Delineation|Guardrail Delineation]].)''' (See [[751.50 Standard Detailing Notes#(H10.7.1) Notes shall be used on all barrier curbs|Note H10.7.1]] Guidance for using Part Note for Delineation Sheeting Requirements.)
:Note: Use a minimum lap of 2'-0" between K9 and K10 bars.
 
  
'''(H10.15)'''
+
:Guardrail delineators shall be attached to the top of the guardrail post using galvanized anchorage as shown on Missouri Standard Plan 606.00 and in accordance with Sec 606.  <u>Delineators on bridges with two-lane, two-way traffic shall have retroreflective sheeting on both sides.</u>  Guardrail delineators will be considered completely covered by the contract unit price for <u>Bridge Guardrail (W-Beam)</u> <u>Bridge Guardrail (Thrie Beam)</u> <u>Bridge Rail (Two Tube Structural Steel)</u> <u>Low Profile Metal Bridge Rail (Single Tube)</u>.
:(<math>\, ***</math>) The K1 and K2 bar combination may be furnished as one bar as shown, at the contractor's option.
 
  
'''(H10.16)'''
+
'''(H9.1b) Use for all W-Beam and Thrie Beam Guardrails with cap rail except for temporary bridges. (See [[620.5 Delineators (MUTCD Chapter 3F)#620.5.5 Guardrail Delineation|Guardrail Delineation]].)''' (See [[751.50 Standard Detailing Notes#(H10.7.1) Notes shall be used on all barrier curbs|Note H10.7.1]] Guidance for using Part Note for Delineation Sheeting Requirements.)
:The curb shall be cured by application of Type 1-D or Type 2 Liquid Membrane-Forming Compound in accordance with Sec 1055. Surface sealing for concrete in accordance with Sec 703 is not required. Application of linseed oil at the contractor's expense is permitted.
 
  
'''(H10.17)'''
+
:Guardrail delineators shall be attached to the top of the guardrail and shall similarly use the delineator details of Missouri Standard Plan 617.10, except that the delineator body shall be attached to the top of the cap rail using galvanized anchorage as shown on Missouri Standard Plan 606.00. <u>Delineators on bridges with two-lane, two-way traffic shall have retroreflective sheeting on both sides.</u>  Guardrail delineators will be considered completely covered by the contract unit price for <u>Bridge Guardrail (W-Beam)</u>, <u>Bridge Guardrail (Thrie Beam).</u>
:(<math>\, *</math>) The M1 and M2 bar combination may be furnished as one bar, as shown, at the contractor's option. (All dimensions are out to out.)
 
  
'''(H10.18)'''
+
'''(H9.1c) Use for temporary bridges.''' (See [[751.50 Standard Detailing Notes#(H10.7.1) Notes shall be used on all barrier curbs|Note H10.7.1]] Guidance for using Part Note for Delineation Sheeting Requirements.)
:Concrete in the barrier curb (Type D) and median barrier curb Transition (Type D) shall be Class B-1.
 
  
==== H10b. Slip Form Option ====
+
:Guardrail delineators shall be attached to the top of the bridge guardrail and shall similarly use the delineator details of Missouri Standard Plan 617.10, except that the delineator body shall be attached to the top of the cap rail using galvanized anchorage as shown on Missouri Standard Plan 606.00. Delineators on bridges with two-lane, two-way traffic shall have retroreflective sheeting on both sides. Cost of supplying and installing new delineators will be considered completely covered by other pay items. Delineators shall be stored with bridge guardrail after use.  
  
'''Optional slip form barrier curb details shall be placed on all jobs (except P/S Double-tee Structures) where applicable.'''
+
'''(H9.2)'''
 +
:Panel lengths of channel members shall be attached continuously to a minimum of four posts and a maximum of six posts (except at end bents).
  
'''Add #5 crisscross bars for slip-form option. Base the length of these bars on the shortest distance between joints and use typically on each side of joints throughout structure.'''
+
'''(H9.3) Include reinforcement with new bridges except double-tees and temporary bridges. Include elastomeric material when a base plate is used except for temporary bridges. Use “other items” for temporary bridges. '''
  
'''(H10.81)'''
+
:All bolts, nuts, washers, <u>and</u> plates<u>,</u> <u>and</u> reinforcement <u>and elastomeric material</u> will be considered completely covered by the contract unit price for <u>Bridge</u> <u>Guardrail (W-Beam)</u> <u>Bridge Guardrail (Thrie Beam)</u> <u>other items</u>.
:Joint sealant and backer rods shall be used on all slip-form barrier curbs <u>(Type C)</u> instead of joint filler and shall be in accordance with Sec 717 for silicone joint sealant for saw cut and formed joints <u>(except at end of slab of the end bents)</u>.
 
  
'''(H10.82)'''
+
'''(H9.4) Use underlined part for temporary bridges.'''
:Plastic waterstop shall not be used with slip-form option.
+
:All steel connecting bolts and fasteners for posts and railing, and all anchor bolts, nuts, washers and plates shall be galvanized after fabrication <u>except for bottom plate</u>.  Protective coating and material requirement of steel railing shall be in accordance with Sec 1040.
  
'''(H10.83)'''
+
'''(H9.5) Use post instead of blockout for temporary bridges'''.
:For Slip-Form Option, all sides of the <u>safety</u> <u>median</u> barrier curb <u>(Type C)</u> <u>(Type D)</u> shall have a vertically broomed finish and the curb top shall have a transversely broomed finish.
+
:Rail posts shall be set perpendicular to roadway profile grade, vertically in cross section and aligned in accordance with Sec 713 except that the rail posts shall be aligned by the use of 3 x 1 3/4-inch shims such that the post deviates not more than 1/2 inch from true horizontal alignment after final adjustment.  The shims shall be placed between the <u>blockout</u> <u>post</u> and the thrie beam rail. The thickness of the shims shall be determined by the contractor and verified by the engineer before ordering material for this work.
  
'''(H10.84)'''
+
'''(H9.6) Use only when a base plate is used except for temporary bridges.'''
:C Bars (Slip-form option only) shall be used in addition to cast-in-place conventional forming reinforcement for bridge <u>safety</u> <u>median</u> barrier curb <u>(Type C)</u> <u>(Type D)</u>.
 
  
'''(H10.85)'''
+
:Rail posts shall be seated on 1/16-inch elastomeric pads having the same dimensions as the post base plate. Such pads may be any elastomeric material, plain or fibered, having hardness (durometer) of 50 or above, as certified by the manufacturer. Additional pads or half pads may be used in shimming for alignment. Post heights shown will increase by the thickness of the pad.  
:Cost of silicone joint sealant and backer rod complete-in-place will be considered completely covered by the contract unit price for <u>Safety</u> <u>Median</u> Barrier Curb <u>(Type C)</u> <u>(Type D)</u>.
 
  
'''(H10.86)'''
+
'''(H9.7)'''
:The curb shall be cured by application of Type 1-D or Type 2 Liquid Membrane-Forming Compound in accordance with Sec 1055. Surface sealing for concrete in accordance with Sec 703 is not required. Application of linseed oil at the contractor's expense is permitted.
+
:At the expansion slots in the thrie beam rails and channels, the bolts shall be tightened and backed off one-half turn and the threads shall be burred.
  
==== H10c. Temporary ====
+
'''(H9.8) Use post instead of blockout for temporary bridges. '''
 +
:At the thrie beam connection to <u>blockout</u> <u>post</u> on wings, the bolts shall be tightened and backed off one-half turn and the threads shall be burred.
  
'''(H10.90)'''
+
'''(H9.9)'''
:Method of attachment for the Type F Temporary Barrier shall be <u>the Tie-Down Strap</u> <u>Bolt through deck</u>.
+
:Minimum length of thrie beam sections is equal to one post space.
  
'''(H10.91)'''
+
'''(H9.10)'''
:Temporary Barrier shall not be attached to the bridge.
+
:A 5/8-inch diameter button-head, oval shoulder bolt with a minimum 3/8-inch thick hex nut shall be used at all slots.  
  
=== H11. Miscellaneous ===
+
'''(H9.11)'''
 +
:Thrie beam guardrail on the bridge shall be 12-gauge steel.
  
'''Construction Joint'''
+
'''(H9.12)  Use top plates instead of cap rail angles for temporary bridges.'''
 +
:Posts, <u>cap rail angles,</u> <u>top plates,</u> <u>base</u> <u>bent</u> <u>post</u> plates, channels and channel splice plates shall be fabricated from ASTM A709 Grade 36 steel and galvanized.
 +
<div id="(H9.13) Use for placement"></div>
  
'''(H11.1)'''
+
'''(H9.13) Use for placement or replacement of end treatment with thrie beam rail.'''
:Finish each side of joint with a 1/4 inch radius edging tool.
+
:<u>Cost for providing holes for new guardrail attachment will be considered completely covered by the contract unit price for other items.</u>
  
 +
'''(H9.15)  Use post instead of blockout for temporary bridges.'''
 +
:Flat washers 3 x 1 3/4 x 3/16-inch minimum shall be used at all post bolts between the bolt head and beam. The washers shall be rectangular in shape with an 11/16 x 1-inch slot, or when necessary of such design as to fit the contour of the beam.  Rectangular washers 3 x 1 3/4 x 5/8-inch shall be used between the <u>blockout</u> <u>post</u> and the thrie beam rail.
  
'''Pin and Flat Hexagonal Nut'''
+
'''(H9.16)'''
 +
:Special drilling of the thrie beam may be required at the splices.  All drilling details shall be shown on the shop drawings.
  
'''(H11.2)'''
+
'''(H9.17''')
:{|cellpadding="0"
+
:Fabrication of structural steel shall be in accordance with Sec 1080.
|Material:||Pin = ASTM A688 (Class F)
 
|-
 
|&nbsp;||Nut = ASTM A709 Grade 36
 
|}
 
  
 +
'''(H9.18) Do not use for prestressed double-tee or temporary bridges.'''
 +
:Expansion splices in the thrie beam rail shall be made at either the first or second post on either side of the joint and on structure at bridge ends.  When the splice is made at the second post, an expansion slot shall be provided in the thrie beam rail for connection to the first post to allow for movement.
  
'''Plastic Waterstop (Use in the Curb and Parapet filled joints as specified in [[751.12_Protective_Barricades#751.12.2.8_Plastic_Waterstop|Section 751.12.2.8 Plastic Waterstop]])'''
+
'''(H9.19) Do not use for prestressed double-tee or temporary bridges.'''
 +
:In addition to the expansion provisions at the expansion joints, expansion splices in the thrie beam rail and the channel shall be provided at other locations so that the maximum length without expansion provisions does not exceed 200 feet.
  
'''(H11.3)'''
 
:Plastic waterstop shall be placed in all <u>safety</u> <u>median</u> barrier curb <u>(Type C)</u> <u>(Type D)</u> filled joints, except structures with superelevation, use on all lower barrier curb joints only.
 
  
'''(H11.4)'''
+
'''Do not use Notes H9.20 thru H9.29 for temporary bridges. '''
:Cost of plastic waterstop, complete-in-place, will be considered completely covered by the contract unit price for <u>Concrete</u> <u>Safety</u> <u>Median</u> <u>Barrier Curb</u> <u>(Type C)</u> <u>(Type D)</u>.
 
  
 +
'''(H9.20) Use for prestressed double-tee bridges. '''
 +
:Expansion splices in the thrie beam rail and the channel shall be provided at locations so that the maximum length without expansion provisions does not exceed 200 feet.
  
'''Sign Supports'''
+
'''(H9.21)'''
 +
:Shim plates 6 x 6 x 1/16-inch may be used between the top of the post and the channel member as required for vertical alignment.
  
'''(H11.5)'''
+
'''(H9.22) Place near Part Section at Rail Post. '''
:Payment for furnishing and placing anchor bolts for sign supports will be considered completely covered by the contract unit price for other items.
+
:See slab sheet for rail post spacing.
  
'''(H11.6)'''
+
'''(H9.23)'''
:Payment for furnishing and erecting approximately <u>&nbsp;&nbsp;&nbsp;</u> pounds of steel for sign supports will be considered completely covered by the contract lump sum price for Fabricated Sign Support Brackets.
+
:See Missouri Standard Plan 606.00 for details not shown.
  
 +
'''(H9.24) Place near detail of bent bolt used for new bridges except double tees. '''
 +
:Bolt shall not be bent in slab depths greater than 14 inches, use 12 inches straight embedment.
  
'''Plan of Slab: All Structures'''
+
'''(H9.25) Place near details of shim plates used for horizontal alignment of State System 3. '''
 +
:Shim plates 6 x 3 x 1/16-inch may be used between the W6x20 post and 1/2-inch bent plate connection as required for horizontal alignment.
  
'''(H11.8)'''
+
'''(H9.26) Place in General Notes and near details of shim plates used for horizontal alignment.'''  
:Longitudinal slab dimensions are measured horizontally.
+
:Shim plates shall be galvanized after fabrication.  
  
 +
'''(H9.27) Place near details of shim plates used for horizontal alignment of State System 4. '''
 +
:Shim plates 6 x 6 x 1/16-inch may be used between the W6x20 post and 6 x 6 x 3/8-inch plate. Shim plates 6 x 3 1/2 x 1/16-inch may be used between the W6x20 post and 1/2-inch bent plate connection as required for horizontal alignment.
  
'''Pedestrian Guard Fence (Chain Link Type): General Notes'''
+
'''(H9.28) Place near detail specifying bar support at bent plates. '''
 +
:Bar supports shall be Beam Bolsters (BB-ref. CRSI) and shall be galvanized. See Sec 706.
  
'''(H11.10)'''
 
:Pedestrian guard fence (Chain link type) shall be in accordance with Sec 1043 except all fabric shall have the top and bottom edges knuckled.
 
  
'''(H11.11)'''
+
'''Remaining notes are only for temporary bridges except for Note H9.32 which is also used for rehabilitation of existing bridges and Note H9.34 which is used for all bridge types.'''
:All rail post shall be vertical. Grout of 1/2" minimum thickness shall be placed under floor plates to provide for vertical alignment of rail posts.
 
  
'''(H11.12)'''
+
'''(H9.31)'''
:Payment for furnishing, galvanizing and erecting the fence and frame complete with anchor bolts and washers will be considered completely covered by the contract unit price for (72 in.) Pedestrian Fence (Structures) per linear foot.
+
:If Type A guardrail is not attached to ends of the temporary structure, flared ends shall be required.  The existing thrie beam rails shall be modified to accept flared ends. Cost for furnishing and installing flared ends will be considered completely covered by the contract unit price for other items.
  
'''(H11.13)'''
+
'''(H9.32)'''
:Dimensions of pedestrian guard fence are measured horizontally.
+
:Contractor shall verify all dimensions in field before ordering materials.
  
'''(H11.14)'''
+
'''(H9.33) Place near Part Section at Rail Post. '''
:The maximum spacing allowed for the braced panels (Pull posts) is 100 ft.
+
:See preceding sheet for rail post spacing.
  
'''(H11.15)'''
+
'''(H9.34) Place in General Notes or near Elevation of Thrie Beam Rail. '''
:Connect the lower end of the 1/2"&oslash; rod to the end of the braced panel to which the stretcher bar is attached.
+
:At bridge ends for head to head traffic, guardrail shall be used at all four corners and for single directional traffic, guardrail shall be used at entrance ends only unless required at the exit.
  
'''(H11.16)'''
+
'''(H9.35) Place near any detail specifying the bottom plate of the rail posts. '''
:(112 in.) Curved Top Pedestrian Fence (Structures) will be measured to the nearest linear foot for each structure measured along the bottom outside edge of the <u>sidewalk</u> <u>curb</u> from <u>&nbsp;&nbsp;&nbsp;&nbsp;</u> to <u>&nbsp;&nbsp;&nbsp;&nbsp;</u>.
+
:Bottom plate shall be fabricated from ASTM A709 Grade 50W steel and welded to two 5" floor bars.  Bottom plate shall not be galvanized.
  
'''(H11.17)'''
+
'''(H9.36) Place near any detail specifying both the bottom and base plate of the rail posts. '''
:Core wire size for wire fabric shall be 6 gage minimum.
+
:The size of the base and bottom plate may be increased depending on which grid option is used.
  
 +
'''(H9.37) Place near any detail specifying the welding of post to base plate of the rail posts. '''
 +
:Optional welding of the post to the base plate, in lieu of the weld shown, is a 5/16" fillet weld all around, including the edges of the post flanges.
  
'''Sidewalks'''
+
'''(H9.38) Place near any detail specifying the semi-circular notches of the rail posts.  '''
 +
:Semi-circular notches centered on the axis of the post web ends may be made to facilitate galvanizing.
  
'''(H11.20)'''
+
:Guardrail delineators shall be attached to the top of the bridge guardrail and shall similarly use the delineator details of Missouri Standard Plan 617.10, except that the delineator body shall be attached to the top of the cap rail using galvanized anchorage as shown on  Missouri Standard Plan 606.00.  <u>Delineators on bridges with two-lane, two-way traffic shall have retroreflective sheeting on both sides.</u>  Cost of supplying and installing new delineators will be considered completely covered by other pay items.  Delineators shall be stored with bridge guardrail after use.
:All exposed edges of sidewalk shall have either a 1/2" radius or a 3/8" bevel, unless otherwise noted.  
 
  
'''(H11.21)'''
+
=== H10. Barrier Curbs – Safety, Median, Type C and D===
:Payment for all concrete and reinforcement complete-in-place will be considered completely covered by the contract unit price for Sidewalk (Bridges) per sq. foot.
 
  
'''(H11.22)'''
+
==== H10a. Conventional-Formed Barrier====
:Concrete in the sidewalk shall be Class B-2.
 
  
'''(H11.23)'''
+
'''The following notes shall be placed in the General Notes on the elevation sheet of the conventional-formed details.'''
:Measurement of the sidewalk is to the nearest square foot for each structure, measured horizontally from the outside face of safety barrier curb to the outside edge of sidewalk and from end of slab to end of slab.
 
  
 +
'''(H10.1)'''
 +
:Top of <u>safety</u> <u>median</u> barrier curb <u>(Type C)</u> <u>(Type D)</u> <u>and median barrier curb transition (Type C)</u> shall be built parallel to grade with barrier curb joints <u>(except at end bents)</u> normal to grade.
  
'''Expansion Device Movement Gauge'''
+
'''(H10.2)'''
 +
:All exposed edges of <u>safety</u> <u>median</u> barrier curb <u>(Type C)</u> <u>(Type D)</u> <u>and median barrier curb transition (Type C)</u> shall have either a 1/2-inch radius or a 3/8-inch bevel, unless otherwise noted.
  
'''(H11.24)'''
+
'''(H10.3)'''
:A movement gauge shall be provided on one side of bridge at all safety barrier curb expansion joints.
+
:Payment for all concrete and reinforcement, complete in place, will be considered completely covered by the contract unit price for <u>Safety</u> <u>Median</u> Barrier Curb <u>(Type C)</u> <u>(Type D)</u> per linear foot.
  
'''(H11.25)'''
+
'''(H10.4)'''
:All steel shall be galvanized.
+
:Concrete in the <u>safety</u> <u>median</u> barrier curb <u>(Type C)</u> <u>(Type D)</u> <u>and median barrier curb transition (Type C)</u> shall be Class B-1.
  
'''(H11.26)'''
+
'''(H10.5) Use for safety barrier curb or barrier curb (Type D) ending over wing walls. '''
:Cost of movement gauge complete-in-place will be considered completely covered by the contract unit price for Safety Barrier Curb.
+
:Measurement of <u>safety</u> <u>(Type D)</u> barrier curb is to the nearest linear foot <u>for each structure</u>, measured along the outside top of slab from end of wing to end of wing.
  
== I. Revised Structures Notes ==
+
'''(H10.6) Use for safety barrier curb or barrier curb (Type D) not ending over wing walls (two separate curbs used as a median or when wings are flared). '''
 +
:Measurement of <u>safety</u> barrier curb <u>(Type D)</u> is to the nearest linear foot for each structure, measured along the outside top of slab from <u>end of slab to end of slab</u> <u>Measurement of median barrier curb transition (Type C) is to the nearest linear foot for each structure measured along the top of slab at centerline median from centerline sleeper slab to end of slab.</u>
  
 +
'''(H10.7) Use for median barrier curb and median barrier curb (Type C).'''
 +
:Measurement of median barrier curb <u>(Type C)</u> is to the nearest linear foot for each structure, measured along the top of slab at centerline median from <u>end of slab to end of slab</u> <u>centerline sleeper slab to centerline sleeper slab</u>.
 +
<div id="(H10.7.1) Notes shall be used on all barrier curbs"></div>
 +
'''(H10.7.1) Use for all barrier curbs (See [[620.5 Delineators (MUTCD Chapter 3F)#620.5.6 Barrier Wall Delineation|Barrier Wall Delineation]]).'''
  
=== I1. General ===
+
:Concrete traffic barrier delineators shall be placed on top of the <u>safety</u> <u>median</u> barrier curb <u>(Type C)</u> <u>(Type D)</u> <u>and median barrier curb transition (Type C)</u> as shown on Missouri Standard Plans 617.10 and in accordance with Sec 617. <u>Delineators on bridges with two-lane, two-way traffic shall have retroreflective sheeting on both sides.</u> Concrete traffic barrier delineators will be considered completely covered by the contract unit price for <u>Safety</u> <u>Median</u> Barrier Curb <u>(Type C)</u> <u>(Type D)</u>.  
  
'''(I1.1)'''
+
{|style="padding: 0.3em; margin-left:10px; border:1px solid #a9a9a9; text-align:left; font-size: 95%; background:#f5f5f5" width="760px" align="center"
:Outline of old work is indicated by light dashed linesHeavy lines indicate new work.
+
|-
 +
|Below is additional guidance for using Part Note for Delineation Sheeting Requirements:  
 +
|-
 +
|Bridges with two-lane, two-way traffic shall have retroreflective sheeting on both sides of the delineators.  For two-lane, one-way traffic, retroreflective sheeting may be on one side only unless crossroad or entranceway traffic is just beyond exit to bridge and wrong way driving is to be discouraged with retroreflective sheeting on both sides of the delineators, (white and red in this case). "Delineators on bridges with two-lane, two-way traffic shall have retroreflective sheeting on both sides" may be modified, as required. For median barrier curbs, retroreflective sheeting should be used on both sides of the delineators where there is not more than four lanes divided.
 +
|-
 +
|On bridges with more than two lanes, retroreflective sheeting is not required on both sides of the delineatorsThe perception of a narrowing roadway at the bridge is of lesser consequence in terms of requiring guidance devices and does not warrant retroreflective sheeting on both sides of the delineators. "Delineators on bridges with two-lane, two-way traffic shall have retroreflective sheeting on both sides" may be removed at the discretion of the design team.
 +
|}
  
'''(I1.2)'''
+
'''(H10.7.2) Use underlined part for median barriers. '''
:Contractor shall verify all dimensions in field before ordering new material.
+
:Joint sealant and backer rods shall be in accordance with Sec 717 for silicone joint sealant for saw cut and formed joints <u>(except at end of slab of the end bents)</u>.
  
'''(I1.3)'''
+
'''(H10.7.3) '''
:Bars bonded in old concrete not removed shall be cleanly stripped and embedded into new concrete where possible.  If length is available, old bars shall extend into new concrete at least 40 diameters for smooth bars and 30 diameters for deformed bars, unless otherwise noted.
+
:Plastic waterstop shall not be used with saw cut joints.
  
  
'''Use the following notes where a broken concrete surface has no new concrete against it.  Use bituminous paint below ground line and qualified special mortar above ground line.'''
+
'''The following notes shall be placed under cross-section thru barrier.'''
  
'''(I1.4)'''
+
'''(H10.8)'''
:The area exposed by the removal of concrete and not covered with new concrete shall be coated with an approved <u>bituminous paint</u> <u>qualified special mortar in accordance with Sec 704</u>.
+
:Use a minimum lap of 3'-1" for #5 horizontal <u>safety</u> <u>median</u> barrier curb <u>(Type C)</u> <u>(Type D)</u> bars.
 +
 
 +
'''(H10.9) Areas shown are for standard barrier heights and a 2 percent cross-slope. '''
 +
:The cross-sectional area <u>for each curb</u> above the slab = <u>*</u> sq. ft.
 +
 
 +
:{|
 +
|*||2.27 for a 16" safety barrier curb.
 +
|-
 +
|||2.98 for a median barrier curb.
 +
|-
 +
|||3.52 for a barrier curb (Type D).
 +
|-
 +
|||3.59 for a barrier curb (Type D) used as a median.
 +
|-
 +
|||4.69 for a median barrier curb (Type C).
 +
|}
  
'''(I1.5) Use with joint filler joints with Asphaltic Concrete Wearing Surface.'''
 
:Joint shall be cleaned per the manufacturers recommendations. Cost of Concrete and Asphalt Joint Sealer and Backer Rod will be considered completely covered by contract unit price per other items included in the contract.
 
  
 +
'''The following notes shall be used for double-tee structures.'''
  
'''Concrete Slab with Overlay'''
+
'''(H10.10)'''
 +
:Coil inserts shall have a concrete ultimate pullout strength of not less than 36,000 pounds in 5000 psi concrete and an ultimate tensile strength of not less than 36,000 pounds.
  
'''(I1.10) Use note for all wearing surfaces except epoxy polymer concrete overlay.'''
+
'''(H10.11)'''
:In order to maintain grade and a minimum thickness of overlay as shown on plans it may be necessary to use additional quantities of overlay at various locations throughout the structureThe cost of furnishing and installing the overlay will be considered completely covered in the contract unit price, including all additional labor, materials or equipment for variations in thickness of overlay.
+
:Threaded coil rods shall have an ultimate capacity of 36,000 poundsAll coil inserts and threaded coil rods shall be galvanized in accordance with ASTM A153.
  
'''(I1.10a) Use note for total surface hydrodemolitions.'''
+
'''(H10.12)'''
:In order to maintain grade and a minimum thickness of overlay as shown on plans it may be necessary to use additional quantities of overlay at various locations throughout the structure.  See Special Provisions for Method of Measurement.
+
:Payment for furnishing and installing coil inserts and threaded coil rods will be considered completely covered by the contract unit price for <u>Safety</u> <u>Median</u> Barrier Curb <u>(Type C)</u> <u>(Type D)</u>.
  
'''(l1.11)  Use note for only epoxy polymer concrete overlay.'''
 
:The contractor shall exercise care to ensure spillage over joint edges is prevented and that a neat line is obtained along any terminating edge of the epoxy polymer concrete.
 
  
'''(l1.12)  Use note only with preventive maintenance jobs.'''
+
'''The following notes, when appropriate, shall be placed under the title of the elevation of barrier of the conventional-formed details. '''
:Concrete for repairing concrete deck shall be a qualified special mortar in accordance with Sec 704 instead of the Class B-2 or B-1 concrete.
 
  
'''(I1.13) Use the following table and notes with alternate concrete wearing surfaces.'''
+
'''(H10.12.1)'''
:{|border="0" style="text-align:center;" cellpadding="5" cellspacing="0"
+
:Longitudinal dimensions are <u>horizontal</u> <u>arc dimensions</u>.
|-
 
!colspan="2" style="border-top:3px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:3px solid black"|Alternate Concrete Wearing Surface
 
|-
 
!style="border-top:1px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:1px solid black"|Type of Concrete Wearing Surface
 
!style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:3px solid black"|Type Used<br/>(<math>\sqrt{}</math>)
 
|-
 
|align="left" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black;"|Low Slump Concrete Wearing Surface
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|&nbsp;
 
|-
 
|align="left" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black;"|Silica Fume Concrete Wearing Surface
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|&nbsp;
 
|-
 
|align="left" style="border-top:1px solid gray; border-bottom:3px solid black; border-left:3px solid black; border-right:1px solid black;"|&nbsp;
 
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:3px solid black"|&nbsp;
 
|-
 
|align="left" colspan="2"|MoDOT construction personnel shall complete column labeled "Type Used (<math>\sqrt{}</math>)".
 
|-
 
|align="left" colspan="2"|The contractor shall select one of the alternate concrete wearing surfaces<br/>listed in the table.  The alternate concrete wearing surface method of<br/>measurement and basis of payment shall be in accordance with Sec 505.
 
|}
 
  
 +
'''(H10.12.2)'''
 +
:Longitudinal dimensions are along top of <u>safety barrier curb</u> <u>outside</u> <u>edge of slab</u> parallel to grade.
  
'''Removal and Storage of Existing Bridge Rails'''
+
'''The following reference notes shall be placed under the permissible alternate bar shape detail.'''
  
'''(I1.20)'''
+
'''(H10.13) Use R2 for Type D curbs, R3 for safety barrier curbs and M2 for two separate Type D curbs used as a median. '''
:The existing bridge rails <u>and posts</u> shall be stored at a location as designated by the engineer on the MoDOT Maintenance Lot at <u>&nbsp;&nbsp;&nbsp;&nbsp;</u>.
+
:<math>\, **</math> The <u>R2</u> <u>R3</u> <u>M2</u> bar and #5 bottom transverse slab bar in cantilever (P/S panels only) combination may be furnished as one bar as shown, at the contractor's option.
  
 +
'''(H10.14) Use R1 for safety barrier curbs and Type D curbs. Use M1 for two separate Type D curbs used as a median.'''
 +
:(<math>\, *</math>) The <u>R1</u> <u>M1</u> bar may be separated into two bars as shown, at the contractor's option, only when slip forming is not used. (All dimensions are out to out.)
 +
<div id="Place general notes H10.19,"></div>
 +
'''Place general notes H10.19, H10.20 and H10.7.1 on the barrier at end bents sheet with notes H10.19 and H10.20 under the Reinforcing Steel heading. '''
  
'''Extension of Box Culverts'''
+
'''(H10.19)'''
  
'''(I1.41)'''
+
:Minimum clearance to reinforcing steel shall be 1 1/2" except as shown for bars embedded into end bent.  
:Bottom of top slab, top of bottom slab, and inside faces of walls shall be built flush with the old structure.
 
  
'''(I1.42)'''
+
'''(H10.20) Use 2’-7” and K10 bars for barrier ending on wing walls adding K13 bars with two different wing lengths. Will need to add more bars if more than two different wing lengths exists. Use 3’-1” and R6 bars for barrier ending on slabs.'''
:Bottom of new slab shall be built flush with the bottom of slab of the old box and the height of walls varied as necessary to extend the walls into rock as specified.
+
:Use a minimum lap of <u>2'-7"</u> <u>3’-1”</u> between K9 and <u>K10 or K13</u> <u>R6</u> bars.  
  
 +
'''(H10.21) Place note under the K1-K2 Bar Permissible Alternate Shape Detail on the barrier at end bents sheet. '''
 +
:The K1 and K2 bar combination may be furnished as one bar as shown, at the contractor's option.
  
'''Making End Bents Integral'''
+
==== H10b. Slip-Formed Barrier====
  
'''(I1.51)'''
+
'''Optional slip-formed barrier curb details shall be placed on all jobs (except P/S Double-tee Structures) where applicable. Add #5 crisscrossed bars for slip-formed option. Determine the length of these bars using the shortest distance between joints and use on each side of joints. '''
:The exposed and accessible surfaces of the existing structural steel and bearings that will be encased in concrete shall be cleaned with a minimum of SSPC-SP-2 surface preparation before concrete is poured. Payment for cleaning steel to be encased in concrete will be considered completely covered by the contract unit price for <u>Class B-2 Concrete</u> <u>Slab on Steel</u>.
 
  
'''(I1.52)'''
+
'''(H10.83) Place in the General Notes of the optional slip-formed details after Notes H10.1, H10.2, H10.3, H10.4, H10.5 or H10.6 or H10.7, H10.7.1, H10.7.2, and H10.7.3. '''
:The ___ bars are segmented bars for ease of placement of bars through girder web holes between girders. The total bar lengths for ___ bars shown in Bill of Reinforcing Steel allow for one splice with a lap splice length of ___. Actual bar segment lengths to be determined by contractor for ease of installing bars. The contractor may use a mechanical bar splice in lieu of a lap splice. When a mechanical bar splice is used, the actual bar segment lengths will be determined by the contractor to accommodate manufacturer's recommendations for installation and ease of construction. The cost of furnishing and installing the bar splices will be considered completely covered by the contract unit price for Reinforcing Steel. No adjustment of the quantity of reinforcing steel will be allowed for the use of mechanical bar splices.
+
:For slip-formed option, all sides of the <u>safety</u> <u>median</u> barrier curb <u>(Type C)</u> <u>(Type D)</u> shall have a vertically broomed finish and the curb top shall have a transversely broomed finish.
  
'''(I1.53)'''
+
==== H10c. Precast Temporary Barrier====
:Cost of field drilling holes in existing <u>plate girder</u> <u>wide flange beam</u> webs will be considered completely covered by the contract unit price for <u>Class B-2 Concrete</u> <u>Slab on Steel</u>.
 
  
'''Curb Block-Out'''
+
'''(H10.90)'''
 +
:Method of attachment for the Type F temporary barrier shall be <u>the tie-down strap</u> <u>bolt through deck</u>.
  
'''(I1.60)'''
+
'''(H10.91)'''
:7/8"&oslash; Threaded Rods with nuts and washers shall be used in place of 7/8"&oslash; Bolts (ASTM A307).
+
:Temporary barrier shall not be attached to the bridge.
  
'''(I1.61)'''
+
=== H11. Miscellaneous ===
:1"&oslash; holes shall be drilled through existing end post for placement of 7/8"&oslash; threaded rods, nuts, and washers.
 
  
 +
'''Construction Joint'''
  
'''Widening'''
+
'''(H11.1)'''
 +
:Finish each side of joint with a 1/4 inch radius edging tool.
  
'''(I1.62)'''
 
:Dimensions:
 
:&nbsp; &nbsp; &nbsp; Longitudinal dimensions are based on the original design plans.
 
  
'''(I1.63)'''
+
'''Pin and Flat Hexagonal Nut'''
:Traffic:
 
:&nbsp; &nbsp; &nbsp; Maintain one lane of traffic during construction (see Roadway Traffic Control Plans).
 
  
'''(I1.64''')
+
'''(H11.2)'''
:Stringer Support:
+
:{|cellpadding="0"
:&nbsp; &nbsp; &nbsp; All existing stringers in the span being strengthened shall be raised simultaneously <math>\, *</math> at jacking point and supported during welding of new steel plates.
+
|Material:||Pin = ASTM A668 (Class F)
 +
|-
 +
|&nbsp;||Nut = ASTM A709 Grade 36
 +
|}
  
'''(I1.65)'''
 
:The temporary supports must be capable of safely supporting a service load of approximately <math>\, **</math> tons per stringer (factor of safety not included) (see Special Provisions).
 
  
'''(I1.66)'''
+
'''Plastic Waterstop (Use in the Curb and Parapet filled joints as specified in [[751.12_Protective_Barricades#751.12.2.8_Plastic_Waterstop|EPG 751.12.2.8 Plastic Waterstop]])'''
:<math>\, *</math> Scarification not required for Asphaltic Concrete Wearing Surface and Epoxy Polymer Concrete Overlay.
 
  
=== I2. Resin & Cone Anchors ===
+
'''(H11.3)'''
 +
:Plastic waterstop shall be placed in all formed joints, except structures with superelevation, use on lower joints only.
  
'''Use Resin Anchors unless concrete depths are insufficient.'''
+
'''(H11.4)'''
 +
:Cost of plastic waterstop, complete in place, will be considered completely covered by the contract unit price for <u>Safety</u>  <u>Barrier Curb</u> <u>(Type D)</u>.
  
'''(I2.1)'''
 
:The contractor shall use one of the qualified resin anchor systems in accordance with Sec 1039.
 
  
'''(I2.2)  * Pay item in which resin anchor system is embedded.'''
+
'''Sign Supports'''
:Cost of furnishing and installing the resin anchor system complete-in-place will be considered completely covered by the contract unit price for <u>*</u>.
 
  
'''(I2.3)'''
+
'''(H11.5)'''
:The minimum embedment depth in concrete with <math>\, f'_c</math> = 4,000 psi for the resin anchor system shall be that required to meet the minimum ultimate pullout strength in accordance with Sec 1039 but shall not be less than 5".
+
:Payment for furnishing and placing anchor bolts for sign supports will be considered completely covered by the contract unit price for other items.
  
'''Note to designer:'''<br/>A minimum factor of safety of 2 should be used when determining the number of anchors to be used.
+
'''(H11.6)'''
 +
:Payment for furnishing and erecting approximately <u>&nbsp;&nbsp;&nbsp;</u> pounds of steel for sign supports will be considered completely covered by the contract lump sum price for Fabricated Sign Support Brackets.
  
'''(I2.4)(Use when reinforcing steel is substituted for the threaded rod stud.)'''
 
:<u>A</u> <u>An epoxy coated</u> #<u>****</u> Grade 60 reinforcing bar <u>*****</u> long shall be substituted for the <u>******</u.>&oslash; threaded rod.
 
  
{|
+
'''Plan of Slab: All Structures'''
|****||Bar size.
 
|-
 
|*****||Length of bar required by design.
 
|-
 
|******||Diameter of threaded rod.
 
|}
 
  
 +
'''(H11.8)'''
 +
:Longitudinal slab dimensions are measured horizontally.
  
'''Cone Expansion Anchors'''
 
  
'''(I2.30) ***  Pay item in which cone expansion anchor is embedded.'''
+
'''Pedestrian Guard Fence (Chain Link Type): General Notes'''
:Cost of furnishing and installing cone expanson anchor will be considered completely covered by the contract unit price for <u>***</u>.
 
  
'''(I2.31)'''
+
'''(H11.10)'''
:The <u>*</u>" diameter cone expansion anchors shall have a minimum ultimate pullout strength of <u>**</u> lbs. in concrete with <math>\, f'_c</math> = 4,000 psi.
+
:Pedestrian guard fence (Chain link type) shall be in accordance with Sec 1043 except all fabric shall have the top and bottom edges knuckled.
  
{|style="text-align:center;"
+
'''(H11.11)'''
|-
+
:All posts shall be vertical. Grout of 1/2" minimum thickness shall be placed under floor plates to provide for vertical alignment of posts.
|width="100pt"|* DIAMETER||width="100pt"|** PULLOUT
 
|-
 
|3/8"||3,900
 
|-
 
|1/2"||7,500
 
|-
 
|5/8"||10,800
 
|-
 
|3/4"||12,000
 
|}
 
  
=== I3. Special Repair Zones ===
+
'''(H11.12)'''
 +
:Payment for furnishing, galvanizing and erecting the fence and frame complete with anchor bolts and washers will be considered completely covered by the contract unit price for (72 in.) Pedestrian Fence (Structures) per linear foot.
  
'''(I3.1)'''
+
'''(H11.13)'''
:Any half-soling required in the areas designated as special repair zones shall be completed in alphabetical sequence.  Any repair in the remainder of the bridge that is adjacent to Zone A and not designated as a special repair zone shall be completed prior to work in Zone A.
+
:Dimensions of pedestrian guard fence are measured horizontally.
  
'''(I3.2)'''
+
'''(H11.14)'''
:Removal and repair shall be completed in one special repair zone and concrete shall have attained a compressive strength of 3200 psi before work can be started in the next special repair zone.  Before placing concrete in areas adjacent to areas of subsequent repair, the concrete shall be separated with a material such as polyethylene sheets to aid in removal of old concrete.
+
:The maximum spacing allowed between pull post and end posts is 100 ft. Post brace and 1/2" Ø truss rod are required for panels adjacent to pull post and end posts only.
  
'''(I3.5) Use for structures with multiple column bents.'''
+
'''(H11.15)'''
:Zones with the same letter designation may be repaired at the same time.
+
:Connect the lower end of the 1/2" Ø truss rod to the bottom of the pull posts and end posts to which the stretcher bar is attached.
  
'''(I3.6) Use for structures with single column bents.'''
+
'''(H11.16)'''
:Zones with the same letter designation may be repaired at the same time except for the zones directly adjacent to the centerline of bent.  If either of the zones adjacent to centerline of bent has a single repair area of over 10 square feet or a total repair area of over 20 square feet, that zone shall be repaired before removing concrete in the other zone of the same designation at that bent.
+
:(112 in.) Curved Top Pedestrian Fence (Structures) will be measured to the nearest linear foot for each structure measured along the bottom outside edge of the <u>sidewalk</u> <u>curb</u> from <u>&nbsp;&nbsp;&nbsp;&nbsp;</u> to <u>&nbsp;&nbsp;&nbsp;&nbsp;</u>.
  
'''(I3.10) Use for voided or solid slab structures.'''
+
'''(H11.17)'''
:If any single repair area does not exceed 4 square feet in size and the total repair within a special repair zone does not exceed 12 square feet, the special repair zone requirement does not apply for that zone. Any damage sustained to the void tube as a result of the contractor's operations shall be patched or replaced as required by the engineer at the contractor's expense.  
+
:Core wire size for wire fabric shall be 6 gage minimum.
 +
<div id="(H11.19)"></div>
 +
'''(H11.19)'''  Use for ornamental pedestrian fencing.
 +
:The design live load for pedestrian railings shall be in accordance with AASHTO LRFD Bridge Design Specifications except that a uniform load of 50 lb/ft and a concentrated load of 200 lb need not be applied simultaneously. The posts of pedestrian fencing will require both loadings applied simultaneously.
  
'''(I3.11)  Use for voided slab structures.'''
 
:An exposed void in the deck shall be patched as approved by the engineer in a manner that shall maintain the void area completely free of concrete.  Cost of patching an exposed void will be considered completely covered by the contract unit price for repairing concrete deck (half-soling).
 
  
'''(I3.12)  Use for voided slab structures.'''
+
'''Sidewalks'''
:When a deteriorated portion of the void tube is beyond the point of patching as determined by the engineer, the portion of the deteriorated void tube shall be replaced. The void area shall be maintained completely free of concrete. Cutting of the  longitudinal reinforcing steel will not be permitted. The fiber tubes for producing the voids shall have an outside diameter with the wall thickness the same as the existing tubes and anchored at not more than the original spacing. Cost of replacing the void tube will be considered completely covered by the contract unit price for deck repair with void tube replacement.
 
  
 +
'''(H11.20)'''
 +
:All exposed edges of sidewalk shall have either a 1/2" radius or a 3/8" bevel, unless otherwise noted.
  
'''Use following notes for box and deck girder structures.'''
+
'''(H11.21)'''
 +
:Payment for all concrete and reinforcement, complete in place, will be considered completely covered by the contract unit price for Sidewalk (Bridges) per sq. foot.
  
'''(I3.16)'''
+
'''(H11.22)'''
:Total width of full depth repair shall not exceed 1/3 of the deck width at one time.  For any area of deck repair that extends over a concrete girder and is more than 18 inches in length along the girder, the concrete removal shall stop at the centerline of girder and repair completed in this area.  Prior to continuing work in this area, the concrete shall have attained a compressive strength of 3200 psi.  No traffic shall be permitted over the girder that is undergoing repair.
+
:Concrete in the sidewalk shall be Class B-2.
  
'''(I3.17)'''
+
'''(H11.23)'''
:When the full depth repair extends over a diaphragm or girder and the deteriorated concrete extends into the diaphragm or girder, all deteriorated concrete shall be removed and replaced as full depth repair.  Concrete in girders shall not be removed below the deck haunch of the girder without prior review and approval from the engineer.
+
:Measurement of the sidewalk is to the nearest square foot for each structure, measured horizontally from the outside face of safety barrier curb to the outside edge of sidewalk and from end of slab to end of slab.
  
 +
== I. Revised Structures Notes ==
  
'''Use following notes for box girder structures.'''
 
  
'''(I3.20)'''
+
=== I1. General ===
:Interior falsework installed by the contractor resting on the bottom slab shall be removed where entry access is available.
 
  
'''(I3.21)'''
+
'''(I1.1)'''
:If any single repair area does not exceed 9 square feet in size and the total repair within a special repair zone does not exceed 27 square feet, the special repair zone requirement does not apply for that zone.  Half-soling repair in the special repair zone, on either side of the intermediate bents, shall be to a depth that will not expose half the diameter of the longitudinal reinforcing barFull depth repair shall be made when removal of deteriorated concrete exposes half or more of the diameter of the longitudinal reinforcing bar.
+
:Outline of old work is indicated by light dashed linesHeavy lines indicate new work.
  
== J. MSE Wall Notes ==
+
'''(I1.2)'''
 +
:Contractor shall verify all dimensions in field before ordering new material.
  
 +
'''(I1.3)'''
 +
:Bars bonded in old concrete not removed shall be cleanly stripped and embedded into new concrete where possible.  If length is available, old bars shall extend into new concrete at least 40 diameters for plain bars and 30 diameters for deformed bars, unless otherwise noted.
  
=== J1. General ===
 
  
'''(J1.1)'''
+
'''Use the following notes where a broken concrete surface has no new concrete against it.  Use bituminous paint below ground line and qualified special mortar above ground line.'''
:Factor of safety shall be 2.0 for overturning, 1.5 for sliding and 2.0 for bearing.
 
  
'''(J1.2)'''
+
'''(I1.4)'''
:The cost of joint filler and joint seal, complete-in-place, will be considered completely covered by the contract unit price for Concrete Traffic Barrier (Type <u>A</u> <u>D</u>). See Roadway Plans.  
+
:The area exposed by the removal of concrete and not covered with new concrete shall be coated with an approved <u>bituminous paint</u> <u>qualified special mortar in accordance with Sec 704</u>.
  
'''(J1.3)'''
+
'''(I1.5) Use with joint filler joints with Asphaltic Concrete Wearing Surface.'''
:For seismic design the factor of safety shall be 1.5 for overturning and 1.1 for sliding.
+
:Joint shall be cleaned per the manufacturers recommendations. Cost of Concrete and Asphalt Joint Sealer and Backer Rod will be considered completely covered by contract unit price per other items included in the contract.
  
'''(J1.4)'''
 
:&oslash; = <u>&nbsp; &nbsp;</u>&deg; for backfill material to be retained by the mechanically stabilized earth wall system.
 
  
'''(J1.5)'''
+
'''Concrete Slab with Overlay'''
:&oslash; = <u>&nbsp; &nbsp;</u>&deg; for foundation material the wall is to rest on.
 
  
'''(J1.6)'''
+
'''(I1.10) Use note for all wearing surfaces except epoxy polymer concrete overlay.'''
:&oslash; &ge; 34&deg; for the select granular backfill for structural systems.
+
:In order to maintain grade and a minimum thickness of overlay as shown on plans it may be necessary to use additional quantities of overlay at various locations throughout the structure.  The cost of furnishing and installing the overlay will be considered completely covered in the contract unit price, including all additional labor, materials or equipment for variations in thickness of overlay.
  
'''(J1.7)'''
+
'''(l1.11) Use note for only epoxy polymer concrete overlay.'''
:Design &oslash; = 34&deg; for the select granular backfill for structural systems.
+
:The contractor shall exercise care to ensure spillage over joint edges is prevented and that a neat line is obtained along any terminating edge of the epoxy polymer concrete.
  
'''(J1.8)'''
+
'''(l1.12) Use note only with preventive maintenance jobs.'''
:All concrete for leveling pad <u>and coping</u> shall be Class B or B-1 with <math>\, f'_c</math> = 4000 psi.
+
:Concrete for repairing concrete deck shall be a qualified special mortar in accordance with Sec 704 instead of the Class B-2 or B-1 concrete.
 +
 
 +
'''(I1.13) <font color="purple">[MS Cell]</font color="purple"> Use the following table and notes with alternate concrete wearing surfaces.'''
 +
:{|border="0" style="text-align:center;" cellpadding="5" cellspacing="0"
 +
|-
 +
!colspan="2" style="border-top:3px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:3px solid black"|Alternate Concrete Wearing Surface
 +
|-
 +
!style="border-top:1px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:1px solid black"|Type of Concrete Wearing Surface
 +
!style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:3px solid black"|Type Used<br/>(<math>\sqrt{}</math>)
 +
|-
 +
|align="left" style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black;"|Low Slump Concrete Wearing Surface
 +
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|&nbsp;
 +
|-
 +
|align="left" style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black;"|Silica Fume Concrete Wearing Surface
 +
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"|&nbsp;
 +
|-
 +
|align="left" style="border-top:1px solid gray; border-bottom:3px solid black; border-left:3px solid black; border-right:1px solid black;"|&nbsp;
 +
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:3px solid black"|&nbsp;
 +
|-
 +
|align="left" colspan="2"|MoDOT construction personnel shall complete column labeled "Type Used (<math>\sqrt{}</math>)".
 +
|-
 +
|align="left" colspan="2"|The contractor shall select one of the alternate concrete wearing surfaces<br/>listed in the table.  The alternate concrete wearing surface method of<br/>measurement and basis of payment shall be in accordance with Sec 505.
 +
|}
 +
 
 +
 
 +
'''Removal and Storage of Existing Bridge Rails'''
 +
 
 +
'''(I1.20)'''
 +
:The existing bridge rails <u>and posts</u> shall be stored at a location as designated by the engineer on the MoDOT Maintenance Lot at <u>&nbsp;&nbsp;&nbsp;&nbsp;</u>.
  
'''(J1.9)'''
 
:The boring logs or other factual records of subsurface data and investigations performed by the department for the design of this project is available from the Project Contact upon written request.
 
  
'''(J1.10)'''
+
'''Extension of Box Culverts'''
:Panel reinforcement shall be epoxy coated.
 
  
'''(J1.11)'''
+
'''(I1.41)'''
 +
:Bottom of top slab, top of bottom slab, and inside faces of walls shall be built flush with the old structure.
 +
 
 +
'''(I1.42)'''
 +
:Bottom of new slab shall be built flush with the bottom of slab of the old box and the height of walls varied as necessary to extend the walls into rock as specified.
 +
 
 +
<div id="Making End Bents Integral"></div>
 +
'''Making End Bents Integral'''
 +
 
 +
'''(I1.51)'''
 +
:The exposed and accessible surfaces of the existing structural steel and bearings that will be encased in concrete shall be cleaned with a minimum of SSPC-SP-3 surface preparation and coated with a minimum of one coat of gray epoxy-mastic primer (non-aluminum) in accordance with Sec 1081 to produce a dry film thickness of not less than 3 mils before concrete is poured. The surface preparation and coating for girders shall extend a minimum of one foot outside the face of the girder encasement. Payment for cleaning and coating steel to be encased in concrete will be considered completely covered by the contract unit price for <u>Class B-2 Concrete</u> <u>Slab on Steel</u>.
 +
 
 +
'''(I1.52)'''
 +
:The ___ bars are segmented for ease of placement through girder web holes. The total bar length for ___ bars shown in Bill of Reinforcing Steel allows for one lap splice with a length of ___. Actual bar segment lengths to be determined by contractor for ease of installing bars. The contractor may use a mechanical bar splice in lieu of a lap splice. When a mechanical bar splice is used, the actual bar segment length will be determined by the contractor to accommodate manufacturer's recommendations for installation and ease of construction. The cost of furnishing and installing the bar splices will be considered completely covered by the contract unit price for Reinforcing Steel. No adjustment of the quantity of reinforcing steel will be allowed for the use of mechanical bar splices.
 +
 
 +
'''(I1.53)'''
 +
:Cost of field drilling holes in existing <u>plate girder</u> <u>wide flange beam</u> webs will be considered completely covered by the contract unit price for <u>Class B-2 Concrete</u> <u>Slab on Steel</u>.
 +
 
 +
'''Curb Block-Out'''
 +
 
 +
'''(I1.60)'''
 +
:7/8"&oslash; Threaded Rods with nuts and washers shall be used in place of 7/8"&oslash; Bolts (ASTM A307).
 +
 
 +
'''(I1.61)'''
 +
:1"&oslash; holes shall be drilled through existing end post for placement of 7/8"&oslash; threaded rods, nuts, and washers.
 +
 
 +
 
 +
'''In "General Notes:" section of plans, place the following note under the heading "Miscellaneous:" when existing longitudinal dimensions are used.'''
 +
 
 +
'''(I1.62)'''
 +
:Longitudinal dimensions are based on the original design plans.
 +
 
 +
'''In "General Notes:" section of plans, place the following two notes under the heading "Beam Support:" when strengthening existing beams under traffic.'''
 +
 
 +
'''(I1.64''')
 +
:All existing beams in the span being strengthened shall be raised simultaneously Dimension H at jacking point and supported during welding of new steel plates.
 +
 
 +
'''(I1.65)'''
 +
:The temporary supports must be capable of safely supporting a service load of approximately Load J tons per beam (factor of safety not included). See special provisions.
 +
 
 +
'''(I1.66)'''
 +
:<math>\, *</math> Scarification not required for Asphaltic Concrete Wearing Surface and Epoxy Polymer Concrete Overlay.
 +
 
 +
<div id="(I1.67) Field Welding New Stiffeners"></div>
 +
 
 +
'''(I1.67) Field Welding New Stiffeners or New Connection Plates or Cover Plates to Existing Steel'''
 +
 +
:Field welded fillet  welds  shall be NDT by the magnetic particle process as required by AASHTO/AWS D1.5 2002, Bridge Welding Code clause 6.7.2.
 +
 
 +
<div id="Rock Blanket"></div>
 +
 
 +
'''Rock Blanket'''
 +
 +
'''(I1.70) Use note for redecks or in other cases where the rock blanket elevations are not shown on the bridge plans and the top of the rock blanket is required to be flush to the existing ground line in accordance with the Memorandum of Agreement with SEMA.'''
 +
 
 +
:The top of rock blanket shall be flush to the ground line as directed by the engineer. (Roadway Item)
 +
 
 +
=== I2. Resin & Cone Anchors ===
 +
 
 +
'''Use Resin Anchors unless concrete depths are insufficient.'''
 +
 
 +
'''(I2.1)'''
 +
:The contractor shall use one of the qualified resin anchor systems in accordance with Sec 1039.
 +
 
 +
'''(I2.2)  * Pay item in which resin anchor system is embedded.'''
 +
:Cost of furnishing and installing the resin anchor systems, complete in place, will be considered completely covered by the contract unit price for <u>*</u>.
 +
 
 +
'''(I2.3)'''
 +
:The minimum embedment depth in concrete with f'<sub>c</sub> = 4,000 psi for the resin anchor systems shall be that required to meet the minimum ultimate pullout strength in accordance with Sec 1039 but shall not be less than 5".
 +
 
 +
'''Note to designer:'''<br/>A minimum factor of safety of 2 should be used when determining the number of anchors to be used.
 +
 
 +
'''(I2.4)(Use when reinforcing steel is substituted for the threaded rod stud.)'''
 +
:<u>A</u> <u>An epoxy coated</u> #<u>****</u> Grade 60 reinforcing bar <u>*****</u> long shall be substituted for the <u>******</u>&oslash; threaded rod.
 +
 
 +
 
 +
{|
 +
|****||Bar size.
 +
|-
 +
|*****||Length of bar required by design.
 +
|-
 +
|******||Diameter of threaded rod.
 +
|}
 +
 
 +
 
 +
'''Cone Expansion Anchors'''
 +
 
 +
'''(I2.30)  ***  Pay item in which cone expansion anchor is embedded.'''
 +
:Cost of furnishing and installing cone expanson anchor will be considered completely covered by the contract unit price for <u>***</u>.
 +
 
 +
'''(I2.31)'''
 +
:The <u>*</u>" diameter cone expansion anchors shall have a minimum ultimate pullout strength of <u>**</u> lbs. in concrete with f'<sub>c</sub> = 4,000 psi.
 +
 
 +
{|style="text-align:center;"
 +
|-
 +
|width="100pt"|* DIAMETER||width="100pt"|** PULLOUT
 +
|-
 +
|3/8"||3,900
 +
|-
 +
|1/2"||7,500
 +
|-
 +
|5/8"||10,800
 +
|-
 +
|3/4"||12,000
 +
|}
 +
 
 +
=== I3. Special Repair Zones ===
 +
 
 +
'''(I3.1)'''
 +
:Any half-soling required in the areas designated as special repair zones shall be completed in alphabetical sequence.  Any repair in the remainder of the bridge that is adjacent to Zone A and not designated as a special repair zone shall be completed prior to work in Zone A.
 +
 
 +
'''(I3.2)'''
 +
:Removal and repair shall be completed in one special repair zone and concrete shall have attained a compressive strength of 3200 psi before work can be started in the next special repair zone.  Before placing concrete in areas adjacent to areas of subsequent repair, the concrete shall be separated with a material such as polyethylene sheets to aid in removal of old concrete.
 +
 
 +
'''(I3.5)  Use for structures with multiple column bents.'''
 +
:Zones with the same letter designation may be repaired at the same time.
 +
 
 +
'''(I3.6)  Use for structures with single column bents.'''
 +
:Zones with the same letter designation may be repaired at the same time except for the zones directly adjacent to the centerline of bent.  If either of the zones adjacent to centerline of bent has a single repair area of over 10 square feet or a total repair area of over 20 square feet, that zone shall be repaired before removing concrete in the other zone of the same designation at that bent.
 +
 
 +
'''(I3.10)  Use for voided or solid slab structures.'''
 +
:If any single repair area does not exceed 4 square feet in size and the total repair within a special repair zone does not exceed 12 square feet, the special repair zone requirement does not apply for that zone. Any damage sustained to the void tube as a result of the contractor's operations shall be patched or replaced as required by the engineer at the contractor's expense.
 +
 
 +
'''(I3.11)  Use for voided slab structures.'''
 +
:An exposed void in the deck shall be patched as approved by the engineer in a manner that shall maintain the void area completely free of concrete.  Cost of patching an exposed void will be considered completely covered by the contract unit price for Repairing Concrete Deck (Half-Soling).
 +
 
 +
'''(I3.12)  Use for voided slab structures.'''
 +
:When a deteriorated portion of the void tube is beyond the point of patching as determined by the engineer, the portion of the deteriorated void tube shall be replaced. The void area shall be maintained completely free of concrete. Cutting of the  longitudinal reinforcing steel will not be permitted. The fiber tubes for producing the voids shall have an outside diameter with the wall thickness the same as the existing tubes and anchored at not more than the original spacing. Cost of replacing the void tube will be considered completely covered by the contract unit price for Deck Repair with Void Tube Replacement.
 +
 
 +
 
 +
'''Use following notes for box and deck girder structures.'''
 +
 
 +
'''(I3.16)'''
 +
:Total width of full depth repair shall not exceed 1/3 of the deck width at one time.  For any area of deck repair that extends over a concrete girder and is more than 18 inches in length along the girder, the concrete removal shall stop at the centerline of girder and repair completed in this area.  Prior to continuing work in this area, the concrete shall have attained a compressive strength of 3200 psi.  No traffic shall be permitted over the girder that is undergoing repair.
 +
 
 +
'''(I3.17)'''
 +
:When the full depth repair extends over a diaphragm or girder and the deteriorated concrete extends into the diaphragm or girder, all deteriorated concrete shall be removed and replaced as full depth repair.  Concrete in girders shall not be removed below the deck haunch of the girder without prior review and approval from the engineer.
 +
 
 +
 
 +
'''Use following notes for box girder structures.'''
 +
 
 +
'''(I3.20)'''
 +
:Interior falsework installed by the contractor resting on the bottom slab shall be removed where entry access is available.
 +
 
 +
'''(I3.21)'''
 +
:If any single repair area does not exceed 9 square feet in size and the total repair within a special repair zone does not exceed 27 square feet, the special repair zone requirement does not apply for that zone.  Half-soling repair in the special repair zone, on either side of the intermediate bents, shall be to a depth that will not expose half the diameter of the longitudinal reinforcing bar.  Full depth repair shall be made when removal of deteriorated concrete exposes half or more of the diameter of the longitudinal reinforcing bar.
 +
 
 +
== J. MSE Wall Notes (Notes for Bridge Standard Drawings)==
 +
 
 +
 
 +
=== J1. General ===
 +
 
 +
'''(J1.1)'''
 +
:Factor of safety shall be 2.0 for overturning and 1.5 for sliding.
 +
 
 +
'''(J1.2)'''
 +
:The cost of joint filler and joint seal, complete in place, will be considered completely covered by the contract unit price for Concrete Traffic Barrier (Type <u>A</u> <u>D</u>). See Roadway Plans.
 +
 
 +
'''(J1.3)'''
 +
:For seismic design the factor of safety shall be 1.5 for overturning and 1.1 for sliding.
 +
 
 +
'''(J1.4)'''
 +
:&oslash;<sub>b</sub> = <u>&nbsp; &nbsp;</u>&deg; and Unit weight, Ɣ<sub>b</sub> = ___pcf for retained backfill material to be retained by the mechanically stabilized earth wall system.
 +
 
 +
'''(J1.5)'''
 +
:<u>&oslash;<sub>f</sub> = &nbsp; &nbsp;&deg; for unimproved foundation ground where wall is to bear.</u>
 +
:<u>&oslash;<sub>f</sub> = &nbsp; &nbsp;&deg; for improved foundation ground where wall is to bear.</u>
 +
 
 +
'''(J1.6)'''
 +
:Actual ø<sub>r</sub> &ge; 34&deg; for the select granular backfill (reinforced backfill and wedge area backfill) for structural systems.
 +
 
 +
'''(J1.7)'''
 +
:Design ø<sub>r</sub> = 34&deg; for the select granular backfill (reinforced backfill) only for structural systems.
 +
 
 +
'''(J1.8)'''
 +
:All concrete for leveling pad <u>and coping</u> shall be Class B or B-1 with f'<sub>c</sub> = 4000 psi.
 +
 
 +
'''(J1.10) For epoxy coated reinforcement requirements, see [[751.5 Structural Detailing Guidelines#751.5.9.2.2 Epoxy Coated Reinforcement Requirements|EPG 751.5.9.2.2 Epoxy Coated Reinforcement Requirements]].'''
 +
:Panel and coping (or capstone) reinforcement shall be epoxy coated.
 +
 
 +
'''(J1.11)'''
 
:Anchorage reinforcement shall be spaced to avoid roadway drop inlet behind wall.
 
:Anchorage reinforcement shall be spaced to avoid roadway drop inlet behind wall.
  
'''(J1.12)'''
+
'''(J1.12a)'''
:A filter cloth meeting the requirements for a Separation Geotextile material shall be placed between the select granular backfill for structural systems and the backfill being retained by the mechanically stabilized earth wall system.
+
:A filter cloth meeting the requirements for a Separation Geotextile material shall be placed between the select granular backfill for structural systems and the backfill being retained by the mechanically stabilized earth wall system.
 +
<div id="(J1.12b)"></div>
 +
'''<u>(J1.12b) Use for all large block walls.</u>'''
 +
 
 +
:Minimum 18” wide geotextile strips shall be centered at vertical and horizontal joints of panel. Geotextile material shall be adhered to back face of panel using an adhesive compound supplied by the manufacturer.
 +
 
 +
'''(J1.13)'''
 +
:Coping shall be required on this structure unless a small block system is used. Bond breaker (roofing felt or other approved alternate) between wall panel and coping required if coping is cast in place.
 +
 
 +
'''(J1.13a) '''
 +
:Wall contractor shall show the following items on the design drawings and/or on the fabricator shop drawings.
 +
::1. Leveling pad horizontal.
 +
::2. Leveling pad length and step elevations shall be based on wall manufacture’s recommendation. Top of leveling pad elevations shall not be higher than theoretical top of leveling pad elevations shown on these plans.
 +
 
 +
 
 +
'''For Battered Small Block Walls'''
 +
 
 +
'''(J1.14)'''
 +
:The top and bottom elevations are given for a vertical wall.  If a battered small block wall system is used, the height of the wall shall be adjusted as necessary to fit the ground slope and the concrete leveling pad shall be adjusted as necessary to account for the wall batter. If a fence is built on an extended gutter, then the height of the wall shall be adjusted further.
 +
 +
:The baseline of the wall shown is for a vertical wall. If a battered wall system is used, this baseline shall correspond to Elevation <u>&nbsp; &nbsp; &nbsp; &nbsp; </u>.
 +
 
 +
 
 +
'''For Walls Near Bridge Abutments (Responsibility of Bridge Division)'''
 +
 
 +
'''(J1.15)'''
 +
:The contractor shall be solely responsible to coordinate construction of the wall with bridge and roadway construction and ensure that the bridge and roadway construction, resulting or existing obstructions, shall not impact the construction or performance of the wall. Soil reinforcement shall be designed and placed to avoid damage by pile driving, guardrail post installation, utility and sign foundations. (See Roadway and Bridge plans.)
 +
 
 +
 
 +
'''PREQUALIFIED MSE WALL SYSTEMS'''
 +
 
 +
'''(J1.16) <font color="purple">[MS Cell]</font color="purple">'''
 +
:{|border="0" style="text-align:center;" cellpadding="5" cellspacing="0"
 +
|-
 +
!colspan="6" style="border-top:3px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:3px solid black"|MSE Wall Systems Data Table
 +
|-
 +
!colspan="2" style="border-top:1px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:1px solid black"|Proprietary Wall<br/>Systems
 +
!colspan="4" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:3px solid black"|Combination Wall Systems
 +
|-
 +
!style="border-top:1px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:1px solid black"|Manufacturer
 +
!style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black"|System
 +
!style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black"|Facing Unit<br/>Manufacturer
 +
!style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black"|Facing<br/>Unit
 +
!style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black"|Geogrid<br/>Manufacturer
 +
!style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:3px solid black"|Geogrid
 +
|-
 +
!style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"| &nbsp;
 +
!style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 +
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 +
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 +
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 +
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"| &nbsp;
 +
|-
 +
!style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"| &nbsp;
 +
!style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 +
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 +
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 +
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 +
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"| &nbsp;
 +
|-
 +
!style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"| &nbsp;
 +
!style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 +
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 +
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 +
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 +
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"| &nbsp;
 +
|-
 +
!style="border-top:1px solid gray; border-bottom:3px solid black; border-left:3px solid black; border-right:1px solid black"| &nbsp;
 +
!style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 +
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 +
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 +
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 +
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:3px solid black"| &nbsp;
 +
|-
 +
|colspan="6" align="left"|MSE Wall Systems Data Table is to be completed by MoDOT construction personnel<br/> to record the manufacturer of the proprietary wall system or the manufacturers of the<br/>combination wall system that was used for constructing the MSE wall.
 +
|}
 +
 
 +
'''(J1.17) Use for all large block walls or if small block walls are to be built vertical.'''
 +
:The MSE wall system shall be built vertical.
 +
 
 +
'''(J1.18) Use where only a small or large block wall shall be used. Do not use note where either a small or large block may be used.'''
 +
:The MSE wall system shall be a <u>small</u> <u>large</u> block wall system.
 +
 
 +
'''(J1.19)'''
 +
:Topmost layer of reinforcement shall be fully covered with select granular backfill for structural systems, as approved by the wall manufacturer, before placement of the Separation Geotextile.
 +
 
 +
'''(J1.19a)'''
 +
:Minimum __ diameter perforated PVC or PE pipe.
 +
 
 +
'''(J1.20)'''
 +
:Manufacturer shall show drain details on design plans to be submitted as shown on MoDOT MSE wall plans and/or roadway plans.
 +
<div id="(J1.20a)"></div>
 +
'''(J1.20a) '''
 +
:Select granular backfill shall extend a minimum of 12" beyond the end of all soil reinforcement. Where the angle, Ɵ, between the retained backfill excavation/fill line and the horizontal is less than 90°, the wedge area backfill between Ɵ and 90° shall be filled with select granular backfill for structural systems meeting the requirements of Section 1010.
 +
 
 +
::- For (45°+ Ф<sub>b</sub>/2) < Ɵ ≤ 90°, properties for retained backfill shall be used for active force computations.
 +
 
 +
::- For Ɵ ≤ (45°+ Ф<sub>b</sub>/2), contractor shall have the option to use properties for select granular backfill, Ф<sub>r</sub>, or better aggregate material, Ф<sub>w</sub> for active force computations in the wedge area backfill. For active force computations, the angle of internal friction for wedge area backfill material, Ф<sub>r</sub> or Ф<sub>w</sub>, shall be limited to 34° unless determined otherwise in accordance with Section 1010. If Ф<sub>r</sub> or Ф<sub>w</sub> > 34° is desired for wedge area backfill then test report shall be submitted with manufacturer's design plans.  Ф<sub>r</sub> or Ф<sub>w</sub> shall not be greater than 40°. Final configuration of this option shall be sent to Geotechnical Section for a new overall global stability analysis. Design Ф<sub>w</sub> shall be shown on manufacturer's plans if used. 
 +
 
 +
:The slope excavation line shall be benched and separation geotextile shall be placed between the retained backfill and either select granular backfill or better aggregate material, and between the select granular backfill and better aggregate material.
 +
 
 +
:Show range of acceptable theta (Ɵ) angle on shop drawings which must be consistent with design computations and proposed construction of wall. Coordination between wall designer (manufacturer) and contractor is required before shop drawing submittal.
 +
 
 +
'''<u>Use for all large block walls.</u>'''
 +
:<u>(J1.21a) Inverted U-shape reinforced capstone may be used in lieu of coping. Panel dowels for capstone shall be required and as provided by manufacturer.</u>
 +
<div id="(J1.21b)"></div>
 +
:(J1.21b) Aluminized soil reinforcement shall have edges coated with coating material per manufacturer.
 +
 
 +
:(J1.21c) Use default values for the pullout friction factor, F*, in accordance with AASHTO figure 5.8.5.2A. For approved steel strips not shown in AASHTO figure 5.8.5.2A, use F* ≤ 2.0 at zero depth and F* ≤ Tan Ф<sub>r</sub> at 20 feet depth and Ф<sub>r</sub> design = 34°. F* values shall be shown on the manufacturer’s design plans.
 +
 
 +
'''(J1.22)'''
 +
:The MSE wall system shall be built in accordance with Sec 720.
 +
 
 +
'''(J1.23)  Use for MSE Walls when there may be contact between dissimilar metals.'''
 +
:All steel soil reinforcements shall be separated from other metallic elements by at least 3 inches. 
 +
 
 +
'''(J1.24)  Use for MSE Walls when there may be vertical obstructions in reinforced soil mass.'''
 +
:The splay angle should be less than 15° and tensile capacity of splayed reinforcement shall be reduced by the cosine of the splay angle.
 +
 
 +
:No reinforcement shall be left unconnected to the wall face or arbitrarily cut/bent in the field to avoid the obstruction.
 +
 
 +
:Where interference between the vertical obstruction and the soil reinforcement is unavoidable, the design of the wall near the obstruction may be modified using one of the alternatives in FHWA-NHI-10-24, Section 5.4.2.  Show detail layout on the drawings.  For wall designs with horizontal obstructions in reinforced soil mass, see FHWA-NHI-10-024, Section 5.4.3.
 +
 
 +
<div id="(J1.25)"></div>
 +
'''(J1.25) ''' Use either or both allowable bearing pressure notes for foundation ground as determined by the Geotechnical Section and reported on the Foundation Investigation Geotechnical Report and use the following maximum applied bearing pressure note.
 +
 
 +
:<u>The allowable bearing pressure for unimproved foundation ground _____ ksf.</u>
 +
:<u>The allowable bearing pressure for improved foundation ground _____ ksf.</u>
 +
 
 +
:The maximum applied bearing pressure for the controlling design case at the foundation level shall be shown on the manufacturer’s design plans where the maximum applied bearing pressure ≤ allowable bearing pressure. For seismic design the maximum applied bearing pressure ≤ two times the allowable bearing pressure.
 +
 
 +
'''(J1.25a) Use when limits of improved foundation ground  required by Geotechnical Section.'''
 +
 
 +
:Limits of improved foundation ground and allowable bearing pressure shall not be adjusted from that as shown on the plans.
 +
<div id="For Small Block Walls"></div>
 +
 
 +
'''For Small Block Walls'''
 +
 
 +
'''(J1.26)''' Permanent shims for Small block MSE wall:
 +
 
 +
:Shims will be sparingly allowed to maintain horizontal and vertical control. The preferable shim shall be made of a plastic material that will not rust, stain, rot or leach onto the concrete and has a minimum compressive strength equal to block wall unit.  Steel or wood shims will not be allowed. Shims shall not exceed 3/16” in thickness and shall distribute load in order to not induce stress into block wall units. No shim shall be used between the concrete leveling pad and the base course of the block wall.
 +
 
 +
'''(J1.27)'''
 +
:Holes shall be 5/8” round and extend 4” into the third layer of blocks, recessed 2” deep by 1 1/2" round.
 +
 +
'''(J1.28) '''
 +
:Rods or reinforcing bars shall be secured by an approved resin anchor system in accordance with Sec 1039.
 +
 
 +
'''(J1.29) '''
 +
:Recess hole shall be backfilled with non-shrink cement grout.
 +
 
 +
'''Use for all MSE wall plans.'''
 +
 
 +
''' (J1.30)  '''
 +
:Excavation quantities and pay items are given on the roadway plans. Excavation quantities are based on a soil reinforcement length of __ ft. The soil reinforcement length may very based upon the wall design selected by the contractor. Plan excavation quantities will be paid regardless of any actual quantities removed based on the soil reinforcement length and design selected.
 +
 
 +
<div id="(J1.31)"></div>
 +
'''(J1.31) Use when interior angle between two walls is less than or equal to 70°.'''
 +
 
 +
:When interior angle between two walls is less than or equal to 70°, the affected portion of the MSE wall shall be designed as an internally tied bin structure with at-rest earth pressure coefficients. For additional design steps see (FHWA NHI-10-024).
 +
 
 +
'''(J1.32) '''
 +
:Contractor shall modify the drain details as shown if it will improve flow as may be the case for a stepped leveling pad, and for an uneven ground line (approval of the engineer required).
 +
 
 +
== K. Approach Slab Notes (Notes for Bridge Standard Drawings)==
 +
 
 +
 
 +
=== K1. General ===
 +
 
 +
'''(K1.1) Use for Bridge Approach Slab (Major Road) and omit underlined part for concrete sub-class Bridge Approach Slab (Minor Road).'''
 +
:All concrete for the bridge approach slab <u>and sleeper slab</u> shall be in accordance with Sec 503 (f'<sub>c</sub> = 4,000 psi).
 +
 
 +
'''(K1.2)'''
 +
:All joint filler shall be in accordance with Sec 1057 for preformed fiber expansion joint filler, except as noted.
 +
 
 +
'''(K1.3) Use for Bridge Approach Slab (Major Road) and omit underlined part for concrete sub-class Bridge Approach Slab (Minor Road).'''
 +
:The reinforcing steel in the bridge approach slab <u>and the sleeper slab</u> shall be epoxy coated Grade 60 with F<sub>y</sub> = 60,000 psi.
 +
 
 +
'''(K1.4)'''
 +
:Minimum clearance to reinforcing steel shall be 1 1/2", unless otherwise shown.
 +
 
 +
'''(K1.5) Use for Bridge Approach Slab (Major Road) and omit underlined part and substitute #4 bars 23” for concrete sub-class Bridge Approach Slab (Minor Road).'''
 +
:The reinforcing steel in the bridge approach slab <u>and the sleeper slab</u> shall be continuous.  The transverse reinforcing steel may be made continuous by lap splicing the <u>#5 bars 29”</u>.
 +
 
 +
'''(K1.6) Use underline portion when mechanical bar splices are required due to staged construction. '''
 +
:Mechanical bar splices shall be in accordance with Sec 710. <u>(Estimated ____ splices per slab) </u>
 +
 
 +
'''(K1.7)'''
 +
:<math>\, *</math> Seal joint between vertical face of approach slab and wing with sealant in accordance with Sec 717 for Silicone Joint Sealant for Saw Cut and Formed Joints.
 +
 
 +
'''(K1.11)'''
 +
:The contractor shall pour and satisfactorily finish the <u>bridge</u> <u>or semi-deep</u> slab before pouring the bridge approach slab.
 +
 
 +
'''(K1.12)'''
 +
:Longitudinal construction joints in approach slab <u>and sleeper slab</u> shall be aligned with longitudinal construction joints in <u>bridge</u> <u>or semi-deep</u> slab.
 +
 
 +
'''(K1.13) Use for Bridge Approach Slab (Major Road)'''
 +
:Payment for furnishing all materials, labor and excavation necessary to construct the approach slab, including the timber header, sleeper slab, underdrain, Type 5 aggregate base, joint filler and all other appurtenances and incidental work as shown on this sheet, complete in place, will be considered completely covered by the contract unit price for Bridge Approach Slab (Major Road) per sq. yard.
 +
 
 +
'''(K1.14a) Use for Bridge Approach Slab (Minor Road) – Concrete Slab Only'''
 +
:Payment for furnishing all materials, labor and excavation necessary to construct the concrete bridge approach slab, including the timber header,  underdrain, Type 5 aggregate base, joint filler and all other appurtenances and incidental work as shown on this sheet, complete in place, will be considered completely covered by the contract unit price for Bridge Approach Slab (Minor Road) per sq. yard.
 +
 
 +
'''K1.14b) Use for Bridge Approach Slab (Minor Road) – Asphalt Slab Only'''
 +
:Payment for furnishing all materials, <u>curb,</u> labor and excavation necessary to construct the <u>concrete asphalt</u> bridge approach slab, including curb, underdrain, Type 5 aggregate base within the pay limits shown, complete in place, will be considered completely covered by the contract unit price for Bridge Approach Slab (Minor Road) per sq. yard.
 +
 
 +
'''(K1.15) Use for Bridge Approach Slab (Major Road) and Bridge Approach Slab (Minor Road) – Concrete Slab Only'''
 +
:For Concrete Approach Pavement details, see roadway plans.
 +
 
 +
'''(K1.16) Use for Bridge Approach Slab (Major Road)'''
 +
:See Missouri Standard Plans 609.00 for details of Type A Curb.
 +
 
 +
'''(K1.17) Use for Bridge Approach Slab (Minor Road) – Asphalt Slab Only'''
 +
:See Missouri Standard Plans 609.00 for details of Type S Curb.
 +
 
 +
'''(K1.18)'''
 +
:With the approval of the engineer, the contractor may crown the bottom of the approach slab to match the crown of the roadway surface.
 +
 
 +
'''(K1.19) <font color="purple">[MS Cell]</font color="purple"> Use boxed note for Bridge Approach Slab (Minor Road)'''
  
'''(J1.13)'''
+
{|style="padding: 0.3em; margin-left:1px; border:1px solid #000000; background:#ffffff" text-align:center; font-size: 95%; width="380px" align="center"  
:Coping shall be required on this structure unless a small block system is used. Bond breaker (roofing felt or other approved alternate) between wall panel and coping required if coping is cast in place.
 
 
 
 
 
'''For Battered Walls'''
 
 
 
'''(J1.14)'''
 
:The top and bottom elevations are given for a vertical wall.  If a battered wall system is used, the height of the wall shall be adjusted as necessary to fit the ground slope and the concrete leveling pad shall be adjusted as necessary to account for the wall batter. If a fence is built on an extended gutter, then the height of the wall shall be adjusted further.
 
 
:The baseline of the wall shown is for a vertical wall. If a battered wall system is used, this baseline shall correspond to Elevation <u>&nbsp; &nbsp; &nbsp; &nbsp; </u>.
 
 
 
 
 
'''For Walls Near Bridge Abutments (Responsibility of Bridge Division)'''
 
 
 
'''(J1.15)'''
 
:The contractor shall be solely responsible to coordinate construction of the wall with bridge and roadway construction and ensure that the bridge and roadway construction, resulting or existing obstructions, shall not impact the construction or performance of the wall. Soil reinforcement shall be designed and placed to avoid damage by pile driving, guardrail post installation, utility and sign foundations. (See Roadway and Bridge plans.)
 
 
 
 
 
'''PREQUALIFIED MSE WALL SYSTEMS'''
 
 
 
'''(J1.16)'''
 
:{|border="0" style="text-align:center;" cellpadding="5" cellspacing="0"
 
|-
 
!colspan="6" style="border-top:3px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:3px solid black"|MSE Wall Systems Data Table
 
|-
 
!colspan="2" style="border-top:1px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:1px solid black"|Proprietary Wall<br/>Systems
 
!colspan="4" style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:3px solid black"|Combination Wall Systems
 
|-
 
!style="border-top:1px solid black; border-bottom:1px solid black; border-left:3px solid black; border-right:1px solid black"|Manufacturer
 
!style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black"|System
 
!style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black"|Facing Unit<br/>Manufacturer
 
!style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black"|Facing<br/>Unit
 
!style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:1px solid black"|Geogrid<br/>Manufacturer
 
!style="border-top:1px solid black; border-bottom:1px solid black; border-left:1px solid black; border-right:3px solid black"|Geogrid
 
|-
 
!style="border-top:1px solid black; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"| &nbsp;
 
!style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 
|style="border-top:1px solid black; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"| &nbsp;
 
 
|-
 
|-
!style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"| &nbsp;
+
|colspan="2"|MoDOT Construction personnel will indicate the bridge approach slab used for this structure:
!style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"| &nbsp;
 
 
|-
 
|-
!style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:3px solid black; border-right:1px solid black"| &nbsp;
+
|width="45"| ||<BIG>□</BIG> Concrete Bridge Approach Slab
!style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:1px solid gray; border-left:1px solid black; border-right:3px solid black"| &nbsp;
 
|-
 
!style="border-top:1px solid gray; border-bottom:3px solid black; border-left:3px solid black; border-right:1px solid black"| &nbsp;
 
!style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:1px solid black"| &nbsp;
 
|style="border-top:1px solid gray; border-bottom:3px solid black; border-left:1px solid black; border-right:3px solid black"| &nbsp;
 
 
|-
 
|-
|colspan="6" align="left"|MSE Wall Systems Data Table is to be completed by MoDOT construction personnel<br/> to record the manufacturer of the proprietary wall system or the manufacturers of the<br/>combination wall system that was used for constructing the MSE wall.
+
|width="45"| ||<BIG></BIG> Asphalt Bridge Approach Slab
 
|}
 
|}
 
'''(J1.17)Use when wall is required to be built vertical. Small block walls can not be built vertical.'''
 
:The MSE wall system shall be built vertical.
 
 
'''(J1.18) Use when only the small or large block wall is required. Do not use note when small and large blocks can be used.'''
 
:The MSE wall system shall be a <u>small</u> <u>large</u> block wall system in accordance with Sec 720.
 
 
'''(J1.19)'''
 
:Topmost layer of reinforcement shall be fully covered with select granular backfill for structural systems, as approved by the wall manufacturer, before placement of the Separation Geotextile.
 
 
'''(J1.20)'''
 
:Adjustment in the vertical alignment of the drainage pipes from that depicted in the plans may be necessary to ensure positive flow out of the drainage system.
 
 
:Outlet ends of pipes shall be located to avoid clogging or flow into the drainage system.
 
 
'''(J1.21)'''
 
:Inverted U-shape reinforced capstone may be used in lieu of coping. Panel dowels for capstone as required by manufacturer.
 
 
== K. Approach Slab Notes ==
 
 
 
=== K1. General ===
 
 
'''(K1.1)'''
 
:All concrete for the bridge approach slab and sleeper slab shall be in accordance with Sec 503 (<math>\, f'_c</math> = 4,000 psi).
 
 
'''(K1.2)'''
 
:All joint filler shall be in accordance with Sec 1057 for preformed fiber expansion joint filler, except as noted.
 
 
'''(K1.3)'''
 
:The reinforcing steel in the bridge approach slab and the sleeper slab shall be epoxy coated Grade 60 with <math>\, F_y</math> = 60,000 psi.
 
 
'''(K1.4)'''
 
:Minimum clearance to reinforcing steel shall be 1 1/2", unless otherwise shown.
 
 
'''(K1.5)'''
 
:The reinforcing steel in the bridge approach slab and the sleeper slab shall be continuous.  The transverse reinforcing steel may be made continuous by lap splicing the #4 & #6 bars 18" and 2'-2" respectively.
 
 
'''(K1.6)'''
 
:Mechanical bar splices shall be in accordance with Sec 706.
 
 
'''(K1.7)'''
 
:<math>\, *</math> Seal joint between vertical face of approach slab and wing with "Silicone Joint Sealant for Saw Cut and Formed Joints" in accordance with Sec 717.
 
 
'''(K1.9)'''
 
:Hooks and bends shall be in accordance with the CRSI Manual of Standard Practice for Detailing Reinforced Concrete Structures, Stirrup and Tie Dimensions.
 
 
'''(K1.11)'''
 
:The contractor shall pour and satisfactorily finish the bridge or semi-deep slab before pouring the bridge approach slabs.
 
 
'''(K1.12)'''
 
:Longitudinal construction joints in approach slab and sleeper slab shall be aligned with longitudinal construction joints in bridge or semi-deep slab.
 
 
'''(K1.14)'''
 
:Payment for furnishing all materials, labor and excavation necessary to construct the approach slab, including the timber header, sleeper slab, underdrain, Type 5 aggregate base, joint filler and all other appurtenances and incidental work as shown on this sheet, complete in place, will be considered completely covered by the contract unit price for Bridge Approach Slab (Bridge) per sq. yard.
 
 
'''(K1.15)'''
 
:For Concrete Approach Pavement details, see roadway plans.
 
 
'''(K1.17)'''
 
:See Missouri Standard Plans Drawing 609.00 for details of Type A Barrier Curb.
 
 
'''(K1.18)'''
 
:With the approval of the engineer, the contractor may crown the bottom of the approach slab to match the crown of the roadway surface.
 
 
'''(K1.19)'''
 
:At the contractor's option, Grade 40 reinforcement may be substituted for the Grade 60 #5 dowel bars connecting the bridge approach slab to the bridge abutment.  No additional payment will be made for this substitution.
 
  
 
'''(K1.20)'''
 
'''(K1.20)'''
:When Grade 40 reinforcement is substituted for the Grade 60 #5 dowel bars connecting the bridge approach slab to the bridge abutment, the reinforcement may be bent up to 90 degrees with a 2" minimum radius near the abutment to allow compaction of the backfill material near the abutment. Damage to epoxy coating shall be repaired in accordance with Sec 710.
 
 
'''(K1.21)'''
 
 
:Drain pipe may be either 6" diameter corrugated metallic-coated pipe underdrain, 4" diameter corrugated polyvinyl chloride (PVC) drain pipe, or 4" diameter corrugated polyethylene (PE) drain pipe.
 
:Drain pipe may be either 6" diameter corrugated metallic-coated pipe underdrain, 4" diameter corrugated polyvinyl chloride (PVC) drain pipe, or 4" diameter corrugated polyethylene (PE) drain pipe.
  
  
[[Category:751 LRFD Manual General]]
+
[[Category:751 LRFD Bridge Design Guidelines]]

Revision as of 11:08, 11 January 2019

Copying Detailing Notes from EPG to MicroStation Drawings
[MS Cell] in the standard detailing notes indicates those notes are available in MicroStation note cells because of the drawing associated with the note.
Please refer to Copying Detailing Notes from EPG to MicroStation Drawings for additional information.

Contents

A. General Notes

A1. Design Specifications, Loadings & Unit Stresses

Omit parts not applicable; Omit parts underlined when not applicable. The format for these notes as they would appear on the plans is as follows with the indention shown being optional. For notes applicable to MSE walls see J. MSE Wall Notes.

General Notes:
Design Specifications:
A1.1
Design Loading:
A1.2
Design Unit Stresses:
A1.3

(A1.1) Design Specifications:

Use for all LRFD standard culverts and standard culverts-bridge designs in which the design and/or details are completely covered by the Missouri Standard Plans for Highway Construction and/or EPG 751.8 in accordance with the following design specifications.

2010 AASHTO LRFD Bridge Design Specifications and 2010 Interim Revisions

Use for all LRFD bridge final designs initiated on or after March 1, 2013.

2012 AASHTO LRFD Bridge Design Specifications (6th Ed.) and 2013 Interim Revisions
2011 AASHTO Guide Specifications for LRFD Seismic Bridge Design (2nd Ed.) and 2014 Interim Revisions (Seismic Seismic Details)
Seismic Design Category = _
Design earthquake response spectral acceleration coefficient at 1.0 second period, SD1 = _
Acceleration Coefficient (effective peak ground acceleration coefficient), As = _
2002 AASHTO LFD (17th Ed.) Standard Specifications (Seismic Seismic Details)
Seismic Performance Category = _
Acceleration Coefficient = _
Bridge Deck Rating = _(1)

Use for all LRFD bridge final designs initiated before March 1, 2013.

2010 AASHTO LRFD Bridge Design Specifications and 2010 Interim Revisions
2011 AASHTO Guide Specifications for LRFD Seismic Bridge Design (2nd Ed.) and 2012 Interim Revisions (Seismic Seismic Details)
Seismic Design Category = _
Design earthquake response spectral acceleration coefficient at 1.0 second period, SD1 = _
Acceleration Coefficient (effective peak ground acceleration coefficient), As = _
2002 AASHTO LFD (17th Ed.) Standard Specifications (Seismic Seismic Details)
Seismic Performance Category = _
Acceleration Coefficient = _
Bridge Deck Rating = _(1)

Use for all LFD bridge final designs.

2002 AASHTO LFD (17th Ed.) Standard Specifications
2002 AASHTO LFD (17th Ed.) Standard Specifications (Seismic Seismic Details)
Seismic Performance Category = _
Acceleration Coefficient = _
Bridge Deck Rating = _(1)

(1) Use when repairing concrete deck. The rating (3 to 9) is from the bridge inspection report.

(A1.2) Design Loading:

Use for all LRFD bridge and culvert final designs.

Vehicular = HL-93 minus lane load (1)
No Future Wearing Surface = 35 lb/sf
Defense Transporter Erector Loading
Earth = 120 lb/cf
Equivalent Fluid Pressure = (2)
Ø =  
(3) Superstructure: Simply-Supported, Non-Composite for dead load.
Continuous Composite for live load.


Use for all LFD bridge final designs.

HS20-44
HS20 Modified
35 lb/sf No Future Wearing Surface
Military 24,000 lb Tandem Axle
Defense Transporter Erector Loading
Earth 120 lb/cf, Equivalent Fluid Pressure (2)
Ø =  
Fatigue Stress - Case I Case II Case III
(3) Superstructure: Simply-Supported, Non-Composite for dead load.
Continuous Composite for live load.

(1) Include for all culverts and culverts-bridges unless lane load is used.

(2) For bridges and retaining walls use "45 lb/cf (Min.)" unless the Ø angle requires using a larger value. For box culverts use "30 lb/cf (Min.), 60 lb/cf (Max.)".

(3) Use with all prestressed concrete structures. Omit underline portions for single spans.


(A1.3) Use for LRFD. (For ASD, LFD, and allowable stresses, see Development Section.)

Design Unit Stresses:
Class B Concrete (Substructure) f'c = 3,000 psi
Class B Concrete (Retaining Wall) f'c = 3,000 psi
Class B-2 Concrete (Drilled Shafts & Rock Sockets) f'c = 4,000 psi
Class B-1 Concrete (Superstructure) f'c = 4,000 psi
Class B-2 Concrete (Superstructure, except
  Prestressed Girders Beams and Safety Barrier and
  Median Barrier Curb)
f'c = 4,000 psi
Class B-1 Concrete (Substructure) f'c = 4,000 psi
Class B-1 Concrete (Box Culvert) f'c = 4,000 psi
Class B-1 Concrete (Safety Barrier and
  Median Barrier Curb)
f'c = 4,000 psi
Class B-2 Concrete (Superstructure, except
  Safety Barrier and Median Barrier Curb)
f'c = 4,000 psi (1)
Reinforcing Steel (Grade 40) fy = 40,000 psi
Reinforcing Steel (Grade 60) fy = 60,000 psi
Structural Carbon Steel(ASTM A709 Grade 36) fy = 36,000 psi
Structural Steel (ASTM A709 Grade 50) fy = 50,000 psi
Structural Steel (ASTM A709 Grade 50W) fy = 50,000 psi
Structural Steel (ASTM A709 Grade HPS50W) fy = 50,000 psi
Structural Steel (ASTM A709 Grade HPS70W) fy = 70,000 psi
Steel Pile (ASTM A709 Grade 50) fy = 50,000 psi
For steel pipe pile design unit stresses, see Sheet No. _.
For precast prestressed panel stresses, see Sheet No. _.
For prestressed girder stresses, see Sheets No. _ & _ .
For prestressed solid slab voided slab box beam stresses, see Sheets No. _ & _ .


(1) Slabs, diaphragms or beams poured integrally with the slab.

Note: Any new construction using structural steels A514 or A517 requires permission of the State Bridge Engineer. Any construction involving these structural steels requires notification to the State Bridge Engineer.

A2. Concrete Box Culverts and Other Type Structures

All Boxes

(A2.0) [MS Cell]

MoDOT Construction personnel will indicate the type of box culvert constructed:
      Precast Concrete Box used
      Cast-in-Place Concrete Box used


All Boxes on Rock

(A2.1) Designer shall check with Structural Project Manager if the 6” dimension should be increased for soft rock and shale.

Anchor full length of walls by excavating 6 inches into and casting concrete against vertical faces of hard, solid, undisturbed rock.

(A2.1.1)

Holes shall be drilled 12 inches into solid rock with E1 and E2 bars grouted in.


All Boxes with Bottom Slab

(A2.2)

When alternate precast concrete box culvert sections are used, the minimum distance from inside face of headwalls to precast sections measured along the shortest wall shall be 3 feet. Reinforcement and dimensions for wings and headwalls shall be in accordance with Missouri Standard Plans.


Culverts on Rock Where Holes or Crevices may be Found
(Normally where soundings show rock to be very irregular)

(A2.3) (The designer should check with Structural Project Manager before placing this note on the plans.)

Where, under short lengths of walls, top of rock is below elevations given for bottom of walls, plain concrete footings 3 feet in width shall be poured up from rock to bottom of walls. If top of rock is more than 3 feet below bottom of short wall sections, the walls between points of support on rock, shall be designed and reinforced as beams and spaces below walls filled as directed by the engineer. Payment for plain concrete footings and concrete reinforced as wall beams will be considered completely covered by the contract unit price for Class B-1 Concrete.


Box Type Structures on Rock or Shale Widened or Extended with Floor

(A2.4)

Fill material under the slab shall be firmly tamped before the slab is poured.


Box Culverts with Bottom Slab that Encounter Rock

(A2.5) (Use when specified on the Design Layout.)

Excavate rock 6 inches below bottom slab and backfill with suitable material for culverts on rock in accordance with Sec 206.


Curved Box Culverts (Box on curve)

(A2.6)

The contractor will have the option to build the curved portion of the structure on chords (maximum of 16 feet).


(A2.7) (Use when special backfill is specified on the Design Layout.)

Excavate 3 feet below the box and fill with suitable backfill material.


For Box Culverts where collar is provided, place the following note on plan sheet.

(A2.8)

If precast option is used, precast box culvert ties in accordance with Sec 733 and Standard Plan 733 shall be provided between all precast sections.


For Box Culverts with transverse joint(s), place notes A2.9 and A2.10 under the Transverse Joint Detail. [MS Cell] The detail and these notes are not needed if an appropriate standard plan is referenced.

(A2.9)

Filter cloth 3 feet in width and double thickness shall be centered on transverse joints in top slab and sidewalls with edges sealed with mastic or two sided tape. Filter cloth shall be a subsurface drainage geotextile in accordance with Sec 1011. Cost of furnishing and installing filter cloth will be considered completely covered by the contract unit price for other items.

(A2.10)

Preformed fiber expansion joint material in accordance with Sec 1057 shall be securely stitched to one face of the concrete with 10 Gage copper wire or 12 Gage soft drawn galvanized steel wire.


(A2.11)

If unsuitable material is encountered, excavation of unsuitable material and furnishing and placing of granular backfill shall be in accordance with Sec 206.


(A2.14) For Box Culverts where the top slab is used as the riding surface, place the following note on plan sheet.

Culvert top slab surface may be finished with a vibratory screed.

Use notes A2.15 and A2.16 for all box culverts.

(A2.15)

Channel bottom shall be graded within the right of way for transition of channel bed to culvert openings. Channel banks shall be tapered to match culvert openings. (Roadway Item)

(A2.16)

If any part of the barrel is exposed, the roadway fill shall be warped to provide 12 inches minimum cover. (Roadway Item)

A3. All Structures

Neoprene Pads:

(A3.2) Does not apply to Type N PTFE Bearings & Laminated Neoprene Bearing Pad Assembly.

Plain and Laminated Neoprene Bearing Pads (Tapered) shall be 50 60 70 durometer and shall be in accordance with Sec 716.


Fabricated Steel Connections:

(A3.3) Use on all steel structures.

Field connections shall be made with 3/4" diameter high strength bolts and 13/16" diameter holes, except as noted.


Joint Filler:

(A3.4) Use on all structures (except culverts).

All joint filler shall be in accordance with Sec 1057 for preformed sponge rubber expansion and partition joint filler, except as noted.


Reinforcing Steel:

(A3.5)

Minimum clearance to reinforcing steel shall be 1 1/2", unless otherwise shown.

(A3.5.1) Use when uncoated steel may come in contact with galvanized piles (concrete pile cap intermediate bents and pile footings).

Minimum clearance between galvanized piles and uncoated (plain) reinforcing steel including bar supports shall be 1 1/2”. Nylon, PVC, or polyethylene spacers shall be used to maintain clearance. Nylon cable ties shall be used to bind the spacers to the reinforcement.

(A3.6) Use when mechanical bar splices (MBS) are to be specified on the plans. The underlined portion shall be used when mechanical bar splice is not being paid for with pay item 706-10.70.

MBS refers to mechanical bar splices. Mechanical bar splices shall be in accordance with Sec 706 or 710 except that no measurement will be made for mechanical bar splices and they will be considered completely covered by the contract unit price for other items.

Traffic Handling:

(A3.7) Use on all grade separations (new and rehabs) constructed over traffic. The note shall be as specified on the Bridge Memorandum (may not match the following) in accordance with EPG 751.1.2.6 Vertical and Horizontal Clearances.

Vertical clearance for Route           traffic during construction shall be           minimum over a           wide horizontal opening of the roadway in each direction.


(A3.8) Use for bridges and culverts.

Structure to be closed during construction. Traffic to be maintained on (1) during construction. See roadway plans for traffic control and Sheet No. __ for staged construction details.
(1) Use “structure” with staged rehabilitation of existing structures.
Use “existing structure” with new structures built next to existing structures.
Use “structures” with staged replacement of existing structures.
Use “temporary bypass” when a bypass will be constructed.
Use “other routes” with new routes and with existing routes that are closed to traffic.

A4. Protective Coatings

A4a. Structural Steel Protective Coatings

In "General Notes:" section of plans, place the following notes under the heading "Structural Steel Protective Coatings:".

A4a1. Steel Structures- Nonweathering Steel

Coating New Steel (Notes A4a1.1 – A4a1.7)

(A4a1.1)

Protective Coating: System G I in accordance with Sec 1081.

(A4a1.2)

Prime Coat: The cost of the prime coat will be considered completely covered by the contract unit price for the fabricated structural steel. Tint of the prime coat for System G I shall be similar to the color of the field coat to be used.

(A4a1.3) The coating color shall be as specified on the Design Layout. When System I is specified, omit the 2nd sentence.

Field Coat(s): The color of the field coat(s) shall be Gray (Federal Standard #26373) Brown (Federal Standard #30045) Black (Federal Standard #17038) Dark Blue (Federal Standard #25052) Bright Blue (Federal Standard #25095). The cost of the intermediate field coat will be considered completely covered by the contract lump sum unit price per sq. foot for Intermediate Field Coat (System G). The cost of the finish field coat will be considered completely covered by the contract lump sum unit price per sq. foot for Finish Field Coat (System G) Finish Field Coat (System I).

(A4a1.4) When System I is specified and if finish coat only is required, omit the underlined part.

At the option of the contractor, the intermediate field coat and finish field coat may be applied in the shop. The contractor shall exercise extreme care during all phases of loading, hauling, handling, erection and pouring of the slab to minimize damage and shall be fully responsible for all repairs and cleaning of the coating systems as required by the engineer.

(A4a1.5) Use for structures with Access Doors

Structural steel access doors shall be cleaned and coated in the shop or field with at least two coats of inorganic zinc primer to provide a minimum dry film thickness of 5 mils. In lieu of coating, the access doors may be galvanized in accordance with ASTM A123 and A153. The cost of coating or galvanizing doors will be considered completely covered by the contract unit price for other items.

(A4a1.6) Use for structures with Access Doors and when a fabricated structural steel pay item is not included.

Payment for furnishing, coating or galvanizing and installing access doors and frames will be considered completely covered by the contract unit price for other items.

(A4a1.7)

System I finish coat shall be substituted for System G intermediate coat in Sec 1081.3.3.1.4.

Recoating Existing Steel (Notes A4a1.9 - A4a1.13)

(A4a1.9)

Protective Coating: System G I in accordance with Sec 1081.

(A4a1.10)

Surface Preparation: Surface preparation of the existing steel shall be in accordance with Sec 1081 for Recoating of Structural Steel (System G, H or I). The cost of surface preparation will be considered completely covered by the contract lump sum unit price per sq. foot for Surface Preparation for Recoating Structural Steel.

(A4a1.11)

Prime Coat: The cost of the prime coat will be considered completely covered by the contract lump sum unit price per sq. foot for Field Application of Inorganic Zinc Primer. Tint of the prime coat for System G I shall be similar to the color of the field coat to be used.

(A4a.12) The coating color shall be as specified on the Design Layout. When System I is specified, omit the 2nd sentence.

Field Coat(s): The color of the field coat(s) shall be Gray (Federal Standard #26373) Brown (Federal Standard #30045) Black (Federal Standard #17038) Dark Blue (Federal Standard #25052) Bright Blue (Federal Standard #25095). The cost of the intermediate field coat will be considered completely covered by the contract lump sum unit price per sq. foot for Intermediate Field Coat (System G). The cost of the finish field coat will be considered completely covered by the contract lump sum unit price per sq. foot for Finish Field Coat (System G) Finish Field Coat (System I).

(A4a1.13) Use for recoating truss bridges.

The length of span that is permissible to drape is to be determined by the designer and given in the note. Typically, ¼ span length is used but greater lengths have been used in the past based on calculations. See Structural Project Manager or Structural Liaison Engineer.
For the duration of cleaning and recoating the truss spans, the truss span superstructure in any span shall not be draped with an impermeable surface subject to wind loads for a length any longer than 1/4 the span length at any one time regardless of height of coverage. Simultaneous work in adjacent spans is permissible using the specified limits in each span.

Overcoating Existing Steel (Notes A4a1.21 – A4a1.27)

(A4a1.21)

Protective Coating: Calcium Sulfonate System in accordance with Sec 1081.
Surface Preparation: Surface preparation of the existing steel shall be in accordance with Sec 1081 for Overcoating of Structural Steel (Calcium Sulfonate System). The cost of surface preparation will be considered completely covered by the contract lump sum unit price per sq. foot for Surface Preparation for Overcoating Structural Steel.

(A4a1.22)

Rust Penetrating Sealer: The rust penetrating sealer shall be applied to the surfaces of all bearings, overlapping steel plates, pin connections, pin and hanger connections and other locations where rust bleeding, pack rust and layered rust is occurring. The cost of the rust penetrating sealer will be considered completely covered by the contract lump sum price for Calcium Sulfonate Rust Penetrating Sealer.

(A4a1.23) Use when a prime coat is not required.

Prime Coat: Prime coat shall not be required.

(A4a1.24) Use when prime coat is noted on the Bridge Memorandum as required.

Prime Coat: The cost of the prime coat will be considered completely covered by the contract lump sum unit price per sq. foot tons for Calcium Sulfonate Primer.

(A4a1.25)

Topcoat: The color of the topcoat shall be Gray (Federal Standard #26373) Brown (Federal Standard #30045) Tan (Federal Standard #23522) Green (Federal Standard #24260). The cost of the topcoat will be considered completely covered by the contract unit price per sq. foot tons for Calcium Sulfonate Topcoat.

(A4a1.26) Use when two different new coating systems are used. Show detail on plans.

Limits of Paint Overlap: The Calcium Sulfonate System shall overlap the System G epoxy intermediate field coating between 6 inches and 12 inches in order to achieve maximum coverage at the paint limit of each complete system near the expansion and contraction areas. The final field coating shall be masked to provide crisp, straight lines and to prevent overspray beyond the overlap required.

(A4a1.27) Use when new coating system overlaps existing coating system. Show detail on plans.

Limits of Paint Overlap: System G shall overlap the existing coating between 6 inches and 12 inches in order to achieve maximum coverage at the paint limit of each complete system near the expansion and contraction areas. The final field coating shall be masked to provide crisp, straight lines and to prevent overspray beyond the overlap required.
A4a2. Steel Structures- Weathering Steel

Coating New Steel (Notes A4a2.1 - A4a2.3)

(A4a2.1)

Protective Coating: System H in accordance with Sec 1080.

(A4a2.2)

Field Coats: The color of the field coats shall be Brown (Federal Standard #30045). The cost of the intermediate and finish field coats will be considered completely covered by the contract unit price for the fabricated structural steel.

(A4a2.3)

At the option of the contractor, the intermediate and finish field coats may be applied in the shop. The contractor shall exercise extreme care during all phases of loading, hauling, handling, erection and pouring of the slab to minimize damage and shall be fully responsible for all repairs and cleaning of the coating systems as required by the engineer.

Recoating Existing Steel (A4a2.10 – A4a2.13)

(A4a2.10)

Protective Coating: System H in accordance with Sec 1080.

(A4a2.11)

Surface Preparation: Surface preparation of the existing steel shall be in accordance with Sec 1080 and Sec 1081 for Recoating of Structural Steel (System G, H or I). The cost of surface preparation will be considered completely covered by the contract lump sum unit price per sq. foot for Surface Preparation for Recoating Structural Steel.

(A4a2.12)

Prime Coat: The cost of the prime coat will be considered completely covered by the contract lump sum unit price per sq. foot for Field Application of Inorganic Zinc Primer. Tint of the prime coat for System H shall be similar to the color of the field coat to be used.

(A4a2.13) Use same note A4.3 (repeated here for completeness) for existing steel as for new steel. The coating color shall be as specified on the Design Layout.

Field Coats: The color of the field coats shall be Brown (Federal Standard #30045). The cost of the intermediate field coat will be considered completely covered by the contract lump sum unit price per sq. foot for Intermediate Field Coat (System H). The cost of the finish field coat will be considered completely covered by the contract lump sum unit price per sq. foot for Finish Field Coat (System H).
A4a3. Miscellaneous

(A4a3.1) Use for weathering steel or concrete structures with girder chairs and when a coating pay item is not included.

Structural steel for the girder beam chairs shall be coated with not less than 2 mils of inorganic zinc primer. Scratched or damaged surfaces are to be touched up in the field before concrete is poured. In lieu of coating, the girder beam chairs may be galvanized in accordance with ASTM A123. The cost of coating or galvanizing the girder beam chairs will be considered completely covered by the contract unit price for other items.

(A4a3.2) Use when recoating existing exposed piles. (Guidance: "Aluminum" is preferred because it acts as both a barrier and corrosion protection where "Gray" only acts as a barrier. If for any reason coated pile is embedded in fresh concrete, "Aluminum" shall not be used.)

All exposed surfaces of the existing structural steel piles and sway bracing shall be recoated with one 6-mil thickness of aluminum gray epoxy-mastic primer applied over an SSPC-SP3 surface preparation in accordance with Sec 1081. The bituminous coating shall be applied one foot above and below the existing ground line and in accordance with Sec 702. These protective coatings will not be required below the normal low water line. The cost of surface preparation will be considered completely covered by the contract lump sum price for Surface Preparation for Applying Epoxy-Mastic Primer. The cost of the aluminum gray epoxy-mastic primer and bituminous coating will be considered completely covered by the contract lump sum price for Aluminum Gray Epoxy-Mastic Primer.

A4b. Concrete Protective Coatings

A4b1. Concrete Protective Coatings

In "General Notes:" section of plans, place the following notes under the heading "Concrete Protective Coatings:".

(A4b1.1) Use note with weathering steel structures.

Temporary coating for concrete bents and piers (weathering steel) shall be applied on all concrete surfaces above the ground line or low water elevation on all abutments and intermediate bents in accordance with Sec 711.

(A4b1.2) Use note with coating for concrete bents and piers either urethane or epoxy.

Protective coating for concrete bents and piers (Urethane) (Epoxy) shall be applied as shown on the bridge plans and in accordance with Sec 711.

(A4b1.3) Use note when specified on Design Layout.

Concrete and masonry protective coating shall be applied on all exposed concrete and stone areas in accordance with Sec 711.

(A4b1.4) Use note when specified on Design Layout.

Sacrificial graffiti protective coating shall be applied on all exposed concrete and stone areas in accordance with Sec 711.

A5. Miscellaneous

In "General Notes:" section of plans, place the following notes under the heading "Miscellaneous:".

(A5.3) Use the following note on all jobs with high strength bolts.

High strength bolts, nuts and washers will be sampled for quality assurance as specified in Sec 106.

(A5.4) Use the following note for structures having detached wing walls at end bents.

Payment for furnishing all materials, labor and excavation necessary to construct the Lt. Rt. both detached wing walls at End Bents No.       and No.      including the Class    Excavation,     Pile, (1), Class B B-1 Concrete (Substr.) (2) and Reinforcing Steel (Bridges), will be considered completely covered by the contract unit price for these items.
(1) List all items used for the detached wing walls.
(2) For continuous concrete slab bridges, the detached wing walls could be either Class B or Class B-1. (For slab bridges with Class B spread footings, the detached wing walls might as well be Class B, otherwise, Class B-1 may be used.) Check with Project Manager.

(A5.6) [MS Cell] Use the following note on all Concrete Superstructures where Precast Panels are used.

MoDOT Construction personnel will indicate the type of joint filler option used under the precast panels for this structure:
□ Constant Joint Filler
□ Variable Joint Filler

B. Estimated Quantities Notes

B1. General

B1a. Concrete

Integral End Bents (When bridge slab quantity using note B3.1 table only)

(B1.1) (Use on steel structures only.)

All concrete above the lower construction joint in the end bents (except detached wing walls) is included with the Superstructure Quantities.

(B1.2) (Use on concrete structures only.)

All concrete above the construction joint in the end bents (except detached wing walls) is included with the Superstructure Quantities.


Integral End Bents, notes B1.3, B1.4, and B1.5 (When bridge slab quantity using note B3.21 table, slab bid per sq. yd.)

(B1.3) (Use on steel structures only.)

All concrete between the upper and lower construction joints in the end bents (except detached wing walls) is included in the Estimated Quantities for Slab on Steel.

(B1.4) (Use on concrete structures only.)

All concrete above the construction joint in the end bents (except detached wing walls) is included in the Estimated Quantities for Slab on Concrete I-Girder Slab on Concrete Bulb-Tee Girder Slab on Concrete NU-Girder Slab on Concrete Beam Reinforced Concrete Slab Overlay.

(B1.5)

All reinforcement in the end bents (except detached wing walls) and all reinforcement in cast-in-place pile at end bents is included in the Estimated Quantities for Slab on Steel Slab on Concrete I-Girder Slab on Concrete Bulb-Tee Girder Slab on Concrete NU-Girder Slab on Concrete Beam Reinforced Concrete Slab Overlay.


Intermediate Bents with Concrete Diaphragms

(B1.5.1)

All reinforcement in the intermediate bent concrete diaphragms except reinforcement embedded in the beam cap is included in the Estimated Quantities for Slab on Concrete I-Girder Slab on Concrete Bulb-Tee Girder Slab on Concrete NU-Girder Slab on Concrete Beam Reinforced Concrete Slab Overlay.

(B1.5.2)

All concrete above the intermediate beam cap is included in the Estimated Quantities for Slab on Concrete I-Girder Slab on Concrete Bulb-Tee Girder Slab on Concrete NU-Girder Slab on Concrete Beam Reinforced Concrete Slab Overlay.


Non-Integral End Bents with Concrete Diaphragms

(B1.5.3)

All reinforcement in the concrete diaphragm at the end bents is included in the Estimated Quantities for Slab on Concrete I-Girder Slab on Concrete Bulb-Tee Girder Slab on Concrete NU-Girder Slab on Concrete Beam Reinforced Concrete Slab Overlay.

(B1.5.4)

All concrete in the concrete diaphragm at the end bents is included in the Estimated Quantities for Slab on Concrete I-Girder Slab on Concrete Bulb-Tee Girder Slab on Concrete NU-Girder Slab on Concrete Beam Reinforced Concrete Slab Overlay.


Semi-Deep Abutments

(B1.6)

All concrete and reinforcing steel below top of slab and above construction joint in Semi-Deep Abutments is included in the Estimated Quantities for Slab on Semi-Deep Abutment.

End Bents with Expansion Device

(B1.7)

Concrete above the upper construction joint in backwall at End Bents No.    is included with Class B-2 Concrete (Slab on             ) Quantities.


Sidewalk

(B1.8)

All concrete and reinforcing steel in sidewalk will be considered completely covered by the contract unit price for Sidewalk (Bridges).


Continuous Concrete Slab Bridge (Notes B1.9.1 thru B1.9.6)

End Bents

(B1.9.1)

All concrete above the construction joint in the end bents (except detached wing walls) is included with the Superstructure Quantities.

(B1.9.2)

All reinforcement in the end bents (except detached wing walls) is included with the Superstructure Quantities.


Intermediate Column Bents integral with slab

(B1.9.3)

All concrete above construction joint between slab and columns in the intermediate bents is included with Superstructure Quantities.

(B1.9.4)

All reinforcement in the intermediate bent columns is included with Superstructure Quantities.


Intermediate Pile Cap Bents integral with slab

(B1.9.5)

All concrete in the intermediate bent caps is included with Superstructure Quantities.

(B1.9.6)

All reinforcement in the intermediate bent caps is included with Superstructure Quantities.

B1b. Excavation, Sway Bracing

Integral End Bents (When bridge slab quantity using note B3.1 table only)

(B1.10) Use when total estimated excavation is less than 10 cubic yards (No "excavation" item in the Estimated Quantities).

Cost of any required excavation for bridge will be considered completely covered by the contract unit price for other items.


Retaining Walls

(B1.11)

No Class 1 Excavation will be paid for above lower limits of roadway excavation.


Concrete Structures Having Sway Bracing on Load Bearing Piles

(B1.12)

The cost of furnishing and installing steel sway bracing on piles at the intermediate bents will be considered completely covered by the contract unit price for Fabricated Structural Carbon Steel (Misc.).


Note to Detailer:
For structures having steel sway bracing on piles, the weight of the bracing shall be shown under the substructure quantities.

(B1.13)

Cost of cleaning and coating of bracing at intermediate bents will be considered completely covered by the contract unit price for other items.


B2. Welded Wire Fabric

Structures with Welded Wire Fabric

(B2.4)

Weight of 6 x 6 - W2.1 x W2.1 welded wire fabric is included in Estimated Weight of Reinforcing Steel. (*)


WELDED WIRE FABRIC WEIGHT
STYLE SPACE SIZE LBS./100 SQ, FT.
6 x 6 - W2.1 x W2.1 6" 8 ga. 30
4 x 4 - W4 x W4 4" 4 ga. 85

See CRSI Manual for other sizes.

Table should not be shown on plans


(*) Modify for type actually used. Show type on details where the fabric is shown.

"W" denotes plain wire; the number following indicates cross sectional area in hundredths of a square inch. Deformed wire is denoted by the letter "D".

B3. Estimated Quantities Tables

B3a. Bridges

(B3.1) [MS Cell]

  Estimated Quantities
Item Substr. Superstr. Total
Class 1 Excavation cu. yard      
751.50 circled 1.gif Structural Steel Piles (     in.) linear foot      
  Class B Concrete cu. yard      
751.50 circled 2.gif Safety Barrier Curb linear foot      
  Reinforcing Steel (Bridges) pound      
751.50 circled 3.gif          
         


751.50 circled 1.gif The following note shall be placed under the estimated quantities box when steel piles are used in Seismic Performance Categories B, C & D.

(B3.2)

Cost of L4x4 ASTM A709 Grade 36 HP pile anchors and 3/4-inch diameter ASTM F3125 Grade A325 bolts, complete in place, will be considered completely covered by the contract unit price for Galvanized Structural Steel Piles (10 in. 12 in. 14 in.).


751.50 circled 2.gif Place an next to the safety barrier curb in the quantity box and add the following note under the estimated quantities box.

(B3.3)

Safety barrier curb shall be cast-in-place option or slip-form option.


751.50 circled 3.gif In special cases, entries are made to the quantities table by the Construction after plans are completed. When notes are placed too close to the bottom of this table, additional quantities cannot be entered efficiently. The request has been made that space be left for at least four (4) additional entries to the table before notes are placed on the plans.


(B3.5) Use for CIP pile in all bridges except for continuous concrete slab bridges.

All reinforcement in cast-in-place pile at non-integral end bents and intermediate bents is included in the substructure quantities.

(B3.6) Use for CIP pile in continuous concrete slab bridges.

All reinforcement in cast-in-place pile at end bents and pile cap intermediate bents is included in the superstructure quantities and all reinforcement in cast-in-place pile at open concrete intermediates bents is included in the substructure quantities.

Place an next to the transverse diamond grooving in the quantity box and add the following note under the estimated quantities box.

(B3.7)

MoDOT will allow, at the contractor's discretion, longitudinal or transverse diamond grooving of the surface of the concrete bridge deck.

B3b. Box Culverts

Estimated Quantities Table for Box Culverts

The quantities table on box culvert plans should show an extra column to the right in the table that is labeled "Final Quantities". Estimated quantities should be inserted to the left of this column in the usual manner by the detailer as shown in the example below.

The four extra spaces at the bottom of the table are not required as specified before.

(B3.11) [MS Cell]

Estimated Quantities Final Quantities
Class 4 Excavation cu. yard
Class B-1 Concrete
(Culverts-Bridge)*
cu. yard
Reinforcing Steel (Culverts-
Bridge)*
pound

Note to Detailer:

If distance from stream face of exterior wall to exterior wall is 20' then should use (Culverts-Bridge) but if 20' should use (Culverts).

B3c. Slabs on Steel, Concrete and Semi-Deep Abutment, and Reinforced Concrete Slab Overlays

The following table is to be placed on the design plans under the table of estimated quantities.

Use separate tables for multiple types of slabs on a structure.

(B3.21) [MS Cell] Table of Slab Quantities

Estimated Quantities for
                     
Item Total
Class B-2 Concrete cu. yard  
Reinforcing Steel (Epoxy Coated) pound  

Fill in the blank above and in note below with "Slab on Steel", "Slab on Concrete I-Girder", "Slab on Concrete Bulb-Tee Girder", "Slab on Concrete NU-Girder", "Slab on Semi-Deep Abutment", "Slab on Concrete Beam" or "Reinforced Concrete Slab Overlay".

"Reinforced Concrete Slab Overlay" shall be used with double-tee girders and when specified on the Design Layout for solid slab beams, adjacent voided slab beams and adjacent box beams.

Concrete shall be estimated to the nearest cubic yard instead of 0.1 cubic yard due to variances and assumptions used in this estimate. Reinforcing steel shall be estimated to the nearest 10 pounds.

(B3.22)

The table of Estimated Quantities for               represents the quantities used by the State in preparing the cost estimate for concrete slabs. The area of the concrete slab will be measured to the nearest square yard longitudinally from end of slab to end of slab and transversely from out to out of bridge slab (or with the horizontal dimensions as shown on the plan of slab). Payment for prestressed panels, stay-in-place corrugated steel forms, conventional forms, all concrete and epoxy coated reinforcing steel will be considered completely covered by the contract unit price for the slab. Variations may be encountered in the estimated quantities but the variations cannot be used for an adjustment in the contract unit price.

(B3.23)

Method of forming the slabs shall be as shown on the plans and in accordance with Sec 703. All hardware for forming the slab to be left in place as a permanent part of the structure shall be coated in accordance with ASTM A123 or ASTM B633 with a thickness class SC 4 and a finish type I, II or III.

(B3.24) Use note for optional forming.

Slab shall be cast-in-place with conventional forms or stay-in-place corrugated steel forms. Precast prestressed panels will not be permitted.

(B3.25) Use note when vibratory screeds are allowed for deck finishing. For guidance for allowing a vibratory screed, see EPG 751.10.1.15 Deck Concrete Finishing.

Bridge deck surface may be finished with a vibratory screed.

Stay-In-Place Corrugated Steel Forms:

(B3.30)

Corrugated steel forms, supports, closure elements and accessories shall be in accordance with grade requirement and coating designation G165 of ASTM A653. Complete shop drawings of the permanent steel deck forms shall be required in accordance with Sec 1080.

(B3.31)

Corrugations of stay-in-place forms shall be filled with an expanded polystyrene material. The polystyrene material shall be placed in the forms with an adhesive in accordance with the manufacturer's recommendations.

(B3.32)

Form sheets shall not rest directly on the top of girder beam or floorbeam flanges. Sheets shall be securely fastened to form supports with a minimum bearing length of one inch on each end. Form supports shall be placed in direct contact with the flange. Welding on or drilling holes in the girder beam or floorbeam flanges will not be permitted. All steel fabrication and construction shall be in accordance with Sec 1080 and 712. Certified field welders will not be required for welding of the form supports.

(B3.33) Use “4 psf” for form spans up to 10 feet beyond which a greater dead loading for form spans may need to be considered and used.

The design of stay-in-place corrugated steel forms is per manufacturer which shall be in accordance with Sec 703 for false work and forms. Maximum actual weight of corrugated steel forms allowed shall be 4 psf assumed for girder beam loading.

(B3.34) Use this temporary note until further notice when more is learned about what contractor’s methods are proposed and approved by the engineer.

The contractor shall provide a method of preventing the direct contact of the stay-in-place forms and connection components with uncoated weathering steel members that is approved by the engineer.

Precast Prestressed Panels:

(B3.40) Use for skewed structures.

The Estimated Quantities for Slab on Steel Concrete I-Girder Concrete Bulb-Tee Girder Concrete NU-Girder Concrete Beam are based on skewed precast prestressed end panels.

(B3.41) Use for concrete structures.

Class B-2 Concrete quantity is based on minimum top flange thickness and minimum joint material thickness.

(B3.42)

The prestressed panel quantities are not included in the table of Estimated Quantities for Slab on Steel Concrete I-Girder Concrete Bulb-Tee Girder Concrete NU-Girder Concrete Beam.

B3d. Asphalt Wearing Surfaces

The following table shall be placed under the Table of Estimated Quantities on the design plans for alternate asphaltic concrete wearing surface.


(B3.50) [MS Cell]

  Alternate Asphaltic
Concrete Wearing Surface
 
Type of Wearing Surface
with Asphalt Binder Type
Mix Used
()
SP125BSM Mix with PG 76-22  
SP125BLP Mix with PG 76-22  
SP125BSM Mix with PG 70-22  
SP125CLP Mix with PG 70-22  
  MoDOT construction personnel shall complete column labeled "Mix Used ()".


The "SP" designates a superpave mixture; the "125" indicates the nominal mixture aggregate size is 12.5 mm, "B" or "C" indicates the design level, the "SM" indicates Stone Mastic Asphalt, and the "LP" indicates the mixture contains limestone/porphyry. See the Design Layout for the type of Superpave mixture required.
  See the Design Layout for the asphalt binder required.


(B3.53)

The contractor shall select one of the alternate asphaltic concrete wearing surfaces listed in the table. The mixture shall be in accordance with Sec 403 and produced in accordance with Sec 404.

(B3.54)

The area of the asphaltic concrete wearing surface will be measured and computed to the nearest square yard. This area will be measured transversely from out to out of overlay and longitudinally from end of slab to end of slab.

(B3.56)

Payment for alternate Asphaltic Concrete Wearing Surface will be considered completely covered by the contract unit price per square yard.

C. Reinforcing Steel Notes

C1. Bill of Reinforcing Steel

Place the following notes below or near the "Bill of Reinforcing Steel" when appropriate.

(C1.1) Same marks used for unlike bars on different units.

Bars in the above units are to be billed and tagged separately.

(C1.2) Incomplete bill (Or bill for different units placed on different sheets).

See Sheet No.       for bill of reinforcing steel for         .


BENDING BY CRSI STANDARDS

(C1.3)

All standard hooks and bends other than 180 degree are to be bent with same procedure as for 90 degree standard hooks.

(C1.4)

Hooks and bends shall be in accordance with the procedures as shown on this sheet.

(C1.5)

Nominal lengths are based on out to out dimensions shown in bending diagrams and are listed for fabricators use. (Nearest inch)

(C1.6)

Payweights are based on actual lengths.

(C1.7)

Unless otherwise noted, diameter "D" is the same for all bends and hooks on a bar.

(C1.8)

E = Epoxy coated reinforcement.

(C1.9)

S = Stirrup.

(C1.10)

X = Bar is included in substructure quantities.

(C1.11)

Actual lengths are measured along centerline bar to the nearest inch.

(C1.12)

V = Bar dimensions vary in equal increments between dimensions shown on this line and the following line.

(C1.13)

No. ea. = Number of bars of each length.

(C1.14)

Four angle or channel spacers are required for each column spiral. Spacers are to be placed on inside of spirals. Length and weight of column spirals do not include splices or spacers.

(C1.15)

Reinforcing steel (Grade 60) fy = 60,000 psi.


EPOXY COATED REINFORCING STEEL

Note to Detailer:
For epoxy coated reinforcement requirements, see EPG 751.5.9.2.2 Epoxy Coated Reinforcement Requirements.

C2. Prestressed Girders, Beams & Panels

C2a. Notes for Girders, Beams and Panels

Place the C2a notes below or near the table "Bill of Reinforcing Steel - Each Girder Beam" or under the heading "Reinforcing Steel" when appropriate.

(C2a.1)

All dimensions are out to out.

(C2a.2)

Hooks and bends shall be in accordance with the CRSI Manual of Standard Practice for Detailing Reinforced Concrete Structures, Stirrup and Tie Dimensions.

(C2a.3) Add bar for NU-girders. Note is no longer used for P/C P/S panels.

Actual bar lengths are measured along centerline of bar to the nearest inch.

C2b. Additional Notes for Prestressed Girders and Beams

Place the C2b notes below the C2a notes.

(C2b.1) Use for all girders and beams except double-tee girders. Underline part only required for WWR reinforced NU-girders, box beams and voided slab beams.

Minimum clearance to reinforcing shall be 1" unless otherwise shown.

(C2b.2) Use only for double-tee girders. Add and U2 bar for skewed structures only.

Minimum clearance to reinforcing shall be 1", except for 4 x 4 - W4 x W4 and U2 bar.

(C2b.10) Add bar for NU-girders and Double T.

All bar reinforcement shall be Grade 60.

(C2b.11) Use only for NU-girders and Double T.

Welded Wire Reinforcement (WWR) shall be in accordance with AASHTO M 221.

(C2b.20) Use only for I-girders, bulb-tee girders and alternate bar reinforced NU-girders.

The two D1 bars may be furnished as one bar at the fabricator's option.

(C2b.30) Use for all girders and beams except WWR reinforced NU-girders and double-tee girders. Add and C1 for bulb-tee girders only. Most likely will need to add more bars if girder steps exists.

All B1 and C1 bars shall be epoxy coated.

(C2b.31) Use only for WWR reinforced NU-girders

WWR shall not be epoxy coated.

(C2b.32) Use only for double-tee girders.

All S and U reinforcing bars shall be epoxy coated.

C2c. Additional Notes for Prestressed Panels

Place the C2c notes below the C2a notes.

(C2c.1)

Minimum clearance to reinforcing steel shall be 1 1/2", unless otherwise shown.

(C2c.2)

If U1 bars interfere with placement of slab steel, U1 loops may be bent over, as necessary, to clear slab steel.

(C2c.3)

Deformed welded wire reinforcement (WWR) providing a minimum area of reinforcing perpendicular to strands of 0.22 sq in./ft, with spacing parallel to strands sufficient to ensure proper handling, may be used in lieu of the #3-P2 bars shown. Wire diameter shall not be larger than 0.375 inch. The above alternative reinforcement criteria may be used in lieu of the #3-P3 bars, when required, and placed over a width not less than 2 feet.

(C2c.4)

The following reinforcing steel shall be tied securely to the strands with the following maximum spacing in each direction:
#3-P2 bars at 16 inches. 
WWR at 24 inches.

(C2c.5)

The #3-U1 bars shall be tied securely to #3-P2 bars, to WWR or to strands (when placed between P1 bars) at about 3-foot centers.

(C2c.6)

Minimum reinforcement steel length shall be 2'-0".

D. Temporary Bridge (Notes for Bridge Standard Drawings)

D1. General

Place the following notes on the front sheet.

(D1.1) Place in General Notes on the front sheet under the heading “Timber:”.

All timber shall be standard rough sawn. At the contractor's option, timber may be untreated or protected with commercially applied timber preservatives. All timber shall have a minimum strength of 1500 psi and shall be either douglas fir in accordance with paragraph 123B (MC-19), 124B (MC-19) and 130BB of the current edition of Standard Grading Rules for West Coast Lumber, southern pine in accordance with paragraphs 312 (MC-19), 342 (MC-19) and 405.1 of the current edition of Southern Pine Inspection Bureau Grading Rules, or a satisfactory grade of sound native oak.

(D1.2) Place in General Notes on the front sheet under the heading “Bolts:”.

All bolts shall be high strength ASTM A325 except as noted.

(D1.3) Place in General Notes on the front sheet under the heading “Miscellaneous:”.

The superstructure only and cap beam units will be provided by the State and shall be transported from          Maintenance Lot. The superstructure shall be returned and stored at the same location as designated by the engineer after Bridge No.          is open to traffic.

(D1.4) Place in General Notes on the front sheet under the heading “Structural Steel:”.

All structural steel shall be ASTM A709 Grade 50W except piles, sway bracing, thrie beam rail assembly and structural tubing. Structural tubing coating shall be in accordance with Sec 718.

(D1.5) Place in General Notes on the front sheet under the heading “Substructure:”.

All substructure items specified in Sec 718.3.1 except for the pile point reinforcement and sway bracing will be considered completely covered by the contract unit price for Structural Steel Piles (14 in.).

(D1.11) Place with shim plate details on the bent sheet.

Shim plates may be used between pile and channel at the end bents or angle at the intermediate bents. Shim plates may vary in thickness from 1/16 inch to thickness required.

(D1.21) Place near half section of bridge flooring on the superstructure sheet.

Steel bridge flooring shall be Foster 5-Inch RB 8.2M open steel bridge flooring or equivalent. Trim bars shall be required at the sides and ends of each 39'-10 1/2" unit.

(D1.22) Place on the superstructure sheet.

Note: Field connections shall be 7/8-inch diameter high strength bolts with 1 1/16-inch diameter holes except as noted.

(D1.23) Place near details of U-bolts lifting device on the superstructure sheet.

U-bolts lifting device shall be on the inside top flange at both ends of each exterior beam of each unit. U-bolts shall be removed during the time the bridge is open to traffic. Position of the U-bolts may be shifted slightly to miss the bars in the flooring.

E. General Elevation and Plan Notes

E1. Excavation and Fill

Remove Old Roadway Fill Under Structure (When specified on the Design Layout.)

(E1.1)

Old roadway fill under the ends of the bridge shall be removed as shown. Removal of old roadway fill will be considered completely covered by the contract unit price for roadway excavation.


Fill at Pile Cap End Bents (All pile cap end bents)

(E1.4) (*) Applies to Semi-Deep Abutment.

Roadway fill shall be completed to the final roadway section and up to the elevation of the bottom of the concrete approach(*) beam within the limits of the structure and for not less than 25 feet in back of the fill face of the end bents before any piles are driven for any bents falling within the embankment section.

E2. Foundation Data Table

The following table is to be placed on the design plans and filled out as indicated.

(E2.1) [MS Cell] (E2.1) (Example: Use the underlined parts in the bent headings for bridges having detached wing walls at end bents only.)

Foundation Data1
Type Design Data Bent Number
1 (Detached
Wing Walls
Only)
1 (Except
Detached
Wing Walls)
2 3 4
Load
Bearing
Pile
CECIP/OECIP/HP Pile Type and Size CECIP 14" CECIP 14" CECIP 16" OECIP 24" HP 10x42
Number
751.50 ea.jpg
6 8 15 12 6
Approximate Length Per Each
751.50 ft.jpg
50 50 60 40 53
Pile Point Reinforcement
751.50 ea.jpg
All All - All All
Min. Galvanized Penetration (Elev.)
751.50 ft.jpg
303 2954 273 Full Length 300
Est. Max. Scour Depth 1002 (Elev.)
751.50 ft.jpg
- - 285 - -
Minimum Tip Penetration (Elev.)
751.50 ft.jpg
285 303 270 - -
Criteria for Min. Tip Penetration Min. Embed. Min. Embed. Scour - -
Pile Driving Verification Method DT DT DT DT WEAP
Design Bearing3 Minimum Nominal Axial
Compressive Resistance
751.50 kip.jpg
175 200 300 600 250
Hammer Energy Required
751.50 ftlb.jpg
8200 8200 9900 15,400 15,400
Spread
Footing
Foundation Material - - Weak Rock Rock -
Design Bearing Minimum Nominal
Bearing Resistance
751.50 ksf.jpg
- - 10.2 22.6 -
Rock
Socket
Number
751.50 ea.jpg
- - 2 3 -
751.50 Layer 1.jpg
Foundation Material - - Rock Rock -
Elevation Range
751.50 ft.jpg
- - 410-403 410-398 -
Design Side Friction
Minimum Nominal Axial
Compressive Resistance
(Side Resistance)
751.50 ksf.jpg
- - 20.0 20.0 -
751.50 Layer 2.jpg
Foundation Material - - Weak Rock - -
Elevation Range
751.50 ft.jpg
- - 403-385 - -
Design Side Friction
Minimum Nominal Axial
Compressive Resistance
(Side Resistance)
751.50 ksf.jpg
- - 9.0 - -
Design End Bearing
Minimum Nominal Axial
Compressive Resistance
(Tip Resistance)
751.50 ksf.jpg
- - 12 216 -
1 Show only required CECIP/OECIP/HP pile data for specific project.
2 Show maximum of total scour depths estimated for multiple return periods in years from Preliminary design which should be given on the Design Layout. Show the controlling return period (e.g. 100, 200, 500). If return periods are different for different bents, add a new line.
3 For LFD: For bridges in Seismic Performance Categories B, C and D, the design bearing values for load bearing piles given in the table should be the larger of the following two values:
  1. Design bearing value for AASHTO group loads I thru VI.
  2. Design bearing for seismic loads / 2.0
4 It is possible that min. tip penetration (elev.) can be higher than min. galvanized penetration (elev.).
Additional notes:
On the plans, report the following definition(s) just below the foundation data table for the specific method(s) used:

DT = Dynamic Testing
DF = FHWA-modified Gates Dynamic Formula
WEAP = Wave Equation Analysis of Piles

On the plans, report the following definition(s) just below the foundation data table for CIP Pile:
CECIP = Closed Ended Cast-In-Place concrete pile
OECIP = Open Ended Cast-In-Place concrete pile

On the plans, report the following equation(s) just below the foundation data table for the specific foundation(s) used:
Rock Socket (Drilled Shafts):
Minimum Nominal Axial Compressive Resistance (Side Resistance + Tip Resistance) = Maximum Factored Loads/Resistance Factors
Spread Footings:
Minimum Nominal Bearing Resistance = Maximum Factored Loads/Resistance Factor
Load Bearing Pile:
Minimum Nominal Axial Compressive Resistance = Maximum Factored Loads/Resistance Factor


Guidance for Using the Foundation Data Table:
Pile Driving Verification Method FHWA-Modified Gates Dynamic Formula
Dynamic Testing
Other Method
Criteria for Minimum Tip Penetration Scour
Tension or uplift resistance
Lateral stability
Penetration anticipated soft geotechnical layers
Minimize post construction settlement
Minimum embedment into natural ground
Other Reason
Hammer Energy Required See Sec 702.
Elevation reporting accuracy: Report to nearest foot for min. tip penetration, pile cleanout penetration, max. galvanized depth and est. max. scour depth. (Any more accuracy is acceptable but not warranted.)
For LFD Design
Use "Design Bearing" for load bearing pile and spread footing and use "Design Side Friction + Design End Bearing" for rock socket (drilled shaft).
For LRFD Design
Use "Minimum Nominal Axial Compressive Resistance" for load bearing pile, "Minimum Nominal Bearing Resistance" for spread footing and "Minimum Nominal Axial Compressive Resistance (Side Resistance + Tip Resistance)" for rock socket (drilled shaft).

Shallow Footings

(E2.10) (Use when shallow footings are specified on the Design Layout.)

In no case shall footings of Bents No.       and       be placed higher than elevations shown       and       , respectively.

Driven Piles

(E2.20) (Use when prebore is required and the natural ground line is not erratic.)

Prebore for piles at Bent(s) No.       and       to elevation(s)       and       , respectively.

(E2.21) (Use when prebore is required and the natural ground line is erratic.)

Prebore to natural ground line.

(E2.22) (Use when estimated maximum scour depth (elevation) for CIP piles is required.) (Use when estimated maximum scour depth (elevation) and dynamic pile testing for HP piles are required.)

Estimated Maximum Scour Depth (Elevation) shown is for verifying Minimum Nominal Axial Compressive Resistance Design Bearing using dynamic testing only where pile resistance contribution above this elevation shall not be considered.

(E2.23) (Use when static test piles are required.) This number of piles in table should not include test piles. If test piles are specified, place an * beside the number of piles at the bents indicated.

 *One concrete test pile shall be driven in permanent position, one for each bent, at Bents No.       and       .

(E2.24)

All piles shall be galvanized down to the minimum galvanized penetration (elevation).

(E2.25) (Use for all HP pile and when pile point reinforcement is required for CIP pile.)

Pile point reinforcement need not be galvanized. Shop drawings will not be required for pile point reinforcement.

(E2.26) (Use for LFD piling design when Design Bearing is determined from service loads and shown on the plans. This represents converting the Design Bearing to a Minimum Nominal Axial Compressive Resistance, P, for use in the dynamic formula in accordance with Sec 702. Example: Considered only for widenings, repairs and rehabilitations.)

All piling shall be driven to a minimum nominal axial compressive resistance equal to 3.5 times the Design Bearing as shown on the plans.

(E2.27) Use for galvanized piles.

The contractor shall make every effort to achieve the minimum galvanized penetration (elevation) shown on the plans for all piles. Deviations in penetration less than 5 feet of the minimum will be considered acceptable provided the contractor makes the necessary corrections to ensure the minimum penetration is achieved on subsequent piles.

Drilled Shafts

(E2.29)

Thickness of permanent steel casing shall be as shown on the plans and in accordance with Sec 701.

(E2.30) Note may not be required with drilled shafts for high mast tower lighting.

An additional 4 feet has been added to V-bar lengths and an additional __-#__-P-bars have been added in the quantities, if required, for possible change in drilled shaft or rock socket length. The additional V-bar length shall be cut off or included in the reinforcement lap if not required. The additional P-bars shall be spaced similarly to that shown in elevation, if required, or to a lesser spacing if not required, but not less than 6" cts.

(E2.31) Note not required with drilled shafts for high mast tower lighting.

Sonic logging testing shall be performed on all drilled shafts and rock sockets.

(E2.32) Note to be used only with Drilled Shafts for High Mast Tower Lighting.

Drilling slurry, if used, shall require desanding.

(E2.33) Note to be used only with Drilled Shafts for High Mast Tower Lighting. Drilled shaft diameter is required to be at least 21 in. greater than the largest anticipated anchor bolt circle diameter per the DSP - High Mast Tower Lighting.

The following non-factored base reactions were used to design the drilled shafts for the       ft. high mast lighting towers: overturning moment = * kip-foot, base shear = * kip and axial force = * kip.
 *Values used in the design of the drilled shaft.

(E2.34) Use the following note only when the top of drilled shafts are < = 3'-0" below the ground surface at centerline column / drilled shaft. Otherwise excavation quantity to the top of drilled shafts needs to be figured. Excavation diameter limit will be the 3'-0" larger than the column diameter above the drilled shaft.

The cost of any required excavation to the top of the drilled shafts will be considered completely covered by the contract unit price for other items.

E3. Miscellaneous

(E3.1) Horizontal curves (Bridges not of box culvert type)

All bents are parallel.

Boring Data

(E3.2) [MS Cell] (Place on Front Sheet of the plans when boring data is provided for bridges, retaining walls, MSE walls and any other structure.)

751.50 E3.2 boring.jpg Indicates location of borings.
Notice and Disclaimer Regarding Boring Log Data
The locations of all subsurface borings for this structure are shown on the plan sheet(s) for this structure. The boring data for all locations indicated, as well as any other boring logs or other factual records of subsurface data and investigations performed by the department for the design of the project, are shown on Sheet(s) No.___ and may be included in the Electronic Bridge Deliverables. They will also be available from the Project Contact upon written request. No greater significance or weight should be given to the boring data depicted on the plan sheets than is given to the subsurface data available from the district or elsewhere.
 
The Commission does not represent or warrant that any such boring data accurately depicts the conditions to be encountered in constructing this project. A contractor assumes all risks it may encounter in basing its bid prices, time or schedule of performance on the boring data depicted here or those available from the district, or on any other documentation not expressly warranted, which the contractor may obtain from the Commission.

(E3.4) (Place on the Boring Data Sheet)

For location of borings see Sheet(s) No.   .

Final clearance - Bridges over Railroads

(E3.5) In the general elevation detail, the vertical clearance dimension callout shall be the following asterisked note placed near the detail.

Final vertical clearance from top of rails to bottom of superstructure shall be   (1)   minimum. Track elevations should be verified in the field prior to construction to determine if the final vertical clearance shown will be obtained.
(1) Required clearance specified on the Bridge Memorandum.

Seal Course (Use the following notes when Seal Course is specified on the Design Layout.)

(E3.6)

Seal course is designed for a water elevation of           .

(E3.7)

If the seal course is omitted, by the approval of the engineer, bottom of footing shall be placed at the elevation shown on the plans.

Bar placement in slabs (Notes E3.8 – E3.9)

Guidance Notes for Detailing: Indicate only the top longitudinal slab bars affected for tying the R4 barrier curb bar. It may be that only one bar needs to be indicated for shifting.

(E3.8) Use note with detail drawing indicating which bars are to be shifted.

Contractor may shift or swap bars as needed to tie R4 bar in barrier (4” min. bar spacing).

(E3.9) Use note with detail drawing to indicate top edge longitudinal slab bar only.

Contractor may shift bar as needed to tie R3 bar in barrier.

F. Blank

G. Substructure Notes

G1. Concrete Bents

Expansion Device at End Bents (G1.1 and G1.1.1)

(G1.1)

Top of backwall for end Bents No.       shall be formed to the crown and grade of the roadway. Backwall above upper construction joints shall not be poured until the superstructure slab has been poured in the adjacent span.

(G1.1.1)

All concrete above the upper construction joint in backwall shall be Class B-2.


Abutments with Flared Wings

(G1.2)

Longitudinal dimensions shown for bar spacing in the developed elevations are measured along front face of abutments.


Stub Bents (G1.3 and G1.4)

(G1.3)

Safety barrier curbs, parapets and end post shall not be poured until the slab has been poured in the adjacent span.


(G1.4) Use when embedded in rock or on a footing.

Rock shall be excavated to provide at least 6" of earth under the beam and wings.


End Bents with Turned-Back Wings (G1.5 and G1.6)

(G1.5) Use for Non-Integral End Bents only.

Field bending shall be required when necessary at the wings for #   -H    bars in the backwalls for skewed structures and for #   -F    bars in the wings for the slope of the wing.

(G1.6) Add to sheet showing the typical section thru wing detail.

For reinforcement of the safety barrier curb, see Sheet No.     (1).
(1) Use sheet number of the details of the safety barrier curb at end bents.


Integral End Bents (G1.7 thru G1.10)

(G1.7) Second F bar required for skewed bents.

The #6-F     a and #6-F   bars shall be bent in the field to clear beams girders.

(G1.7.1) Use for skewed bents. The #5-H bars are the approach slab anchorage (L shaped) bars embedded 12” (Min.) @ 90⁰ into the end bent. Modify note as needed when bent details are on multiple sheets.

The U bars, Pairs-V bars and #5-H     bars shall be placed parallel to centerline of roadway.

(G1.8)

All concrete in the end bent above top of beam and below top of slab shall be Class B-2.


(G1.9) Use for P/S structures.

Strands at end of the girders beams shall be field bent or, if necessary, cut in field to maintain 1 1/2" minimum clearance to fill face of end bent.


(G1.10) Use for steel structures without steel diaphragms at end bents.

Concrete diaphragms at the integral end bents shall be poured a minimum of 12 hours before the slab is poured.


Semi-Deep Abutments (G1.11 thru G1.13) Place near the ground line and piling in abutment detail. This detail and notes can be placed with abutment details or near the foundation table.

(G1.11)

Earth within abutment shall not be above the ground line shown . Forms supporting the abutment slab may be left in place.


(G1.12)

The maximum variation of the head of the pile and the battered face of the pile from the position shown shall be no more than 2 inches.


(G1.13)

Exposed steel piles steel pile shells within the abutment shall be coated with a heavy coating of an approved bituminous paint.

All Substructure Sheets with Anchor Bolts

(G1.15A)

Reinforcing steel shall be shifted to clear anchor bolt wells by at least 1/2".

(G1.15B) Use unless only anchor bolt wells are preferred, i.e. uplift, congested reinforcement, etc.

Holes for anchor bolts may be drilled into the substructure.


Beam/Girder Chairs (G1.16 thru G1.19). Notes G1.16 and G1.17 shall be placed near chair details.

(G1.16)

Cost of furnishing, fabricating and installing chairs will be considered completely covered by the contract unit price for (a).
Condition (a)
Structures without steel beam or girder pay item Fabricated Structural Carbon Steel (Misc.)
Structures with steel beam or girder pay item Use beam or girder pay item
When there is no steel beam or girder pay item, the miscellaneous steel for the chair is a substructure pay item and should also be included in the bent substructure quantity box

(G1.17) Use for P/S structures and for steel structures when the chair material is not the pay item material.

Steel for chairs shall be ASTM A709 Grade 36.

(G1.18) Use for structures with steel beam or girder pay items. Place below the substructure quantity box of all bents with chairs using the same pay item for (a) as used in Note G1.16.

The weight of   pounds of chairs is included in the weight of (a).

(G1.19) Place with the other bent notes. Second sentence is required when the chair details are located with other bent details.

Reinforcing steel shall be shifted to clear chairs. For details of chairs, see Sheet No.   .

All Substructure Sheets with Pile Cap Bents.

(G1.20)

Reinforcing steel shall be shifted to clear piles. U bars shall clear piles by at least 1 1/2".

Miscellaneous (G1.41 thru G1.43)

(G1.40) Use the following note at all fixed intermediate bents on prestressed girder bridges with steps of 2" or more.

For steps 2" or more, use 2 1/4" x 1/2" joint filler up vertical face.

(G1.41) Use the following note when vertical column steel is hooked into the bent beam.

At the contractor's option, the hooks of V-Bars embedded in the beam cap may be oriented inward or outward for Seismic Category A. Bending the hook outward, away from the column core, is not allowed for Seismic Category B, C, or D.

(G1.42) Place the following note on plans when using Optional Section for Column-Web beam joints.

At the contractor's option, the details shown in optional Section __-__ may be used for column-web beam or tie beam at intermediate Bent No.   . No additional payment will be made for this substitution.

(G1.43) Place the following note on plans when you have adjoining twin bridges.

Preformed compression joint seal shall be in accordance with Sec 717. Payment will be considered completely covered by the contract unit price for other items included in the contract.

G1.44 Use with column closed circular stirrup/tie bar detail.

Minimum lap ____ (Stagger adjacent bar splices)

G2. Deadman Anchors

() Size of rod.

(G2.1)

Construction sequence:

(G2.2)

Construct end bent with anchor tees in place.

(G2.3)

Construct deadman with anchor tees in place.

(G2.4)

Machine compact fill up to elevation of (*)"ø rod and turnbuckle.

(G2.5)

Install (*)"ø rod, clevis and turnbuckle assembly.

(G2.6)

Tighten turnbuckle until snug.

(G2.7)

Hand compact fill for 12" (min.) over (*)"ø rod and turnbuckle.

(G2.8)

Machine compact remaining fill.

(G2.9)

All anchor tees, rods, clevises, turnbuckles, etc. shall be fabricated from ASTM A709 Grade 36, ASTM A668 Class F or equivalent steel and galvanized in accordance with Sec 1081. Shop drawings will not be required. All concrete shall be Class B. All reinforcing steel shall be Grade 60.

(G2.10)

All metal members of the anchorage system not embedded in concrete shall be cleaned and receive a heavy coating of an approved bituminous paint.

(G2.11)

Fine aggregate shall be in accordance with Sec 1005 and shall be placed below and above the rod and turnbuckles.

(G2.12)

Payment for all materials, excavation, backfill and any other incidental work necessary to complete the Deadman Anchorage Assembly will be considered completely covered by the contract unit price per each.

(G2.13)

Note: Reinforcing steel lengths are based on nominal lengths, out to out.

G3. Vertical Drain at End Bent (Notes for Bridge Standard Drawings)

(G3.0)

All drain pipe shall be sloped 1 to 2 percent.

(G3.1)

Drain pipe may be either 6-inch diameter corrugated metallic-coated steel pipe underdrain, 4-inch diameter corrugated polyvinyl chloride (PVC) drain pipe, or 4-inch diameter corrugated polyethylene (PE) drain pipe.

(G3.2)

Drain pipe shall be placed at fill face of end bent and inside face of wings. The pipe shall slope to lowest grade of ground line, also missing the lower beam of end bent by a minimum of 1 1/2 inches.

(G3.3)

Perforated pipe shall be placed at fill face side and inside face of wings at the bottom of end bent and plain pipe shall be used where the vertical drain ends to the exit at ground line.

G4. Substructure Quantity Table

(G4.1) [MS Cell]

Estimated Quantities
Item Quantity
Class 1 Excavation cu. yard  
Structural Steel Piles (     in.) linear foot  
Class B Concrete cu. yard  
Reinforcing Steel (Bridges) pound  
     
     
Items shown are for example only, use actual items and quantities for each bent.

(G4.2)

Note: These quantities are included in the estimated quantities table on Sheet No.   .

Note to Detailer:
Place substructure quantity table on right side of substructure bent sheet.

G5. CIP Concrete Piles (Notes for Bridge Standard Drawings)

G5a Closed Ended Cast-in Place (CECIP) Concrete Pile

(G5a1)

Welded or seamless steel pipe shall be ASTM A252 Grade 2 (fy = 35,000 psi) or Grade 3 (fy = 45,000 psi) as shown in the Concrete Pile Data table.

(G5a2)

Concrete for cast-in-place pile shall be Class B-1.

(G5a3)

Steel for closure plate shall be ASTM A709 Grade 50.

(G5a4)

Steel for cruciform pile point reinforcement shall be ASTM A709 Grade 50.

(G5a5)

Steel casting for conical pile point reinforcement shall be ASTM A27 Grade 65-35 ASTM A148 Grade 90-60.

(G5a6)

The minimum wall thickness of any spot or local area of any type shall not be more than 12.5% under the specified nominal wall thickness.

(G5a7)

Closure plate shall be required for tip of pipe pile and shall not project beyond the outside diameter of the pipe pile. Satisfactory weldments may be made by beveling tip end of pipe or by use of inside backing rings. In either case, proper gaps shall be used to obtain weld penetration full thickness of pipe. Payment for furnishing and installing closure plate will be considered completely covered by the contract unit price for Galvanized Cast-In-Place Concrete Piles.

(G5a8)

Splices of pipe for cast-in-place concrete pile shall be made watertight and to the full strength of the pipe above and below the splice to permit hard driving without damage. Pipe damaged during driving shall be replaced without cost to the state. Pipe sections used for splicing shall be at least 5 feet in length.

(G5a9)

At the contractor's option, the hooks of V-Bars embedded in the beam cap may be oriented inward or outward for Seismic Category A. Bending the hook outward, away from the pile core, is not preferred for Seismic Category B, C, or D.

(G5a10)

The hooks of V-Bars embedded in the pile cap footing should be oriented outward for all seismic categories.

(G5a11)

Closure plate need not be galvanized.

(G5a12)

Reinforcing steel for cast-in-place pile is included in the Bill of Reinforcing Steel.

(G5a13)

All reinforcement for cast-in-place pile is included in the estimated quantities for bents.


G5b Open Ended Cast-in Place (OECIP) Concrete Pile

(G5b1)

Welded or seamless steel pipe shall be ASTM A252 Grade 2 (fy = 35,000 psi) or Grade 3 (fy = 45,000 psi) as shown in the Concrete Pile Data table.

(G5b2)

Open ended pile shall be augered out to the minimum pile cleanout penetration elevation and filled with Class B-1 concrete.

(G5b3)

Concrete for cast-in-place pile shall be Class B-1.

(G5b4)

Steel casting for open ended cutting shoe pile point reinforcement shall be ASTM A27 Grade 65-35 ASTM A148 Grade 90-60.

(G5b5)

The minimum wall thickness of any spot or local area of any type shall not be more than 12.5% under the specified nominal wall thickness.

(G5b6)

Splices of pipe for cast-in-place pipe pile shall be made watertight and to the full strength of the pipe above and below the splice to permit hard driving without damage. Pipe damaged during driving shall be replaced without cost to the state. Pipe sections used for splicing shall be at least 5 feet in length.

(G5b7)

At the contractor's option, the hooks of V-Bars embedded in the beam cap may be oriented inward or outward for Seismic Category A. Bending the hook outward, away from the pile core, is not preferred for Seismic Category B, C, or D.

(G5b8)

The hooks of V-Bars embedded in the pile cap footing should be oriented outward for all seismic categories.

(G5b9)

Reinforcing steel for cast-in-place pile is included in the Bill of Reinforcing Steel.

(G5b10)

All reinforcement for cast-in-place pile is included in the estimated quantities for bents.

G6. As-Built Pile and Drilled Shaft Data

(G6.1) Include A, B and C with all pile types. Include D and E along with bracketed guidance when piles are being dynamic tested.

Indicate in remarks column:
A. Pile type and grade
B. Batter
C. Driven to practical refusal
D. PDA test pile
E. Minimum tip elevation controlled
(Use when actual blow count is less than PDA blow count due to minimum tip elevation requirement. A plus sign (+) shall be placed after the PDA nominal axial compressive resistance value indicating actual value is higher than PDA value.)

(G6.2) Use this note when only drilled shafts are shown on the sheet.

Indicate remarks in the remarks column.

(G6.3)

This sheet to be completed by MoDOT construction personnel.

G7. Steel HP Pile

(G7.1) [MS Cell] Use with Pile Splice Detail - Galvanized.

Galvanizing material shall be omitted or removed one inch clear of weld locations in accordance with Sec 702.

(G7.2) Use with Pile Seismic Anchor Detail – Galvanized.

Galvanizing ∠4x4, ¾” diameter high strength bolts, washers and nuts will not be required.

(G7.3) Use on all plans where HP piles are anticipated to be driven to refusal on rock at any depth.

HP piles are anticipated to be driven to refusal on rock. Review all borings for depth of rock and restrict driving as appropriate to comply with hard rock driving criteria in accordance with Sec 702.

H. Superstructure Notes

H1. Steel

Plate Girders - (Shop welding)

(H1.1) To be used only with the permission of the Structural Project Manager.

By approval of the engineer, the contractor may omit any shop flange splice by extending the heavier flange plate and providing approved modifications of details at field flange splices and elsewhere as required. All cost of any required design, plan revisions or re-checking of shop drawings shall be borne by the contractor. Payweight in any case will be based on material shown on Design Plans.


Welded Shop Splices

(H1.1.1) Place near Welded Shop Splice Details.

Welded shop web and flange splices may be permitted when detailed on the shop drawings and approved by the engineer. No additional payment will be made for optional welded shop web and flange splices.

(H1.2) Use for the welded connection of intermediate web stiffener to compression flange and intermediate diaphragm connection plate to compression flange.

(2) Weld to compression flange as located on Elevation of Girder.

(H1.3) Add to note (H1.2), only when girders are built up with A514 or A517 steel flanges. Caution: Using this note means that these structural steels are already on the system. Any new construction using these structural steels requires permission of the State Bridge Engineer. Any construction involving these structural steels requires notification to the State Bridge Engineer.

Intermediate web stiffeners shall not be welded to plates of A514 or A517 steel.


Plate Girders with Camber

(H1.4) Place near the elevation of girder.

Plate girders shall be fabricated to be in accordance with the camber diagram shown on Sheet No.   .


Detail Camber Diagram with note (H1.5), Dead Load Deflection Diagram with notes (H1.6) and (H1.6.1), and Theoretical Slab Haunch with note (H1.7).

(H1.5)

Camber includes allowance for vertical curve, superelevation transition, and for dead load deflection due to concrete slab, curb, asphalt, concrete wearing surface and structural steel.

(H1.6)

  % of dead load deflection is due to the weight of structural steel.

(H1.6.1)

Dead load deflection includes weight of structural steel, concrete slab, and barrier curb.


(H1.7)

* Dimension (bottom of slab to top of web) may vary if the girder camber after erection differs from plan camber by more or less than the % of Dead Load Deflection due to weight of structural steel. No payment will be made for any adjustment in forming or additional concrete required for variation in haunching.

Note: Increase the haunch by 1/2"± more than what is required to make one size shear connector work for both the CIP and the SIP options.


Bolted Field Splices for Plate Girders and Wide Flange Beams (All Structural Steel including Weathering Steel)

Place the following notes near detail of bolted field splice:

(H1.8)

Contact surfaces shall be in accordance with Sec 1081 for surface preparation.

(H1.8.1)

Use 7/8ӯ high strength bolts with 15/16ӯ holes.


Structures without Longitudinal Section

(H1.9) Place just above slab at part section near end diaphragm and draw an arrow to the top of diaphragm.

Haunch slab to bear.


Top of End Bent Backwall (Without expansion device)

(H1.10)

Two layers of 30-lb roofing felt.


Section thru Spans

(H1.11) Place on the slab sheet when applicable.

For details of safety barrier curb parapet median bridge rail not shown, see Sheet No.   .


Web Stiffeners

(H1.12)

Whenever longitudinal stiffeners interfere with bolting the diaphragms cross frames in place, clip stiffeners.

(H1.13)

Longitudinal web stiffeners shall be placed on the outside of exterior girders and on the side opposite of the transverse web stiffener plates for interior girders.

(H1.14)

Transverse web stiffeners shall be located as shown in the plan of structural steel.

(H1.15)

Intermediate web stiffener plate and diaphragm spacing may vary from plan dimensions by a maximum of 3" for diaphragm to connect to the intermediate web stiffener plate.


Wide Flange Beams - (Shop Welding)

(H1.16) To be used only with permission of the Structural Project Manager.

By approval of the engineer, the contractor may omit any shop splice by extending the heavier beam and providing an approved modification of details at the field splices. All costs of any required redesign, plan revisions or rechecking of shop drawings shall be borne by the contractor. Payweight in any case will be based on material shown on the design plans.


Shear Connectors

(H1.17) Use only when "Fabricated Structural …Steel… " is included as a pay item.

Weight of     pounds of shear connectors is included in the weight of Fabricated Structural     Steel.

(H1.18)

Shear connectors shall be in accordance with Sec 712, 1037 and 1080.


Notch Toughness for Wide Flange Beams

(Place an with all the beam sizes indicated on the "Plan of Structural Steel".)
(Place the following note near the "Plan of Structural Steel".)

(H1.19)

Notch toughness is required for all wide flange beams.


(Place an with the flange plate, pin plate or hanger bar size indicated on the "Detail of Flange Plates, Pin Plate Connection or Hanger Connection".)

(H1.20)

Notch toughness is required for all welded flange plates pin plates hanger bars.


Notch Toughness for Plate Girders

(Place the following note on the sheet with the Elevation of Girder.)
(See Plate Girder Example for typical examples for the location of on details for plate girders.)

(H1.21)

Indicates flange plates subject to notch toughness requirements.
All web plates shall be subject to notch toughness requirements.

(H1.21.1)

The flange and web splice plates shall be subject to notch toughness requirements, when notch toughness is required for flanges on both sides of splice.


(Place near the size of flange splice plates, pin plates or hanger bars and the following note near the detail of flange splice, pin plate connection or hanger connection.)

(H1.22)

Indicates flange splice plates pin plates hanger bars subject to notch toughness requirements.


Structural Steel for Wide Flange Beams and Plate Girder Structures

(H1.23)

Fabricated structural steel shall be ASTM A709 Grade 36 50, except as noted.


Tangent Structures on Straight Grades (Details of Part-Longitudinal Sections at bents and at steel joints will be required on plans.)

Plan of Structural Steel and Elevation of Beams or Girders

(H1.24)

Longitudinal dimensions are horizontal from centerline bearing to centerline bearing.


Oversized Holes for Intermediate Diaphragms

Place the following note near the intermediate diaphragm detail on all tangent wide flange and plate girder structures.

(H1.26)

At the contractor's option, holes in the diaphragm plate of non slab bearing diaphragms may be made 3/16" larger than the nominal diameter of the bolt. A hardened washer shall be used under the bolt head and nut when this option is used. Holes in the girder diaphragm connection plate or transverse web stiffener shall be standard size.


Slab drain attachment holes

Place the following note near the Elevation of Girder detail for plate girders or near the plan view for Wide Flange Beams when Slab Drains are used.

(H1.27)

For location of slab drain attachment holes, see slab drain details sheet.


Tangent Structures on Vertical Curve Grades (Details of part-longitudinal sections at bents and at steel joints will be required on plans for bridges on vertical curves.)

Plan of Structural Steel

Dimensions given in plan should be identical to horizontal dimensions detailed in Part-Longitudinal Sections or blocking diagram.

(H1.28)

Longitudinal dimensions are horizontal from centerline brg. to centerline brg. See Part-Longitudinal Sections on Sheet No.   .


Elevation of Constant Depth or Variable Depth Beams or Girders

(H1.29)

Longitudinal dimensions are horizontal from centerline brg. to centerline brg. See Part-Longitudinal Sections on Sheet No.   .


Horizontally Curved Structures on Straight Grades (Details of Part-Longitudinal Sections at bents and at steel joints will be required on plans.)

Plan of Structural Steel

(H1.31)

Longitudinal dimensions are horizontal arc dimensions from centeline brg. to centerline brg.


Horizontally Curved Structures on Straight Grades (Details of Part-Longitudinal Sections at bents and at steel joints will be required on plans.)

Elevation of Beams or Girders

(H1.32)

Longitudinal dimensions are horizontal arc dimensions from centerline brg. to centerline brg.


Horizontally Curved Structures on Vertical Curve Grades (Details of part-longitudinal sections at bents and at steel joints will be required on plans for bridges on vertical curves.)

Plan of Structural Steel

(H1.36)

Longitudinal dimensions are horizontal arc dimensions from centerline brg. to centerlline brg. See Part-Longitudinal Sections on Sheet No.   .


Elevation of Constant Depth or Variable Depth Beams or Girders

(H1.37)

Longitudinal dimensions are horizontal arc dimensions from centerline brg. to centerline brg. See Part-Longitudinal Sections on Sheet No.   .


Structures on Vertical Curve

(H1.39)

Elevations shown are at top of web before dead load deflection.


6 x 6 x 3/8 Angle Connection to Top Flange

(H1.40)

The two 3/4"ø high strength bolts that connect the 6 x 6 x 3/8 angle to the top flange shall be placed so the nut is on the inside of flange toward the web.


6 x 6 x 3/8 Angle Connection to Top Flange for Structures on Vertical Curve

(H1.40.1)

The 6 x 6 x 3/8 angle legs shall be adjusted to the variable angle between bearing stiffener and top flange created by girder tilt due to grade requirements.


(H1.42) Place the following note near the Plan of Structural Steel for all new bridges with staged construction or bridge widening projects.

Bolts for intermediate diaphragms and cross frames that connect girders beams under different construction staged slab pours shall be installed snug tight, then tightened after both adjacent slab pours are completed.

(H1.43) Place the following note on the staging sheet for all bridge redecking projects with staged construction.

Existing bolts rivets on intermediate diaphragms and cross frames that connect girders beams under different construction staged slab pours shall be removed and replaced with new in kind high strength bolts installed snug tight and in accordance with Sec 712. The high strength bolts shall be tightened after both adjacent slab pours are completed. Cost will be considered incidental to other pay items.

(H1.45) Place near Detail B and Optional Detail B with cross frame diaphragms.

(*) At the contractor's option, rectangular fill plates may be used in lieu of diamond fill plates as shown in Optional Detail B.

Deflection and Haunching: (Use for wide flange deck replacements.)

(H1.50)

The contractor shall determine dead load deflections and haunching based on field measurements and/or existing bridge plans and these may be adjusted based on the difference between the new and existing dead load weights.

(H1.51)

Slab is to be considered at a uniform thickness as shown on the plans. Haunching will vary. See front sheet for slab thickness.

(H1.52)

In order to properly form the haunches for the new deck, the contractor shall shoot deck elevations along each beam line prior to deck removal followed by shooting elevations of the tops of the beams after deck removal.

H2. Concrete

H2a. Continuous Slab

(H2a.1) Use for voided slabs

Tubes for producing voids shall have an outside diameter of 751.50 circled 1.gif and shall be anchored at not more than 751.50 circled 2.gif centers. Fiber tubes shall have a wall thickness of not less than 751.50 circled 3.gif.


(*) See the following table for 751.50 circled 1.gif, 751.50 circled 2.gif, & 751.50 circled 3.gif.

(Do not show this table on plans)
Voids 751.50 circled 1.gif 751.50 circled 2.gif 751.50 circled 3.gif
7" 7.0" 4'-0" 0.200"
8" 8.0" 4'-0" 0.200"
9" 9.0" 4'-0" 0.200"
10" 10.0" 4'-0" 0.225"
11" 11.0" 4'-0" 0.225"
12" 12.0" 4'-0" 0.225"
14" 14.0" 4'-0" 0.250"
15 3/4" 15.7" 3'-0" 0.300"
16 3/4" 16.7" 3'-0" 0.300"
18 3/4" 18.7" 2'-6" 0.300"
20 7/8" 20.85" 2'-0" 0.350"
21 7/8" 21.85" 21" 0.350"
22 7/8" 22.85" 18" 0.375"
24 7/8" 24.85" 18" 0.375"

H2b. Prestressed Panels (Notes for Bridge Standard Drawings)

H2b1. Notes for both Concrete and Steel Spans

(H2b1.1)

Concrete for prestressed panels shall be Class A-1 with f'c = 6,000 psi, f'ci = 4,000 psi.

(H2b1.2)

The top surface of all panels shall receive a scored finish with a depth of scoring of 1/8" perpendicular to the prestressing strands in the panels.

(H2b1.3)

Prestressing tendons shall be high-tensile strength uncoated seven-wire, low-relaxation strands for prestressed concrete in accordance with AASHTO M 203 Grade 270, with nominal diameter of strand = 3/8" and nominal area = 0.085 sq. in. and minimum ultimate strength = 22.95 kips (270 ksi). Larger strands may be used with the same spacing and initial tension.

(H2b1.4)

Initial prestressing force = 17.2 kips/strand.

(H2b1.5)

The method and sequence of releasing the strands shall be shown on the shop drawings.

(H2b1.6)

Suitable anchorage devices for lifting panels may be cast in panels, provided the devices are shown on the shop drawings and approved by the engineer. Panel lengths shall be determined by the contractor and shown on the shop drawings.

(H2b1.7)

When squared end panels are used at skewed bents, the skewed portion shall be cast full depth. No separate payment will be made for additional concrete and reinforcing required.

(H2b1.8) References the P3 bars shown in the Plans of Panels.

Use #3-P3 bars if panel is skewed 45° or greater.

(H2b1.9)

All reinforcement other than prestressing strands shall be epoxy coated.

(H2b1.10) References the panel extension into the diaphragms shown in the Plan of Panels Placement.

End panels shall be dimensioned 1/2" min. to 1 1/2" max. from the inside face of diaphragm.

(H2b1.11) References the S-bars shown in the Plan of Panels Placement.

S-bars shown are bottom steel in slab between panels and used with squared and truncated end panels only.

(H2b1.12)

Cost of S-bars will be considered completely covered by the contract unit price for the slab.

(H2b1.13)

S-bars are not listed in the bill of reinforcing.

(H2b1.14) Place as fifth note under Joint Filler heading in the General Notes.

Joint filler shall be glued to the girder beam. When thickness exceeds 1 1/2 inches, the joint filler shall be glued top and bottom. The glue used shall be the type recommended by the joint filler manufacturer.

(H2b1.15)

Precast panels may be in contact with stirrup reinforcing in diaphragms.

(H2b1.16) References the transverse S-bars extension into integral end bents shown in the Plan of Panels Placement.

Extend S-Bars 18 inches beyond the front face of end bents and int. bents for squared and truncated end panels only.

(H2b1.17) References the 3/8-inch diameter strands shown in the Plans of Panels.

Any strand 2'-0" or shorter shall have a #4 reinforcing bar on each side of it, centered between strands. Strands 2'-0" or shorter may then be debonded at the fabricator's option.

(H2b1.18)

Support from diaphragm forms is required under the optional skewed end until cast-in-place concrete has reached 3,000 psi compressive strength.

(H2b1.19) Place under the Bending Diagram for U1 Bar.

U1 Bars may be oriented at right angles to location and spacing shown. U1 Bars shall be placed between P1 Bars.

(H2b1.20) Place as last note under Joint Filler heading in the General Notes.

Edges of panels shall be uniformly seated on the joint filler before slab reinforcement is placed.

(H2b1.21)

Prestressed panels shall be brought to saturated surface-dry (SSD) condition just prior to the deck pour. There shall be no free standing water on the panels or in the area to be cast.

(H2b1.22)

The prestressed panel quantities are not included in the table of estimated quantities for the slab.

(H2b1.23) References the transverse S-bars extension beyond the edge of girder or beam shown in the Plan of Panels Placement.

Extend S-bars 9 inches beyond edge of girder beam (Typ.).

(H2b1.24) References the panel overhang shown in Section A-A.

Contractor shall ensure proper consolidation under and between panels.

(H2b1.25) Place as first note under Joint Filler heading in the General Notes.

Joint filler shall be preformed fiber expansion joint material in accordance with Sec 1057 or expanded or extruded polystyrene bedding material in accordance with Sec 1073.

(H2b1.26) References the #3-P1 bars in the squared and truncated end panels only shown in the Plans of Squared Panel and Optional Truncated End Panel.

For end panels only, P1 bars shall be 2’-0” in length and embedded 12”. P1 bars will not be required for panels at squared integral end bents.

(H2b1.27) References the four #3-P2 bars required below the strands shown in the plans of panels and the section thru the panel.

#3-P2 bars near edge of panel at bottom (under strands).

(H2b1.28) References the bottom transverse slab bars shown in the section near the expansion gap. Not required if there is not an expansion gap on the bridge.

S-bars shown are used with skewed end panels, or squared end panels of squared structures only. The #5 S-bars shall extend the width of slab (2'-6" lap if necessary) or to within 3 inches of expansion device assemblies.

(H2b1.29) References #3-P1 bars required at expansion gaps shown in the Plan of Optional Skewed End Panel. Not required if there is not an expansion gap on the bridge.

P1 bars not required for integral bents.

(H2b1.30) References the min. steel reinforcement for openings in slab created by truncated end panels.

For truncated end panels, use a min. of #5-S bars at 6” crossings in openings, or min. 4x4-W7xW7.


H2b2. Additional Notes for Panels on Concrete Spans

(H2b2.1) Place as third note under Joint Filler heading in the General Notes.

Thicker material may be used on one or both sides of the girder beam to reduce cast-in-place concrete thickness to within tolerances.

(H2b2.6) Place as fourth note under Joint Filler heading in the General Notes.

The same thickness of preformed fiber expansion joint material shall be used under any one edge of any panel except at locations where top flange thickness may be stepped. The maximum change in thickness between adjacent panels shall be 1/4 inch. The polystyrene bedding material may be cut with a transition to match haunch height above top of flange.

(H2b2.7) References the top flange thickness shown in Section A-A.

At the contractor's option, the variation in slab thickness over prestressed panels may be eliminated or reduced by increasing and varying the girder beam top flange thickness. Dimensions shall be shown on the shop drawings.

(H2b2.8) References the slab thickness above the panel shown in Section A-A.

Slab thickness over prestressed panels varies due to girder beam camber. In order to maintain minimum slab thickness, it may be necessary to raise the grade uniformly throughout the structure. No payment will be made for additional labor or materials required for necessary grade adjustment.

(H2b2.10) Place as second note under Joint Filler heading in the General Notes.

Use Slab Haunching Diagram on Sheet No. __ for determining thickness of joint filler within the limits noted in the table of Joint Filler Dimensions.


H2b3. Additional Notes for Panels on Steel Spans

(H2b3.1) Place as third note under Joint Filler heading in the General Notes.

Thicker material shall be used on one or both sides of the girder beam to reduce cast-in-place concrete thickness to within tolerances.

(H2b3.2) Place as fourth note under Joint Filler heading in the General Notes.

The same thickness of material shall be used under any one edge of any panel except at splices, and the maximum change in thickness between adjacent panels shall be 1/4 inch to correct for variations from Girder Beam Camber Diagram. The polystyrene bedding material may be cut to match haunch height above top of flange.

(H2b3.3) References the slab thickness above the panel shown in Section A-A.

Adjustment in the slab thickness, joint filler, or grade will be necessary if the girder beam camber after erection differs from plan camber by more than the % of dead load deflection due to the weight of structural steel. No payment will be made for additional labor or materials for the adjustment.

(H2b3.5) Place as second note under Joint Filler heading in the General Notes.

The thickness of the joint filler shall be adjusted to achieve the slab haunching dimension found on Sheet No. __. These adjustments shall be within the limits noted in the table of Joint Filler Dimensions.

H2c. Prestressed Girders and Beams

H2c1. Notes for all Girders and Beams

Place general notes H2c1.1 thru H2c1.15 where space allows.

(H2c1.1)

Concrete for prestressed girders beams shall be Class A-1 with f'c =      psi and f'ci =      psi.

(H2c1.2)

(+) indicates prestressing strand.

(H2c1.3)

Use     strands with an initial prestress force of     kips.

(H2c1.4)

Prestressing tendons shall be uncoated, seven-wire, low-relaxation strands, 1/2 0.6 inch diameter in accordance with AASHTO M 203, Grade 270. Pretensioned members shall be in accordance with Sec 1029.

(H2c1.5)

Fabricator shall be responsible for location and design of lifting devices.

(H2c1.6) Use when the camber diagram is placed on another sheet.

For Girder Beam Camber Diagram, see Sheet No. __.

(H2c1.10) Use when steel intermediate diaphragms are present.

The 1 1/2"ø holes shall be cast in the web for steel intermediate diaphragms. Drilling is not allowed. For location of holes and details of steel intermediate diaphragms, see Sheet No. __.

(H2c1.15) Use when slab drains are present. Use drain blockouts for double-tee girders, otherwise use coil inserts at slab drains.

For location of coil inserts at slab drains drain blockouts, see Sheet No. __.

(H2c1.20) Place under the half elevation for all girders and beams except double-tee girders. Use top flange blockout for NU girders only. Use second sentence for NU girders only. Use third sentence for box beam structures only.

Exterior and interior girders beams are the same, except for coil ties , and top flange blockout , and coil inserts for slab drains and holes for steel intermediate diaphragms and holes for #6 bar. Reinforcement support strands not shown for clarity. See Sheet No. __ for spacing of U1 and U2 bars.

(H2c1.25) Place near vent hole details for stream crossings only for girder structures. Use (one end only) for flat grades otherwise use upgrade.

Place vent holes at or near upgrade 1/3 point of girders (one end only) and clear reinforcing steel and strands by 1 1/2" minimum and steel intermediate diaphragms bolt connection by 6" minimum.

Place notes H2c1.30 and H2c1.31 near the bearing plate details.

(H2c1.30)

Galvanize the 1/2" bearing plate (ASTM A709 Grade 36) in accordance with ASTM A123.

(H2c1.31)

Cost of furnishing, galvanizing and installing the 1/2" bearing plate (ASTM A709 Grade 36) and welded studs in the prestressed girder beam will be considered completely covered by the contract unit price for Prestressed Concrete I-Girder Bulb-Tee Girder NU-Girder Spread Box Beam Adjacent Box Beam Spread Voided Slab Beam Adjacent Voided Slab Beam Solid Slab Beam.

Place notes H2c1.35 thru H2c1.39 near the coil tie details. Double-Tee girders and adjacent beams do not use coil ties.

(H2c1.35) Use with end spans when both interior and exterior girders or beams are detailed on the same sheet and the 2’-6”long tie rod will not fit in the exterior diaphragm portion. Place *** at the end of the note specifying the centerlines of the coil tie rods.

*** Length of coil tie rods at exterior face of exterior girders beams at end bents = '- ".

(H2c1.36)

Cost of 3/4"ø coil tie rods placed in diaphragms will be considered completely covered by the contract unit price for Prestressed Concrete I-Girder Bulb-Tee Girder NU-Girder Spread Box Beam Spread Voided Slab Beam.

(H2c1.37)

Coil ties shall be held in place in the forms by slotted wire-setting-studs projecting thru forms. Studs are to be left in place or replaced with temporary plugs until girders beams are erected, then replaced by coil tie rods.

(H2c1.38) Use and #6 bars for Bulb-Tee girders and NU-girders.

For location of coil ties and #6 bars at concrete bent diaphragms, see Sheets No. __and __.

(H2c1.39) Use for Bulb-Tee girders and NU-girders.

Cast 1”Ø hole horizontally in girder for #6 bar 5’-6" long and clear reinforcing steel or strands by 1 1/2" minimum.

(H2c1.40) Use for P/S I-girders and prestressed panel slabs except NU-girders. Place * at the top corners of the girder in the girder dimensions detail. Use 1 1/2" to 1 3/4" for Type 2, 3 and 4 P/S I-girders. Use 3" to 3 1/4" for bulb-tee girders and Type 6 P/S I-girders.

* At contractor's option a 1 1/2" to 1 3/4" 3" to 3 1/4" smooth finish strip is permitted to facilitate placement of preformed fiber expansion joint material or expanded or extruded polystyrene bedding material for the prestressed panels.

Place notes H2c1.45 and H2c1.46 near the strand details at girder ends.

(H2c1.45) Use when the bottom strands are not all bent-up. Place ** at the end of the note specifying which strands are bent-up.

** At the contractor's option the location for bent-up strands may be varied from that shown for fully bonded strands only. The total number of bent-up strands shall not be changed. One strand tie bar is required for each layer of bent-up strands except at end bents which require one bar on the bottom layer of strands only. No additional payment will be made if additional strand tie bars are required.

(H2c1.46) Use with non-integral bents only. Adjust the details accordingly.

Prestressing strands at End Bents No. __ and __ and Intermediate Bents No. and shall be trimmed to within 1/8 inch of concrete if exposed, or 1 inch of concrete if encased. Exposed ends of girders shall be given 2 coats of an asphalt paint. Ends of girders which will be encased in concrete diaphragms shall not be painted.


H2c2. Additional NU-Girder Notes

Place general notes H2c2.2 and H2c2.3 with H2c1 general notes where space allows.

(H2c2.2) Use for NU 35 and NU 43 only

The contractor shall provide bracing necessary for lateral and torsional stability of the girders during construction of the concrete slab and remove the bracing after the slab has attained 75% design strength. Contractor shall not drill holes in the girders. The cost for furnishing, installing, and removing bracing will be considered completely covered by the contract unit price for Prestressed Concrete NU-Girder.

(H2c2.3)

Alternate bar reinforcing steel details are provided and may be used. The same type of reinforcing steel shall be used for all girders in all spans.

(H2c2.10) Place near girder dimensions detail. Place * at the top corners of the girder in the girder dimensions detail. Remove underline part for CIP slabs.

* Girder top flange shall be steel troweled to a smooth finish for 8" at the edges, as shown. Apply two layers of 30-lb roofing felt as a bond breaker to this region only excluding where joint filler is applied. The center portion shall be rough finished by scarifying the surface transversely with a wire brush, and no laitance shall remain on the surface.


H2c3. Additional Double-Tee Girder Notes

Place general notes H2c3.1 thru H2c3.6 with H2c1 general notes where space allows.

(H2c3.1)

Girders shall be handled and erected into position in a manner that will not impair the strength of the girder.

(H2c3.2)

The vertical face of the exterior girder that will be in contact with the slab shall be roughened by sand blasting, or other approved methods, to provide suitable bond between girder and slab.

(H2c3.3)

All exposed edges of concrete shall have a 1/2" radius or a 3/8" bevel, unless otherwise noted.

(H2c3.4)

Payment for edge block will be considered completely covered by the contract unit price for the double-tee girders.

(H2c3.5)

Provide lifting loops in each end of double-tee girder, located near center of stem, 2 feet from each end.

(H2c3.6)

Adequate reinforcing other than the specified welded wire fabric may be used with the approval of the engineer.

Use notes H2c3.10 and H2c3.11 when a thrie beam bridge rail is used.

(H2c3.10)

See slab sheet for spacing of rail posts.

(H2c3.11)

See thrie beam rail sheet for details of bolt spacing at rail posts and anchor bolt lengths.

H2c4. Additional Prestressed Concrete Box Beam Notes

(H2c4.1) Place near strand arrangement detail. Place * at the top corners of the beam in the strand arrangement detail. Remove underline part for CIP slabs.

* Beam top flange shall be steel troweled to a smooth finish for 9” at the edges, as shown. Apply two layers of 30-lb roofing felt as a bond breaker to this region only excluding where joint filler is applied. The center portion shall be rough finished by scarifying the surface transversely with a wire brush, and no laitance shall remain on the surface.

(H2c4.3)

3/4”ø drain holes shall be provided at each end of each void, and shall be kept open at all times.

(H2c4.4)

Beams shall be kept upright at all times. Support shall be within 12 inches of the ends only.

(H2c4.5)

Void filler shall be non-absorptive cellular polystyrene, according to ASTM C 578, designed to withstand the forces imposed upon them during fabrication without substantial deformation such as bulging, sagging, or collapsing. Cardboard void filler will not be allowed. The outside dimensions of void filler shall be as shown on the plans. When two or more sections of void filler are used to make up a required length, they shall be effectively taped or spliced together.

(H2c4.6)

Beams shall be finished similarly in accordance with Sec 1029, except as noted.


H2c5. Blank


H2c6. Camber Diagram & Slab Haunching or Slab Thickness Diagram

(H2c6.1) Place with camber diagram for all girders and beams.

Conversion factors for girder beam camber (Estimated at 90 days):
Use with spans 75' and greater in length.
0.1 pt. = 0.314 x 0.5 pt.
0.2 pt. = 0.593 x 0.5 pt.
0.3 pt. = 0.813 x 0.5 pt.
0.4 pt. = 0.952 x 0.5 pt.
Use with spans less than 75' in length.
0.25 pt. = 0.7125 x 0.5 pt.

Place notes H2c6.10 thru H2c6.14 with slab haunching diagram (slab thickness diagram for double-tee girders and adjacent beams).

(H2c6.10) Use for all girders and beams. Omit underline parts for double-tee girders and adjacent beams.

If girder beam camber is different from that shown in the camber diagram, in order to maintain minimum slab thickness, an adjustment of the slab haunches, an increase in slab thickness or a raise in grade uniformly throughout the structure shall be necessary. No payment will be made for additional labor or materials required for variation in haunching, slab thickness or grade adjustment.

(H2c6.11) Use for all girders and beams except for double-tee girders and adjacent beams.

Concrete in the slab haunches is included in the Estimated Quantities for Slab on Concrete I-Girder Bulb-Tee Girder NU-Girder Beam.

(H2c6.12) Use only for double-tee girders and adjacent beams.

Concrete in the slab overlay is included in the Estimated Quantities for Reinforced Concrete Slab Overlay.

(H2c6.13) Use only for double-tee girders and adjacent beams. Underline part only required when the slab thickness within parabolic crown is less than the minimum slab thickness. A = minimum slab thickness. B = slab thickness at crown centerline.

The slab is to be built parallel to grade and to a minimum thickness of A (Except varies from A to B within parabolic crown).

(H2c6.14) Use only if the camber diagram is located on the girder or beam sheet.

See girder beam sheet for girder beam camber diagram.


H2c7. Steel Intermediate Diaphragms

(H2c7.1) For the location of (*), see EPG 751.22.3.13 Intermediate Diaphragms.

(*) In lieu of 2 1/2" outside diameter washers, contractor may substitute a 3/16" (Min. thickness) plate with four 15/16"ø holes and one hardened washer per bolt.

(H2c7.2) For the location of (**), see EPG 751.22.3.13 Intermediate Diaphragms.

(**) Bolts shall be tightened to provide a tension of one-half that specified in Sec 712 for high strength bolt installation. A325 bolts may be substituted for and installed in accordance with the requirements for the specified A307 bolts.

(H2c7.3)

All diaphragm materials including bolts, nuts, and washers shall be galvanized.

(H2c7.4)

Fabricated structural steel shall be ASTM A709 Grade 36 except as noted.

(H2c7.5)

Payment for furnishing and installing steel intermediate diaphragms will be considered completely covered by the contract unit price for Steel Intermediate Diaphragm for P/S Concrete Girders.

(H2c7.6)

Shop drawings will not be required for steel intermediate diaphragms and angle connections.


H2c8. Concrete Diaphragms at Intermediate Bents

(H2c8.1) Place near diaphragm details for all girders and beams except for double-tee girders at the following grades: 16” > 5%, 22” > 4% and 30” > 3%.

Diaphragms at intermediate bents shall be built vertical.

H3. Bearings

H3a. Type C & D

The following notes apply to Type C Bearings.

(H3.1)

Anchor bolts for Type C bearings shall be 1"ø ASTM F1554 Grade 55 swedged bolts, with no heads or nuts and shall extend 10" into the concrete. Swedging shall be 1" less than the extension into the concrete. Anchor bolts shall be set in the drilling holes or in the anchor bolt wells and grouted prior to the erection of steel. The top of anchor bolts shall be set approximately 1/4" below the top of bearing.

(H3.2)

Anchor bolts shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum).

(H3.3)

Weight of the anchor bolts for the bearings are included in the weight of the Fabricated Structural Steel.

(H3.4) [MS Cell]

751.50 finish mark.gif Indicates machine finish surface.

(H3.5)

Shop drawings are not required for the lead plates and the preformed fabric pads.


The following notes apply to Type D Bearings.

(H3.6)

Anchor bolts for Type D bearings shall be 1 1/4"ø 1 1/2"ø ASTM F1554 Grade 55 swedged bolts and shall extend 12" 15" into the concrete with ASTM A563 Grade A Hex or Heavy Hex nuts. Actual manufacturer's certified mill test reports (chemical and mechanical) shall be provided. Use ASTM F436 hardened washers for the fixed bearings and no heavy hexagon nuts or hardened washers for the expansion bearings. Swedging shall be 1" less than extension into the concrete.

(H3.7)

Anchor bolts, hardened washers and heavy hexagon nuts shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum).

(H3.8)

Weight of the anchor bolts, hardened washers and heavy hexagon nuts for bearings are included in the weight of the Fabricated Structural Steel.

(H3.9) [MS Cell]

751.50 finish mark.gif Indicates machine finish surface.

(H3.10)

Shop drawings are not required for the lead plates and the preformed fabric pads.


The following note applies to Type D Bearings Modified.

(H3.11)

Place the heads of 3/4"ø bolts on the bottom side of the top bearing plate.

H3b. Type E

The following notes apply to Type E Bearings.

(H3.15)

Anchor bolts for Type E bearings shall be 1 1/4"ø 1 1/2"ø ASTM F1554 Grade 55 swedged bolts and shall extend 12" 15" into the concrete with ASTM A563 Grade A Hex or Heavy Hex nuts. Actual manufacturer's certified mill test reports (chemical and mechanical) shall be provided. Use ASTM F436 hardened washers for the fixed bearings and no heavy hexagon nuts or hardened washers for the expansion bearings. Swedging shall be 1" less than extension into the concrete.

(H3.16)

Anchor bolts, hardened washers and heavy hexagon nuts shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum).

(H3.17)

Weight of the anchor bolts, hardened washers and heavy hexagon nuts for bearings are included in the weight of the Fabricated Structural Steel.

(H3.18) [MS Cell]

751.50 finish mark.gif Indicates machine finish surface.

(H3.20)

A lubricant coating shall be applied in the shop to both mating surfaces of the bearing assembly. The lubricant, method of cleaning, and application shall meet the requirements of MIL-L-23398 and MIL-L-46147. The coated areas shall be protected for shipping and erection.

(H3.21)

Shop drawings are not required for the lead plates and the preformed fabric pads.


The following note applies to Type E Bearings Modified.

(H3.22)

Place the heads of 3/4"ø bolts on the bottom side of the top bearing plate.

H3c. Type N PTFE

(H3.24)

Design coefficient of friction equals 0.06.

(H3.25)

Anchor bolts shall be 1 1/2"ø 2"ø 2 1/2"ø ASTM F1554 Grade 55 swedged bolts and shall extend 15" 18" 25" into the concrete with ASTM A563 Grade A Hex or Heavy Hex nuts. Actual manufacturer's certified mill test reports (chemical and mechanical) shall be provided. Swedging shall be 1" less than extension into the concrete.

(H3.26)

All structural steel for the anchor bolts and heavy hexagon nuts shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum).

(H3.27)

Neoprene Elastomeric Pads shall be 60 70 Durometer.

(H3.28)

Anchor bolts shall be at the centerline of slotted hole at 60°F. Bearing position shall be adjusted R for each 10° fall or rise in temperature at installation.


Use the following note when ASTM A709 Grade 50W steel is not used for superstructure.

(H3.29) Use grade per Design Comps.

Structural steel for sole plate shall be ASTM A709 Grade 36 50 and shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum). The stainless steel plate shall be protected from any coating.


Use the following note when ASTM A709 Grade 50W steel is used for superstructure.

(H3.29.1)

Structural steel for sole plate shall be ASTM A709 Grade 50W. The welds shall have corrosion resistance and weathering characteristics compatible with the base material.

(H3.30)

Type N PTFE Bearings shall be in accordance with Sec 716.

(H3.31)

PTFE surface shall be fabricated as a single piece. Splicing will not be permitted.

(H3.32)

Stopper plates and straps shall be provided to prevent loss of support due to creeping of PTFE bearings. Payment for fabricating and installing the stopper plates and straps will be considered completely covered by the contract unit price for Type N PTFE Bearing.

(H3.33)

The bottom face of the 1/8" stainless steel plate that is welded to the sole plate shall be lubricated with a lubricant that is approved by the bearing manufacturer.

H3d. Laminated Neoprene Pad Assembly

(H3.45)

Anchor bolts shall be 1 1/2"ø 2"ø 2 1/2"ø ASTM F1554 Grade 55 swedged bolts and shall extend 15" 18" 25" into the concrete with ASTM A563 Grade A Hex or Heavy Hex nuts. Actual manufacturer's certified mill test reports (chemical and mechanical) shall be provided. Swedging shall be 1" less than extension into the concrete.

(H3.46)

All structural steel for the anchor bolts and heavy hexagon nuts shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum).

(H3.47)

Neoprene Elastomeric Pads shall be 60 70 Durometer.

(H3.48)

Anchor bolts shall be at the centerline of slotted hole at 60°F. Bearing position shall be adjusted R for each 10° fall or rise in temperature at installation.

(H3.49) Use grade per Design Comps. Use when ASTM A709 Grade 50W steel is not used for superstructure.

Structural steel for sole plate shall be ASTM A709 Grade 36 50 and shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum).

(H3.49.1) Use when ASTM A709 Grade 50W steel is used for superstructure.

Structural steel for sole plate shall be ASTM A709 Grade 50W. The welds shall have corrosion resistance and weathering characteristics compatible with the base material.

(H3.50)

Laminated Neoprene Bearing Pad Assembly shall be in accordance with Sec 716.

H3e. Flat Plate, Rolled Steel Plates (Deck Girders) & Carbon Steel Castings (Truss)

The following notes apply to Flat Plate Bearings.

(H3.65)

Flat plate bearings shall be straightened to plane surfaces.

(H3.66)

Anchor bolts shall be 1"ø ASTM F1554 Grade 55 swedged bolts, 10" long with no heads or nuts. Top of anchor bolts shall be set approximately 1/2" above top of bottom flange.

(H3.67)

Bottom flange of beam and bevel plate shall have 1 1/4"ø holes at fixed end and 1 1/4" x 2 1/2" slots at expansion end.

(H3.68)

Shop drawings are not required for the lead plates and the preformed fabric pads.

(H3.69)

Weight of the anchor bolts for bearings are included in the weight of the Fabricated Structural Steel.


The following notes apply to Rolled Steel Bearing Plates (Deck Girder Repair and Widening).

(H3.70)

Material shall be ASTM A709 Grade 36 steel. Holes in 7/8" plates for 3/4" x 2 1/4" and 1 1/2" x 3" anchors shall be made for a driving fit. After anchors are driven in place, anchors shall be lightly tack welded to the 7/8" plates.

(H3.71)

Edge A shall be rounded (1/16" to 1/8" radius).


The following notes apply to Carbon Steel Casting (Truss).

(H3.75)

All fillets shall have a 3/4" radius.

(H3.76)

Anchor bolts shall be 1 1/2"ø ASTM F1554 Grade 55 swedge bolts and shall extend 15" into concrete with ASTM A563 Grade A Hex or Heavy Hex nuts. Actual manufacturer's certified mill test reports (chemical and mechanical) shall be provided. Furnish one 4"ø pin, AISI C1042, with 2 heavy hexagon pin nuts.

(H3.77)

Material for bearing shall be carbon steel castings and will be considered completely covered by the contract unit price for Carbon Steel Castings. Pins, anchor bolts, heavy hexagon nuts, pipe and rolled steel bearing plates will be considered completely covered by the contract unit price for Structural Carbon Steel.

(H3.78)

Shop drawings are not required for the lead plates and the preformed fabric pads.

H4. Conduit System

(H4.1)

Cost of furnishing and placing anchor bolts for light standard will be considered completely covered by the contract unit price for other items.

(H4.2) Use for all conduits, except if encased in concrete, 3 in. minimum cover is not possible in slab.

All conduits shall be rigid nonmetallic schedule 40 heavy wall polyvinyl chloride (PVC) with 3" minimum cover in concrete. Each section of conduit shall bear the Underwriters Laboratories (UL) label.

Use Notes (H.4.2.1) and (H4.2.2) for all conduits when conduit clamps are required.

(H4.2.1)

All conduit clamps shall be commercially-available, nonmetallic conduit clamps and approved by the engineer.

(H4.2.2)

Anchor bolts and nuts shall be ASTM F1554 Grade 55. Anchor bolts, nuts and washers shall be fully galvanized.

(H4.3)

Shift reinforcing steel in field where necessary to clear conduit and junction boxes.

(H4.4)

Light standards, wiring and fixtures shall be furnished and installed by others.

(H4.5)

Top of light standard supports shall be made horizontal; anchor bolts shall be placed vertically.

(H4.6)

For details of light standards, underdeck lighting, and wiring, see electrical plans.

(H4.7) Use for conduits to be encased in concrete at open, closed or filled joints. Use 150°F, 120°F for steel superstructure. Use 120°F, 110°F for concrete superstructure. Modify note to include giving the total expansion movement per expansion fitting if multiple fittings are used and movement is different, and delineate fittings on plans.

Expansion fittings shall be placed as shown and set in accordance with the manufacturer's requirements and based on the air temperature at the time of setting given an estimated total expansion movement of    inches at open joints and     inches at filled joints using a maximum temperature range of 150 120°F and a maximum temperature of 120 110°F.

(H4.7.1) Use for conduits not to be encased in concrete and for structures with open or closed joints in the superstructure.

Expansion fittings shall be placed as shown and set in accordance with the manufacturer's requirements and based on the air temperature at the time of setting given an estimated total expansion movement of    inches at open joints and     inches at closed joints using a maximum temperature range of 110°F. Additional expansion fittings beyond what is specified on the bridge plans shall be provided and placed in accordance with the conduit manufacturer’s recommendations.

(H.4.7.2) Use for conduits not to be encased in concrete and for structures without open or closed joints in the superstructure.

Additional expansion fittings beyond what is specified on the bridge plans shall be provided and placed in accordance with the conduit manufacturer’s recommendations.

(H4.7.3) Use for multiple conduits to be encased in concrete.

Minimum clearance preferred between conduits placed in the safety barrier curb shall be 1”.

(H4.8) Use "surface" mounting, except adjacent to sidewalks, where mounting box on existing concrete. Use "flush" mounting where box is to be encased in concrete.

All end bent and safety barrier curb junction boxes shall be PVC molded in accordance with Sec 1062 and designed for flush surface mounting. The conduit terminations shall be permanent or separable. The terminations and covers shall be of watertight construction and shall meet requirements for NEMA 4 enclosure.

(H4.8.1) Use for all junction boxes to be encased in concrete at the roadway face of the safety barrier curb.

Placement of junction boxes and covers, complete in place, shall be flush with the roadway face of the safety barrier curb. Junction boxes and covers may be recessed up to ¼”.

(H4.9) Use for all conduits not to be encased in concrete.

Weep holes shall be provided at low points or other critical locations to drain any moisture in the conduit system. Conduit shall be sloped to drain.

(H4.9.1) Use for all conduits to be encased in concrete.

Drainage shall be provided at low points or other critical locations of all conduits and all junction boxes in accordance with Sec 707. All conduits shall be sloped to drain where possible.

(H4.10) Use for conduit not encased in concrete.

All conduits shall be secured to concrete with nonmetallic clamps at about 5'-0" cts. Concrete anchors for clamps shall be in accordance with Federal Specification FF-S-325, Group II, Type 4, Class I and shall be galvanized in accordance with ASTM A153, B695-91 Class 50 or stainless steel. Minimum embedment in concrete shall be 1 3/4". The supplier shall furnish a manufacturer's certification that the concrete anchors meet the required material and galvanizing specifications.

(H4.11) Use for junction box.

Junction box size shown on plan may require special order. No other size may be substituted.

(H4.12)

MoDOT Construction Personnel: Indicate in field and on bridge plans for future work the exact location of buried conduit at ends of bridge that are capped and not immediately used.

(H4.13) Use for payment of Conduit System.

Payment for furnishing and installing Conduit System, complete in place, will be considered completely covered by the contract lump sum price for Conduit System on Structure.

H5. Expansion Joint Systems

H5a. Finger Plate

(H5.1) For stage construction or other special cases, see Structural Project Manager.

Finger plate shall be cut with a machine guided gas torch from one plate. The plate from which fingers are cut may be spliced before fingers are cut. The surface of cut shall be perpendicular to the surface of plate. The cut shall not exceed 1/8" in width. The centerline of cut shall not deviate more than 1/16" from the position of centerline of cut shown. No splicing of finger plate or finger plate assembly will be allowed after fingers are cut. The expansion device shall be fabricated and installed to the crown and grade of the roadway.

(H5.2)

Plan dimensions are based on installation at 60°F. The expansion gap and other dimensions shall be increased or decreased    " for each 10° fall or rise in temperature at installation.

(H5.3)

Material for the expansion device shall be ASTM A709 Grade 36 structural steel. Anchors for the expansion device shall be in accordance with Sec 1037.

(H5.4)

Structural steel for the expansion device and curb plate shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum) or galvanized in accordance with ASTM A123. Anchors need not be protected from overspray.

(H5.5)

Payment for furnishing, coating or galvanizing and installing the structural steel for the expansion device will be considered completely covered by the contract unit price for Expansion Device (Finger Plate) per linear foot.

(H5.6)

Concrete shall be forced under and around finger plate supporting hardware, anchors, angles and bars. Proper consolidation shall be achieved by localized internal vibration.

(H5.7) Use note for steel structures.

All holes shown for connections to be subpunched 11/16"ø (shop or field drill) and reamed to 13/16"ø in field.

(H5.8) Place note near "Plan of Slab".

"the web of W14 x 43" is for steel structures
"the 3/4" vertical mounting plate" is for P/S structures.
Longitudinal reinforcing steel shall be placed so that ends shall not be more than ±1" from the web of W14 x 43 and the 3/4" vertical mounting plate at the expansion device.

(H5.9)

Complete joint penetration welds utilized in the fabrication of the expansion device shall be nondestructively tested by an approved method.

(H5.10)

Curb plate anchors shall be a drilled cone expansion or a cast-in-place wing type threaded insert. The minimum ultimate pullout capacity for these anchors shall be 2700 lbs in f'c = 4000 psi concrete. Lead anchors will not be permitted. Holes in the barrier curb for anchors shall not be drilled until the concrete is at least 7 days old.

H5b. Flat Plate

(H5.16)

Expansion device shall be fabricated in one section, except for stage construction and when the length is over 50 feet. A complete joint penetration groove welded splice shall be required. Welds shall be ground flush to provide a smooth surface. The expansion device shall be fabricated and installed to the crown and grade of the roadway.

(H5.17)

Plan dimensions are based on installation at 60°F. The expansion gap and other dimensions shall be increased or decreased    " for each 10° fall or rise in temperature at installation.

(H5.18)

Material for the expansion device shall be ASTM A709 Grade 36 structural steel. Anchors for the expansion device shall be in accordance with Sec 1037.

(H5.19)

Structural steel for the expansion device and curb plate shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum) or galvanized in accordance with ASTM A123. Anchors need not be protected from overspray.

(H5.20)

Payment for furnishing, coating or galvanizing and installing the structural steel for the expansion device will be considered completely covered by the contract unit price for Expansion Device (Flat Plate) per linear foot.

(H5.21)

Concrete shall be forced under and around the flat plate, anchors and angles. Proper consolidation shall be achieved by localized internal vibration. Finishing of the concrete shall be achieved by hand finishing within one foot of the expansion device. The vertical and horizontal concrete vent holes shall be offset from each other. Do not alternate holes at the 12" spacing.

(H5.22) Use this note when expansion device is at an end bent.

Bevel plates shall be used at end bents when the grade of the slab at the expansion device is 3% or more.

(H5.23) Place this note near "Plan of Slab".

Longitudinal reinforcing steel shall be placed so that ends shall not be more than ±1" from vertical plate and the vertical leg of the angle at the expansion device.

(H5.24)

Complete joint penetration welds utilized in the fabrication of the expansion device shall be nondestructively tested by an approved method.

(H5.25)

Curb plate anchors shall be a drilled cone expansion or a cast-in-place wing type threaded insert. The minimum ultimate pullout capacity for these anchors shall be 2700 lbs in f'c = 4000 psi concrete. Lead anchors will not be permitted. Holes in the barrier curb for anchors shall not be drilled until the concrete is at least 7 days old.

H5c. Preformed Compression Seal (Notes for Bridge Standard Drawings)

(H5.31)

Expansion joint system shall be fabricated in one section, except for staged construction and when the length is over 50 feet. A complete joint penetration groove welded splice shall be required. Welds shall be ground flush to provide a smooth surface. The expansion joint system shall be fabricated and installed to the crown and grade of the roadway.

(H5.33)

Structural steel for the expansion joint system shall be ASTM A709 Grade 36. Anchors for the expansion joint system shall be in accordance with Sec 1037. Preformed compression seal expansion joint system shall be in accordance with Sec 717.

(H5.34)

Structural steel for the expansion joint system shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum) or galvanized in accordance with ASTM A123. Anchors need not be protected from overspray.

(H5.35)

Concrete shall be forced under armor angle and around anchors. Proper consolidation of the concrete shall be achieved by localized internal vibration.

(H5.36) Place this note near "Plan of Slab" also.

Longitudinal reinforcing steel shall be placed so that ends shall be 1" from the vertical leg of the angle at the expansion joint system.


Place the following notes (H5.37 and H5.38) near the "Table of Transverse Preformed Compression Seal Expansion Joint System Dimensions".

(H5.37)

Depth of seal shall not be less than width of seal.

(H5.38)

Size of armor angle: Vertical leg of angle shall be a minimum of Manufacturer’s Recommended Height ③ + 3/4". Horizontal leg of angle shall be a minimum of 3". Minimum thickness of angle shall be 1/2".

(H5.39)

The installation temperature shall be taken as the actual air temperature averaged over the 24-hour period immediately preceding installation.

(H5.40)

MoDOT Construction personnel will indicate the preformed compression seal expansion joint system installed.

H5d. Strip Seal (Notes for Bridge Standard Drawings)

(H5.46)

Expansion joint system shall be fabricated in one section, except for staged construction and when the length is over 50 feet. A complete joint penetration groove welded splice shall be required. Welds shall be ground flush to provide a smooth surface. The expansion joint system shall be fabricated and installed to the crown and grade of the roadway.
The strip seal gland shall be installed in joints in one continuous piece without field splices. Factory splicing will be permitted for joints in excess of 53 feet.

(H5.48)

Structural steel for the expansion joint system shall be ASTM A709 Grade 36 except the steel armor may be ASTM A709 Grade 50W. Anchors for the expansion joint system shall be in accordance with Sec 1037. Strip seal expansion joint system shall be in accordance with Sec 717.

(H5.49)

Structural steel for the expansion joint system shall be coated with a minimum of two coats of inorganic zinc primer (5 mils minimum) or galvanized in accordance with ASTM A123. Anchors need not be protected from overspray.

(H5.50)

Concrete shall be forced under and around steel armor and anchors. Proper consolidation of the concrete shall be achieved by localized internal vibration.

(H5.51) Place this note near "Plan of Slab" also.

Longitudinal reinforcing steel shall be placed so that ends shall be 1" from the vertical leg of the steel armor at the expansion joint system.

(H5.52)

The installation temperature shall be taken as the actual air temperature averaged over the 24-hour period immediately preceding installation.

(H5.53)

MoDOT Construction personnel will indicate the strip seal expansion joint system installed.

(H5.54)

Steel armor may also be referred to as extrusion or rail.

(H5.55) Use this note when polymer concrete is to be used next to strip seal.

Polymer concrete shall be in accordance with Sec 623.

H5e. Preformed Silicone or EPDM Seal (Notes for Bridge Standard Drawings)

(H5.56)

The preformed silicone or EPDM seal gland shall be installed in joints in one continuous piece without field splices. Factory splicing will be permitted for joints in excess of 53 feet.

(H5.58)

The installation temperature shall be taken as the actual air temperature averaged over the 24-hour period immediately preceding installation.

(H5.59)

MoDOT Construction personnel will indicate the preformed silicone or EPDM seal expansion joint system installed.

(H5.60) Use this note when polymer concrete is to be used next to Preformed Silicone or EPDM Seal.

Polymer concrete shall be in accordance with Sec 623.

(H5.61) Use this note when joint gap (opening) is wider than 3”.

Joint gap (opening) wider than 3" during installation may require use of backer rod to keep seal in place while adhesive is curing.

H6. Pouring and Finishing Concrete Slabs

I-Beam, Plate Girder Bridges - Continuous Slabs

(H6.1)

The contractor shall pour and satisfactorily finish the slab pours at the rate given. Retarder, if used, shall be an approved type and retard the set of concrete to 2.5 hours.


Prestressed Concrete Structures - Continuous Spans

(H6.4)

The contractor shall furnish an approved retarder to retard the set of the concrete to 2.5 hours and shall pour and satisfactorily finish the slab pours at the rate given.

(H6.5)

End diaphragms at expansion devices may be poured with a construction joint between the diaphragm and slab, or monolithic with the slab.

(H6.6) Omit integral end bents with non-integral end bents and intermediate bents with single spans. Make bents singular if applicable.

The concrete diaphragm at the intermediate bents and integral end bents shall be poured a minimum of 30 minutes and a maximum of 2 hours before the slab is poured.


Prestressed Double-Tee Concrete Structures

(H6.9)

The diaphragms at the intermediate and end bents shall be poured a minimum of 30 minutes and a maximum of 2 hours before the slab is poured across the diaphragm at bents.

(H6.10)

The contractor shall furnish an approved retarder to retard the set of the concrete to 2.5 hours and shall pour and satisfactorily finish the slab pours at not less than 25 cubic yards per hour.


Solid or Voided Slab Structure - Continuous and Simple Spans

(H6.13) (*) See EPG 751.10.1.12 Slab Pouring Sequences and Construction Joints

The contractor shall furnish an approved retarder to retard the set of the concrete to 2.5 hours and shall pour and satisfactorily finish the roadway slab at a rate of not less than (*) cubic yards per hour. The contractor shall observe the transverse construction joints shown on the plans, unless the contractor is equipped to pour and satisfactorily finish the roadway slab at a rate which permits a continuous pouring through some or all joints as approved by the engineer.


Steel and Prestressed Structures - Simple Spans

(H6.15)

The contractor shall pour and satisfactorily finish the roadway slab at a rate of not less than 25 cubic yards per hour.


Widen, Extension, Repair, and Stage Construction

(H6.17) Underline part not required when forms stay-in-place permanently. Place note on the plans when the closure pour is specified on the design layout.

Expansive Class B-2 concrete shall be used in the closure pour. Forms shall be released before the closure pour.


All Structures with Longitudinal Construction Joints

(H6.18) The following note shall be used on all structures with slabs wider than 54' containing a longitudinal construction joint. The blank space shall be replaced by the value corresponding to the total roadway width divided by the larger pour width when the construction joint is used.

The longitudinal construction joint may be omitted with the approval of the engineer. When the longitudinal construction joint is omitted, the minimum rate of pour for alternate pouring sequences shall be increased by a factor of ____.


Wide Flange Deck Replacements

(H6.20)

The contractor shall provide bracing necessary for lateral and torsional stability of the beams during construction of the concrete slab and remove the bracing after the slab has attained 75% design strength. Contractor shall not weld on or drill holes in the beams. The cost for furnishing, installing, and removing bracing will be considered completely covered by the contract unit price for Slab on Steel.

(H6.21)

Slab shall be poured upgrade from end to end at a minimum rate of 25 cubic yards per hour.

(H6.22)

Alternate pour sequences may be submitted to the engineer for approval. Keyed construction joints shall be provided between pours.


H7. Slab Drains (Notes for Bridge Standard Drawings)

When steel slab drains are used place Notes H7.1, H7.1.3 and H7.2 under the heading of Notes for Steel Drain. Place remaining notes thru Note H7.11 under the heading of General Notes.

(H7.1)

Slab drains may be fabricated of either 1/4" welded sheets of ASTM A709 Grade 36 steel or from 1/4" structural steel tubing ASTM A500 or A501.

(H7.1.1) Note not required for continuous concrete slab bridges.

Slab drain bracket assembly shall be ASTM A709 Grade 36 steel.

(H7.1.3) Use underlined portion with a wearing surface.

The drains Pieces A and B shall be galvanized in accordance with ASTM A123.

(H7.2) Use first choice without a wearing surface and second choice with a wearing surface.

Outside dimensions of drains are 8" x 4" Piece A is 8 3/4" x 4 3/4" and Piece B is 8" x 4".

(H7.3) Use note with new wearing surface over new slab.

Piece A shall be cast in the concrete slab. Prior to placement of wearing surface, Piece B shall be inserted into Piece A.

(H7.4) Use underlined portion with a wearing surface.

Locate drains Piece A in slab by dimensions shown in Part Section Near Drain.

(H7.5)

Reinforcing steel shall be shifted to clear drains.

(H7.6) Use underlined portion with prestressed girders and beams. Note not required for continuous concrete slab bridges.

The coil inserts and bracket assembly shall be galvanized in accordance with ASTM A123.

(H7.7) Use underlined portion with weathering steel girders and beams. Note not required for continuous concrete slab bridges.

All bolts, hardened washers, lock washers and nuts shall be galvanized in accordance with ASTM A153, except as shown.

(H7.8) Use note when attaching to new girders and beams. Use “coil insert required” for prestressed girders, “coil inserts required” for prestressed beams and “bolt hole” for steel structures.

The coil inserts required bolt hole for the bracket assembly attachment shall be located on the prestressed girder prestressed beam plate girder wide flange beam shop drawings.

(H7.8.1) Use note when attaching to existing steel girders and beams.

The bolt hole for the bracket assembly attachment shall be shifted to the minimum extent necessary to field drill in the existing web.

(H7.9) Use the underline portion for all bridges except continuous concrete slab bridges.

Shop drawings will not be required for the slab drains and the bracket assembly.


Place Notes H7.10 and H7.11 with prestressed girder and prestressed beam slab drain details.

(H7.10)

Coil inserts shall have a concrete pull-out strength (ultimate load) of at least 2,500 pounds in 5,000 psi concrete.

(H7.11) Bolts is plural for Prestressed box and slab beams that require two bolts.

The bolts required to attach the slab drain bracket assembly to the prestressed girder web beam shall be supplied by the prestressed girder beam fabricator.


Use Notes H7.13 thru H7.21 when fiberglass reinforced polymer (FRP) slab drains are used. Place Note H7.13 as the first note under the heading of General Notes. Place remaining notes under the heading of Notes for FRP Drain.

(H7.13)

Contractor shall have the option to construct either steel or FRP slab drains. All drains shall be of same type.

(H7.14)

Drains shall be machine filament-wound thermosetting resin tubing meeting the requirements of ASTM D2996 with the following exceptions:

(H7.15)

Shape of drains shall be rectangular with outside interior nominal dimensions of 8” x 4”.

(H7.16)

Minimum reinforced wall thickness shall be of 1/4 inch.

(H7.17)

The resin used shall be ultraviolet (UV) resistant and/or have UV inhibitors mixed throughout. Drains may have an exterior coating for additional UV resistance.

(H7.18) The standard color shall be Gray (Federal Standard #26373). Optional colors which are the same colors allowed for steel superstructures include Brown (Federal Standard #30045) Black (Federal Standard #17038) Dark Blue (Federal Standard #25052) Bright Blue (Federal Standard #25095). Consult with FRP drain manufacturer/supplier to verify optional color availability and cost.

The color of the slab drain shall be Gray (Federal Standard 26373). The color shall be uniform throughout the resin and any coating used.

(H7.19)

The combination of materials used in the manufacture of the drains shall be tested for UV resistance in accordance with ASTM D4239 Cycle A. The representative material shall withstand at least 500 hours of testing with only minor discoloration and without any physical deterioration. The contractor shall furnish the results of the required ultraviolet testing prior to acceptance of the slab drains.

(H7.20)

At the contractor’s option, drains may be field cut. The method of cutting FRP slab drains shall be as recommended by the manufacturer to ensure a smooth, chip free cut.

(H7.21) Use only for angled drains.

Both upper and lower drain pieces shall be rigidly connected to each other. Drain flow shall not be obstructed. Approval of the engineer is required.

H8. Blank

H9. Thrie Beam and Other Rail Types (Notes for Bridge Standard Drawings)

Place in General Notes on the rail sheet unless otherwise specified.

(H9.1a) Use for all W-Beam, Thrie Beam, Two Tube and Single Tube (Low Profile) Structural Steel Guardrails without cap rail. (See Guardrail Delineation.) (See Note H10.7.1 Guidance for using Part Note for Delineation Sheeting Requirements.)

Guardrail delineators shall be attached to the top of the guardrail post using galvanized anchorage as shown on Missouri Standard Plan 606.00 and in accordance with Sec 606. Delineators on bridges with two-lane, two-way traffic shall have retroreflective sheeting on both sides. Guardrail delineators will be considered completely covered by the contract unit price for Bridge Guardrail (W-Beam) Bridge Guardrail (Thrie Beam) Bridge Rail (Two Tube Structural Steel) Low Profile Metal Bridge Rail (Single Tube).

(H9.1b) Use for all W-Beam and Thrie Beam Guardrails with cap rail except for temporary bridges. (See Guardrail Delineation.) (See Note H10.7.1 Guidance for using Part Note for Delineation Sheeting Requirements.)

Guardrail delineators shall be attached to the top of the guardrail and shall similarly use the delineator details of Missouri Standard Plan 617.10, except that the delineator body shall be attached to the top of the cap rail using galvanized anchorage as shown on Missouri Standard Plan 606.00. Delineators on bridges with two-lane, two-way traffic shall have retroreflective sheeting on both sides. Guardrail delineators will be considered completely covered by the contract unit price for Bridge Guardrail (W-Beam), Bridge Guardrail (Thrie Beam).

(H9.1c) Use for temporary bridges. (See Note H10.7.1 Guidance for using Part Note for Delineation Sheeting Requirements.)

Guardrail delineators shall be attached to the top of the bridge guardrail and shall similarly use the delineator details of Missouri Standard Plan 617.10, except that the delineator body shall be attached to the top of the cap rail using galvanized anchorage as shown on Missouri Standard Plan 606.00. Delineators on bridges with two-lane, two-way traffic shall have retroreflective sheeting on both sides. Cost of supplying and installing new delineators will be considered completely covered by other pay items. Delineators shall be stored with bridge guardrail after use.

(H9.2)

Panel lengths of channel members shall be attached continuously to a minimum of four posts and a maximum of six posts (except at end bents).

(H9.3) Include reinforcement with new bridges except double-tees and temporary bridges. Include elastomeric material when a base plate is used except for temporary bridges. Use “other items” for temporary bridges.

All bolts, nuts, washers, and plates, and reinforcement and elastomeric material will be considered completely covered by the contract unit price for Bridge Guardrail (W-Beam) Bridge Guardrail (Thrie Beam) other items.

(H9.4) Use underlined part for temporary bridges.

All steel connecting bolts and fasteners for posts and railing, and all anchor bolts, nuts, washers and plates shall be galvanized after fabrication except for bottom plate. Protective coating and material requirement of steel railing shall be in accordance with Sec 1040.

(H9.5) Use post instead of blockout for temporary bridges.

Rail posts shall be set perpendicular to roadway profile grade, vertically in cross section and aligned in accordance with Sec 713 except that the rail posts shall be aligned by the use of 3 x 1 3/4-inch shims such that the post deviates not more than 1/2 inch from true horizontal alignment after final adjustment. The shims shall be placed between the blockout post and the thrie beam rail. The thickness of the shims shall be determined by the contractor and verified by the engineer before ordering material for this work.

(H9.6) Use only when a base plate is used except for temporary bridges.

Rail posts shall be seated on 1/16-inch elastomeric pads having the same dimensions as the post base plate. Such pads may be any elastomeric material, plain or fibered, having hardness (durometer) of 50 or above, as certified by the manufacturer. Additional pads or half pads may be used in shimming for alignment. Post heights shown will increase by the thickness of the pad.

(H9.7)

At the expansion slots in the thrie beam rails and channels, the bolts shall be tightened and backed off one-half turn and the threads shall be burred.

(H9.8) Use post instead of blockout for temporary bridges.

At the thrie beam connection to blockout post on wings, the bolts shall be tightened and backed off one-half turn and the threads shall be burred.

(H9.9)

Minimum length of thrie beam sections is equal to one post space.

(H9.10)

A 5/8-inch diameter button-head, oval shoulder bolt with a minimum 3/8-inch thick hex nut shall be used at all slots.

(H9.11)

Thrie beam guardrail on the bridge shall be 12-gauge steel.

(H9.12) Use top plates instead of cap rail angles for temporary bridges.

Posts, cap rail angles, top plates, base bent post plates, channels and channel splice plates shall be fabricated from ASTM A709 Grade 36 steel and galvanized.

(H9.13) Use for placement or replacement of end treatment with thrie beam rail.

Cost for providing holes for new guardrail attachment will be considered completely covered by the contract unit price for other items.

(H9.15) Use post instead of blockout for temporary bridges.

Flat washers 3 x 1 3/4 x 3/16-inch minimum shall be used at all post bolts between the bolt head and beam. The washers shall be rectangular in shape with an 11/16 x 1-inch slot, or when necessary of such design as to fit the contour of the beam. Rectangular washers 3 x 1 3/4 x 5/8-inch shall be used between the blockout post and the thrie beam rail.

(H9.16)

Special drilling of the thrie beam may be required at the splices. All drilling details shall be shown on the shop drawings.

(H9.17)

Fabrication of structural steel shall be in accordance with Sec 1080.

(H9.18) Do not use for prestressed double-tee or temporary bridges.

Expansion splices in the thrie beam rail shall be made at either the first or second post on either side of the joint and on structure at bridge ends. When the splice is made at the second post, an expansion slot shall be provided in the thrie beam rail for connection to the first post to allow for movement.

(H9.19) Do not use for prestressed double-tee or temporary bridges.

In addition to the expansion provisions at the expansion joints, expansion splices in the thrie beam rail and the channel shall be provided at other locations so that the maximum length without expansion provisions does not exceed 200 feet.


Do not use Notes H9.20 thru H9.29 for temporary bridges.

(H9.20) Use for prestressed double-tee bridges.

Expansion splices in the thrie beam rail and the channel shall be provided at locations so that the maximum length without expansion provisions does not exceed 200 feet.

(H9.21)

Shim plates 6 x 6 x 1/16-inch may be used between the top of the post and the channel member as required for vertical alignment.

(H9.22) Place near Part Section at Rail Post.

See slab sheet for rail post spacing.

(H9.23)

See Missouri Standard Plan 606.00 for details not shown.

(H9.24) Place near detail of bent bolt used for new bridges except double tees.

Bolt shall not be bent in slab depths greater than 14 inches, use 12 inches straight embedment.

(H9.25) Place near details of shim plates used for horizontal alignment of State System 3.

Shim plates 6 x 3 x 1/16-inch may be used between the W6x20 post and 1/2-inch bent plate connection as required for horizontal alignment.

(H9.26) Place in General Notes and near details of shim plates used for horizontal alignment.

Shim plates shall be galvanized after fabrication.

(H9.27) Place near details of shim plates used for horizontal alignment of State System 4.

Shim plates 6 x 6 x 1/16-inch may be used between the W6x20 post and 6 x 6 x 3/8-inch plate. Shim plates 6 x 3 1/2 x 1/16-inch may be used between the W6x20 post and 1/2-inch bent plate connection as required for horizontal alignment.

(H9.28) Place near detail specifying bar support at bent plates.

Bar supports shall be Beam Bolsters (BB-ref. CRSI) and shall be galvanized. See Sec 706.


Remaining notes are only for temporary bridges except for Note H9.32 which is also used for rehabilitation of existing bridges and Note H9.34 which is used for all bridge types.

(H9.31)

If Type A guardrail is not attached to ends of the temporary structure, flared ends shall be required. The existing thrie beam rails shall be modified to accept flared ends. Cost for furnishing and installing flared ends will be considered completely covered by the contract unit price for other items.

(H9.32)

Contractor shall verify all dimensions in field before ordering materials.

(H9.33) Place near Part Section at Rail Post.

See preceding sheet for rail post spacing.

(H9.34) Place in General Notes or near Elevation of Thrie Beam Rail.

At bridge ends for head to head traffic, guardrail shall be used at all four corners and for single directional traffic, guardrail shall be used at entrance ends only unless required at the exit.

(H9.35) Place near any detail specifying the bottom plate of the rail posts.

Bottom plate shall be fabricated from ASTM A709 Grade 50W steel and welded to two 5" floor bars. Bottom plate shall not be galvanized.

(H9.36) Place near any detail specifying both the bottom and base plate of the rail posts.

The size of the base and bottom plate may be increased depending on which grid option is used.

(H9.37) Place near any detail specifying the welding of post to base plate of the rail posts.

Optional welding of the post to the base plate, in lieu of the weld shown, is a 5/16" fillet weld all around, including the edges of the post flanges.

(H9.38) Place near any detail specifying the semi-circular notches of the rail posts.

Semi-circular notches centered on the axis of the post web ends may be made to facilitate galvanizing.
Guardrail delineators shall be attached to the top of the bridge guardrail and shall similarly use the delineator details of Missouri Standard Plan 617.10, except that the delineator body shall be attached to the top of the cap rail using galvanized anchorage as shown on Missouri Standard Plan 606.00. Delineators on bridges with two-lane, two-way traffic shall have retroreflective sheeting on both sides. Cost of supplying and installing new delineators will be considered completely covered by other pay items. Delineators shall be stored with bridge guardrail after use.

H10. Barrier Curbs – Safety, Median, Type C and D

H10a. Conventional-Formed Barrier

The following notes shall be placed in the General Notes on the elevation sheet of the conventional-formed details.

(H10.1)

Top of safety median barrier curb (Type C) (Type D) and median barrier curb transition (Type C) shall be built parallel to grade with barrier curb joints (except at end bents) normal to grade.

(H10.2)

All exposed edges of safety median barrier curb (Type C) (Type D) and median barrier curb transition (Type C) shall have either a 1/2-inch radius or a 3/8-inch bevel, unless otherwise noted.

(H10.3)

Payment for all concrete and reinforcement, complete in place, will be considered completely covered by the contract unit price for Safety Median Barrier Curb (Type C) (Type D) per linear foot.

(H10.4)

Concrete in the safety median barrier curb (Type C) (Type D) and median barrier curb transition (Type C) shall be Class B-1.

(H10.5) Use for safety barrier curb or barrier curb (Type D) ending over wing walls.

Measurement of safety (Type D) barrier curb is to the nearest linear foot for each structure, measured along the outside top of slab from end of wing to end of wing.

(H10.6) Use for safety barrier curb or barrier curb (Type D) not ending over wing walls (two separate curbs used as a median or when wings are flared).

Measurement of safety barrier curb (Type D) is to the nearest linear foot for each structure, measured along the outside top of slab from end of slab to end of slab Measurement of median barrier curb transition (Type C) is to the nearest linear foot for each structure measured along the top of slab at centerline median from centerline sleeper slab to end of slab.

(H10.7) Use for median barrier curb and median barrier curb (Type C).

Measurement of median barrier curb (Type C) is to the nearest linear foot for each structure, measured along the top of slab at centerline median from end of slab to end of slab centerline sleeper slab to centerline sleeper slab.

(H10.7.1) Use for all barrier curbs (See Barrier Wall Delineation).

Concrete traffic barrier delineators shall be placed on top of the safety median barrier curb (Type C) (Type D) and median barrier curb transition (Type C) as shown on Missouri Standard Plans 617.10 and in accordance with Sec 617. Delineators on bridges with two-lane, two-way traffic shall have retroreflective sheeting on both sides. Concrete traffic barrier delineators will be considered completely covered by the contract unit price for Safety Median Barrier Curb (Type C) (Type D).
Below is additional guidance for using Part Note for Delineation Sheeting Requirements:
Bridges with two-lane, two-way traffic shall have retroreflective sheeting on both sides of the delineators. For two-lane, one-way traffic, retroreflective sheeting may be on one side only unless crossroad or entranceway traffic is just beyond exit to bridge and wrong way driving is to be discouraged with retroreflective sheeting on both sides of the delineators, (white and red in this case). "Delineators on bridges with two-lane, two-way traffic shall have retroreflective sheeting on both sides" may be modified, as required. For median barrier curbs, retroreflective sheeting should be used on both sides of the delineators where there is not more than four lanes divided.
On bridges with more than two lanes, retroreflective sheeting is not required on both sides of the delineators. The perception of a narrowing roadway at the bridge is of lesser consequence in terms of requiring guidance devices and does not warrant retroreflective sheeting on both sides of the delineators. "Delineators on bridges with two-lane, two-way traffic shall have retroreflective sheeting on both sides" may be removed at the discretion of the design team.

(H10.7.2) Use underlined part for median barriers.

Joint sealant and backer rods shall be in accordance with Sec 717 for silicone joint sealant for saw cut and formed joints (except at end of slab of the end bents).

(H10.7.3)

Plastic waterstop shall not be used with saw cut joints.


The following notes shall be placed under cross-section thru barrier.

(H10.8)

Use a minimum lap of 3'-1" for #5 horizontal safety median barrier curb (Type C) (Type D) bars.

(H10.9) Areas shown are for standard barrier heights and a 2 percent cross-slope.

The cross-sectional area for each curb above the slab = * sq. ft.
* 2.27 for a 16" safety barrier curb.
2.98 for a median barrier curb.
3.52 for a barrier curb (Type D).
3.59 for a barrier curb (Type D) used as a median.
4.69 for a median barrier curb (Type C).


The following notes shall be used for double-tee structures.

(H10.10)

Coil inserts shall have a concrete ultimate pullout strength of not less than 36,000 pounds in 5000 psi concrete and an ultimate tensile strength of not less than 36,000 pounds.

(H10.11)

Threaded coil rods shall have an ultimate capacity of 36,000 pounds. All coil inserts and threaded coil rods shall be galvanized in accordance with ASTM A153.

(H10.12)

Payment for furnishing and installing coil inserts and threaded coil rods will be considered completely covered by the contract unit price for Safety Median Barrier Curb (Type C) (Type D).


The following notes, when appropriate, shall be placed under the title of the elevation of barrier of the conventional-formed details.

(H10.12.1)

Longitudinal dimensions are horizontal arc dimensions.

(H10.12.2)

Longitudinal dimensions are along top of safety barrier curb outside edge of slab parallel to grade.

The following reference notes shall be placed under the permissible alternate bar shape detail.

(H10.13) Use R2 for Type D curbs, R3 for safety barrier curbs and M2 for two separate Type D curbs used as a median.

The R2 R3 M2 bar and #5 bottom transverse slab bar in cantilever (P/S panels only) combination may be furnished as one bar as shown, at the contractor's option.

(H10.14) Use R1 for safety barrier curbs and Type D curbs. Use M1 for two separate Type D curbs used as a median.

() The R1 M1 bar may be separated into two bars as shown, at the contractor's option, only when slip forming is not used. (All dimensions are out to out.)

Place general notes H10.19, H10.20 and H10.7.1 on the barrier at end bents sheet with notes H10.19 and H10.20 under the Reinforcing Steel heading.

(H10.19)

Minimum clearance to reinforcing steel shall be 1 1/2" except as shown for bars embedded into end bent.

(H10.20) Use 2’-7” and K10 bars for barrier ending on wing walls adding K13 bars with two different wing lengths. Will need to add more bars if more than two different wing lengths exists. Use 3’-1” and R6 bars for barrier ending on slabs.

Use a minimum lap of 2'-7" 3’-1” between K9 and K10 or K13 R6 bars.

(H10.21) Place note under the K1-K2 Bar Permissible Alternate Shape Detail on the barrier at end bents sheet.

The K1 and K2 bar combination may be furnished as one bar as shown, at the contractor's option.

H10b. Slip-Formed Barrier

Optional slip-formed barrier curb details shall be placed on all jobs (except P/S Double-tee Structures) where applicable. Add #5 crisscrossed bars for slip-formed option. Determine the length of these bars using the shortest distance between joints and use on each side of joints.

(H10.83) Place in the General Notes of the optional slip-formed details after Notes H10.1, H10.2, H10.3, H10.4, H10.5 or H10.6 or H10.7, H10.7.1, H10.7.2, and H10.7.3.

For slip-formed option, all sides of the safety median barrier curb (Type C) (Type D) shall have a vertically broomed finish and the curb top shall have a transversely broomed finish.

H10c. Precast Temporary Barrier

(H10.90)

Method of attachment for the Type F temporary barrier shall be the tie-down strap bolt through deck.

(H10.91)

Temporary barrier shall not be attached to the bridge.

H11. Miscellaneous

Construction Joint

(H11.1)

Finish each side of joint with a 1/4 inch radius edging tool.


Pin and Flat Hexagonal Nut

(H11.2)

Material: Pin = ASTM A668 (Class F)
  Nut = ASTM A709 Grade 36


Plastic Waterstop (Use in the Curb and Parapet filled joints as specified in EPG 751.12.2.8 Plastic Waterstop)

(H11.3)

Plastic waterstop shall be placed in all formed joints, except structures with superelevation, use on lower joints only.

(H11.4)

Cost of plastic waterstop, complete in place, will be considered completely covered by the contract unit price for Safety Barrier Curb (Type D).


Sign Supports

(H11.5)

Payment for furnishing and placing anchor bolts for sign supports will be considered completely covered by the contract unit price for other items.

(H11.6)

Payment for furnishing and erecting approximately     pounds of steel for sign supports will be considered completely covered by the contract lump sum price for Fabricated Sign Support Brackets.


Plan of Slab: All Structures

(H11.8)

Longitudinal slab dimensions are measured horizontally.


Pedestrian Guard Fence (Chain Link Type): General Notes

(H11.10)

Pedestrian guard fence (Chain link type) shall be in accordance with Sec 1043 except all fabric shall have the top and bottom edges knuckled.

(H11.11)

All posts shall be vertical. Grout of 1/2" minimum thickness shall be placed under floor plates to provide for vertical alignment of posts.

(H11.12)

Payment for furnishing, galvanizing and erecting the fence and frame complete with anchor bolts and washers will be considered completely covered by the contract unit price for (72 in.) Pedestrian Fence (Structures) per linear foot.

(H11.13)

Dimensions of pedestrian guard fence are measured horizontally.

(H11.14)

The maximum spacing allowed between pull post and end posts is 100 ft. Post brace and 1/2" Ø truss rod are required for panels adjacent to pull post and end posts only.

(H11.15)

Connect the lower end of the 1/2" Ø truss rod to the bottom of the pull posts and end posts to which the stretcher bar is attached.

(H11.16)

(112 in.) Curved Top Pedestrian Fence (Structures) will be measured to the nearest linear foot for each structure measured along the bottom outside edge of the sidewalk curb from      to     .

(H11.17)

Core wire size for wire fabric shall be 6 gage minimum.

(H11.19) Use for ornamental pedestrian fencing.

The design live load for pedestrian railings shall be in accordance with AASHTO LRFD Bridge Design Specifications except that a uniform load of 50 lb/ft and a concentrated load of 200 lb need not be applied simultaneously. The posts of pedestrian fencing will require both loadings applied simultaneously.


Sidewalks

(H11.20)

All exposed edges of sidewalk shall have either a 1/2" radius or a 3/8" bevel, unless otherwise noted.

(H11.21)

Payment for all concrete and reinforcement, complete in place, will be considered completely covered by the contract unit price for Sidewalk (Bridges) per sq. foot.

(H11.22)

Concrete in the sidewalk shall be Class B-2.

(H11.23)

Measurement of the sidewalk is to the nearest square foot for each structure, measured horizontally from the outside face of safety barrier curb to the outside edge of sidewalk and from end of slab to end of slab.

I. Revised Structures Notes

I1. General

(I1.1)

Outline of old work is indicated by light dashed lines. Heavy lines indicate new work.

(I1.2)

Contractor shall verify all dimensions in field before ordering new material.

(I1.3)

Bars bonded in old concrete not removed shall be cleanly stripped and embedded into new concrete where possible. If length is available, old bars shall extend into new concrete at least 40 diameters for plain bars and 30 diameters for deformed bars, unless otherwise noted.


Use the following notes where a broken concrete surface has no new concrete against it. Use bituminous paint below ground line and qualified special mortar above ground line.

(I1.4)

The area exposed by the removal of concrete and not covered with new concrete shall be coated with an approved bituminous paint qualified special mortar in accordance with Sec 704.

(I1.5) Use with joint filler joints with Asphaltic Concrete Wearing Surface.

Joint shall be cleaned per the manufacturers recommendations. Cost of Concrete and Asphalt Joint Sealer and Backer Rod will be considered completely covered by contract unit price per other items included in the contract.


Concrete Slab with Overlay

(I1.10) Use note for all wearing surfaces except epoxy polymer concrete overlay.

In order to maintain grade and a minimum thickness of overlay as shown on plans it may be necessary to use additional quantities of overlay at various locations throughout the structure. The cost of furnishing and installing the overlay will be considered completely covered in the contract unit price, including all additional labor, materials or equipment for variations in thickness of overlay.

(l1.11) Use note for only epoxy polymer concrete overlay.

The contractor shall exercise care to ensure spillage over joint edges is prevented and that a neat line is obtained along any terminating edge of the epoxy polymer concrete.

(l1.12) Use note only with preventive maintenance jobs.

Concrete for repairing concrete deck shall be a qualified special mortar in accordance with Sec 704 instead of the Class B-2 or B-1 concrete.

(I1.13) [MS Cell] Use the following table and notes with alternate concrete wearing surfaces.

Alternate Concrete Wearing Surface
Type of Concrete Wearing Surface Type Used
()
Low Slump Concrete Wearing Surface  
Silica Fume Concrete Wearing Surface  
   
MoDOT construction personnel shall complete column labeled "Type Used ()".
The contractor shall select one of the alternate concrete wearing surfaces
listed in the table. The alternate concrete wearing surface method of
measurement and basis of payment shall be in accordance with Sec 505.


Removal and Storage of Existing Bridge Rails

(I1.20)

The existing bridge rails and posts shall be stored at a location as designated by the engineer on the MoDOT Maintenance Lot at     .


Extension of Box Culverts

(I1.41)

Bottom of top slab, top of bottom slab, and inside faces of walls shall be built flush with the old structure.

(I1.42)

Bottom of new slab shall be built flush with the bottom of slab of the old box and the height of walls varied as necessary to extend the walls into rock as specified.

Making End Bents Integral

(I1.51)

The exposed and accessible surfaces of the existing structural steel and bearings that will be encased in concrete shall be cleaned with a minimum of SSPC-SP-3 surface preparation and coated with a minimum of one coat of gray epoxy-mastic primer (non-aluminum) in accordance with Sec 1081 to produce a dry film thickness of not less than 3 mils before concrete is poured. The surface preparation and coating for girders shall extend a minimum of one foot outside the face of the girder encasement. Payment for cleaning and coating steel to be encased in concrete will be considered completely covered by the contract unit price for Class B-2 Concrete Slab on Steel.

(I1.52)

The ___ bars are segmented for ease of placement through girder web holes. The total bar length for ___ bars shown in Bill of Reinforcing Steel allows for one lap splice with a length of ___. Actual bar segment lengths to be determined by contractor for ease of installing bars. The contractor may use a mechanical bar splice in lieu of a lap splice. When a mechanical bar splice is used, the actual bar segment length will be determined by the contractor to accommodate manufacturer's recommendations for installation and ease of construction. The cost of furnishing and installing the bar splices will be considered completely covered by the contract unit price for Reinforcing Steel. No adjustment of the quantity of reinforcing steel will be allowed for the use of mechanical bar splices.

(I1.53)

Cost of field drilling holes in existing plate girder wide flange beam webs will be considered completely covered by the contract unit price for Class B-2 Concrete Slab on Steel.

Curb Block-Out

(I1.60)

7/8"ø Threaded Rods with nuts and washers shall be used in place of 7/8"ø Bolts (ASTM A307).

(I1.61)

1"ø holes shall be drilled through existing end post for placement of 7/8"ø threaded rods, nuts, and washers.


In "General Notes:" section of plans, place the following note under the heading "Miscellaneous:" when existing longitudinal dimensions are used.

(I1.62)

Longitudinal dimensions are based on the original design plans.

In "General Notes:" section of plans, place the following two notes under the heading "Beam Support:" when strengthening existing beams under traffic.

(I1.64)

All existing beams in the span being strengthened shall be raised simultaneously Dimension H at jacking point and supported during welding of new steel plates.

(I1.65)

The temporary supports must be capable of safely supporting a service load of approximately Load J tons per beam (factor of safety not included). See special provisions.

(I1.66)

Scarification not required for Asphaltic Concrete Wearing Surface and Epoxy Polymer Concrete Overlay.

(I1.67) Field Welding New Stiffeners or New Connection Plates or Cover Plates to Existing Steel

Field welded fillet welds shall be NDT by the magnetic particle process as required by AASHTO/AWS D1.5 2002, Bridge Welding Code clause 6.7.2.

Rock Blanket

(I1.70) Use note for redecks or in other cases where the rock blanket elevations are not shown on the bridge plans and the top of the rock blanket is required to be flush to the existing ground line in accordance with the Memorandum of Agreement with SEMA.

The top of rock blanket shall be flush to the ground line as directed by the engineer. (Roadway Item)

I2. Resin & Cone Anchors

Use Resin Anchors unless concrete depths are insufficient.

(I2.1)

The contractor shall use one of the qualified resin anchor systems in accordance with Sec 1039.

(I2.2) * Pay item in which resin anchor system is embedded.

Cost of furnishing and installing the resin anchor systems, complete in place, will be considered completely covered by the contract unit price for *.

(I2.3)

The minimum embedment depth in concrete with f'c = 4,000 psi for the resin anchor systems shall be that required to meet the minimum ultimate pullout strength in accordance with Sec 1039 but shall not be less than 5".

Note to designer:
A minimum factor of safety of 2 should be used when determining the number of anchors to be used.

(I2.4)(Use when reinforcing steel is substituted for the threaded rod stud.)

A An epoxy coated #**** Grade 60 reinforcing bar ***** long shall be substituted for the ******ø threaded rod.


**** Bar size.
***** Length of bar required by design.
****** Diameter of threaded rod.


Cone Expansion Anchors

(I2.30) *** Pay item in which cone expansion anchor is embedded.

Cost of furnishing and installing cone expanson anchor will be considered completely covered by the contract unit price for ***.

(I2.31)

The *" diameter cone expansion anchors shall have a minimum ultimate pullout strength of ** lbs. in concrete with f'c = 4,000 psi.
* DIAMETER ** PULLOUT
3/8" 3,900
1/2" 7,500
5/8" 10,800
3/4" 12,000

I3. Special Repair Zones

(I3.1)

Any half-soling required in the areas designated as special repair zones shall be completed in alphabetical sequence. Any repair in the remainder of the bridge that is adjacent to Zone A and not designated as a special repair zone shall be completed prior to work in Zone A.

(I3.2)

Removal and repair shall be completed in one special repair zone and concrete shall have attained a compressive strength of 3200 psi before work can be started in the next special repair zone. Before placing concrete in areas adjacent to areas of subsequent repair, the concrete shall be separated with a material such as polyethylene sheets to aid in removal of old concrete.

(I3.5) Use for structures with multiple column bents.

Zones with the same letter designation may be repaired at the same time.

(I3.6) Use for structures with single column bents.

Zones with the same letter designation may be repaired at the same time except for the zones directly adjacent to the centerline of bent. If either of the zones adjacent to centerline of bent has a single repair area of over 10 square feet or a total repair area of over 20 square feet, that zone shall be repaired before removing concrete in the other zone of the same designation at that bent.

(I3.10) Use for voided or solid slab structures.

If any single repair area does not exceed 4 square feet in size and the total repair within a special repair zone does not exceed 12 square feet, the special repair zone requirement does not apply for that zone. Any damage sustained to the void tube as a result of the contractor's operations shall be patched or replaced as required by the engineer at the contractor's expense.

(I3.11) Use for voided slab structures.

An exposed void in the deck shall be patched as approved by the engineer in a manner that shall maintain the void area completely free of concrete. Cost of patching an exposed void will be considered completely covered by the contract unit price for Repairing Concrete Deck (Half-Soling).

(I3.12) Use for voided slab structures.

When a deteriorated portion of the void tube is beyond the point of patching as determined by the engineer, the portion of the deteriorated void tube shall be replaced. The void area shall be maintained completely free of concrete. Cutting of the longitudinal reinforcing steel will not be permitted. The fiber tubes for producing the voids shall have an outside diameter with the wall thickness the same as the existing tubes and anchored at not more than the original spacing. Cost of replacing the void tube will be considered completely covered by the contract unit price for Deck Repair with Void Tube Replacement.


Use following notes for box and deck girder structures.

(I3.16)

Total width of full depth repair shall not exceed 1/3 of the deck width at one time. For any area of deck repair that extends over a concrete girder and is more than 18 inches in length along the girder, the concrete removal shall stop at the centerline of girder and repair completed in this area. Prior to continuing work in this area, the concrete shall have attained a compressive strength of 3200 psi. No traffic shall be permitted over the girder that is undergoing repair.

(I3.17)

When the full depth repair extends over a diaphragm or girder and the deteriorated concrete extends into the diaphragm or girder, all deteriorated concrete shall be removed and replaced as full depth repair. Concrete in girders shall not be removed below the deck haunch of the girder without prior review and approval from the engineer.


Use following notes for box girder structures.

(I3.20)

Interior falsework installed by the contractor resting on the bottom slab shall be removed where entry access is available.

(I3.21)

If any single repair area does not exceed 9 square feet in size and the total repair within a special repair zone does not exceed 27 square feet, the special repair zone requirement does not apply for that zone. Half-soling repair in the special repair zone, on either side of the intermediate bents, shall be to a depth that will not expose half the diameter of the longitudinal reinforcing bar. Full depth repair shall be made when removal of deteriorated concrete exposes half or more of the diameter of the longitudinal reinforcing bar.

J. MSE Wall Notes (Notes for Bridge Standard Drawings)

J1. General

(J1.1)

Factor of safety shall be 2.0 for overturning and 1.5 for sliding.

(J1.2)

The cost of joint filler and joint seal, complete in place, will be considered completely covered by the contract unit price for Concrete Traffic Barrier (Type A D). See Roadway Plans.

(J1.3)

For seismic design the factor of safety shall be 1.5 for overturning and 1.1 for sliding.

(J1.4)

øb =    ° and Unit weight, Ɣb = ___pcf for retained backfill material to be retained by the mechanically stabilized earth wall system.

(J1.5)

øf =    ° for unimproved foundation ground where wall is to bear.
øf =    ° for improved foundation ground where wall is to bear.

(J1.6)

Actual ør ≥ 34° for the select granular backfill (reinforced backfill and wedge area backfill) for structural systems.

(J1.7)

Design ør = 34° for the select granular backfill (reinforced backfill) only for structural systems.

(J1.8)

All concrete for leveling pad and coping shall be Class B or B-1 with f'c = 4000 psi.

(J1.10) For epoxy coated reinforcement requirements, see EPG 751.5.9.2.2 Epoxy Coated Reinforcement Requirements.

Panel and coping (or capstone) reinforcement shall be epoxy coated.

(J1.11)

Anchorage reinforcement shall be spaced to avoid roadway drop inlet behind wall.

(J1.12a)

A filter cloth meeting the requirements for a Separation Geotextile material shall be placed between the select granular backfill for structural systems and the backfill being retained by the mechanically stabilized earth wall system.

(J1.12b) Use for all large block walls.

Minimum 18” wide geotextile strips shall be centered at vertical and horizontal joints of panel. Geotextile material shall be adhered to back face of panel using an adhesive compound supplied by the manufacturer.

(J1.13)

Coping shall be required on this structure unless a small block system is used. Bond breaker (roofing felt or other approved alternate) between wall panel and coping required if coping is cast in place.

(J1.13a)

Wall contractor shall show the following items on the design drawings and/or on the fabricator shop drawings.
1. Leveling pad horizontal.
2. Leveling pad length and step elevations shall be based on wall manufacture’s recommendation. Top of leveling pad elevations shall not be higher than theoretical top of leveling pad elevations shown on these plans.


For Battered Small Block Walls

(J1.14)

The top and bottom elevations are given for a vertical wall. If a battered small block wall system is used, the height of the wall shall be adjusted as necessary to fit the ground slope and the concrete leveling pad shall be adjusted as necessary to account for the wall batter. If a fence is built on an extended gutter, then the height of the wall shall be adjusted further.
The baseline of the wall shown is for a vertical wall. If a battered wall system is used, this baseline shall correspond to Elevation         .


For Walls Near Bridge Abutments (Responsibility of Bridge Division)

(J1.15)

The contractor shall be solely responsible to coordinate construction of the wall with bridge and roadway construction and ensure that the bridge and roadway construction, resulting or existing obstructions, shall not impact the construction or performance of the wall. Soil reinforcement shall be designed and placed to avoid damage by pile driving, guardrail post installation, utility and sign foundations. (See Roadway and Bridge plans.)


PREQUALIFIED MSE WALL SYSTEMS

(J1.16) [MS Cell]

MSE Wall Systems Data Table
Proprietary Wall
Systems
Combination Wall Systems
Manufacturer System Facing Unit
Manufacturer
Facing
Unit
Geogrid
Manufacturer
Geogrid
           
           
           
           
MSE Wall Systems Data Table is to be completed by MoDOT construction personnel
to record the manufacturer of the proprietary wall system or the manufacturers of the
combination wall system that was used for constructing the MSE wall.

(J1.17) Use for all large block walls or if small block walls are to be built vertical.

The MSE wall system shall be built vertical.

(J1.18) Use where only a small or large block wall shall be used. Do not use note where either a small or large block may be used.

The MSE wall system shall be a small large block wall system.

(J1.19)

Topmost layer of reinforcement shall be fully covered with select granular backfill for structural systems, as approved by the wall manufacturer, before placement of the Separation Geotextile.

(J1.19a)

Minimum __ diameter perforated PVC or PE pipe.

(J1.20)

Manufacturer shall show drain details on design plans to be submitted as shown on MoDOT MSE wall plans and/or roadway plans.

(J1.20a)

Select granular backfill shall extend a minimum of 12" beyond the end of all soil reinforcement. Where the angle, Ɵ, between the retained backfill excavation/fill line and the horizontal is less than 90°, the wedge area backfill between Ɵ and 90° shall be filled with select granular backfill for structural systems meeting the requirements of Section 1010.
- For (45°+ Фb/2) < Ɵ ≤ 90°, properties for retained backfill shall be used for active force computations.
- For Ɵ ≤ (45°+ Фb/2), contractor shall have the option to use properties for select granular backfill, Фr, or better aggregate material, Фw for active force computations in the wedge area backfill. For active force computations, the angle of internal friction for wedge area backfill material, Фr or Фw, shall be limited to 34° unless determined otherwise in accordance with Section 1010. If Фr or Фw > 34° is desired for wedge area backfill then test report shall be submitted with manufacturer's design plans. Фr or Фw shall not be greater than 40°. Final configuration of this option shall be sent to Geotechnical Section for a new overall global stability analysis. Design Фw shall be shown on manufacturer's plans if used.
The slope excavation line shall be benched and separation geotextile shall be placed between the retained backfill and either select granular backfill or better aggregate material, and between the select granular backfill and better aggregate material.
Show range of acceptable theta (Ɵ) angle on shop drawings which must be consistent with design computations and proposed construction of wall. Coordination between wall designer (manufacturer) and contractor is required before shop drawing submittal.

Use for all large block walls.

(J1.21a) Inverted U-shape reinforced capstone may be used in lieu of coping. Panel dowels for capstone shall be required and as provided by manufacturer.
(J1.21b) Aluminized soil reinforcement shall have edges coated with coating material per manufacturer.
(J1.21c) Use default values for the pullout friction factor, F*, in accordance with AASHTO figure 5.8.5.2A. For approved steel strips not shown in AASHTO figure 5.8.5.2A, use F* ≤ 2.0 at zero depth and F* ≤ Tan Фr at 20 feet depth and Фr design = 34°. F* values shall be shown on the manufacturer’s design plans.

(J1.22)

The MSE wall system shall be built in accordance with Sec 720.

(J1.23) Use for MSE Walls when there may be contact between dissimilar metals.

All steel soil reinforcements shall be separated from other metallic elements by at least 3 inches.

(J1.24) Use for MSE Walls when there may be vertical obstructions in reinforced soil mass.

The splay angle should be less than 15° and tensile capacity of splayed reinforcement shall be reduced by the cosine of the splay angle.
No reinforcement shall be left unconnected to the wall face or arbitrarily cut/bent in the field to avoid the obstruction.
Where interference between the vertical obstruction and the soil reinforcement is unavoidable, the design of the wall near the obstruction may be modified using one of the alternatives in FHWA-NHI-10-24, Section 5.4.2. Show detail layout on the drawings. For wall designs with horizontal obstructions in reinforced soil mass, see FHWA-NHI-10-024, Section 5.4.3.

(J1.25) Use either or both allowable bearing pressure notes for foundation ground as determined by the Geotechnical Section and reported on the Foundation Investigation Geotechnical Report and use the following maximum applied bearing pressure note.

The allowable bearing pressure for unimproved foundation ground _____ ksf.
The allowable bearing pressure for improved foundation ground _____ ksf.
The maximum applied bearing pressure for the controlling design case at the foundation level shall be shown on the manufacturer’s design plans where the maximum applied bearing pressure ≤ allowable bearing pressure. For seismic design the maximum applied bearing pressure ≤ two times the allowable bearing pressure.

(J1.25a) Use when limits of improved foundation ground required by Geotechnical Section.

Limits of improved foundation ground and allowable bearing pressure shall not be adjusted from that as shown on the plans.

For Small Block Walls

(J1.26) Permanent shims for Small block MSE wall:

Shims will be sparingly allowed to maintain horizontal and vertical control. The preferable shim shall be made of a plastic material that will not rust, stain, rot or leach onto the concrete and has a minimum compressive strength equal to block wall unit. Steel or wood shims will not be allowed. Shims shall not exceed 3/16” in thickness and shall distribute load in order to not induce stress into block wall units. No shim shall be used between the concrete leveling pad and the base course of the block wall.

(J1.27)

Holes shall be 5/8” round and extend 4” into the third layer of blocks, recessed 2” deep by 1 1/2" round.

(J1.28)

Rods or reinforcing bars shall be secured by an approved resin anchor system in accordance with Sec 1039.

(J1.29)

Recess hole shall be backfilled with non-shrink cement grout.

Use for all MSE wall plans.

(J1.30)

Excavation quantities and pay items are given on the roadway plans. Excavation quantities are based on a soil reinforcement length of __ ft. The soil reinforcement length may very based upon the wall design selected by the contractor. Plan excavation quantities will be paid regardless of any actual quantities removed based on the soil reinforcement length and design selected.

(J1.31) Use when interior angle between two walls is less than or equal to 70°.

When interior angle between two walls is less than or equal to 70°, the affected portion of the MSE wall shall be designed as an internally tied bin structure with at-rest earth pressure coefficients. For additional design steps see (FHWA NHI-10-024).

(J1.32)

Contractor shall modify the drain details as shown if it will improve flow as may be the case for a stepped leveling pad, and for an uneven ground line (approval of the engineer required).

K. Approach Slab Notes (Notes for Bridge Standard Drawings)

K1. General

(K1.1) Use for Bridge Approach Slab (Major Road) and omit underlined part for concrete sub-class Bridge Approach Slab (Minor Road).

All concrete for the bridge approach slab and sleeper slab shall be in accordance with Sec 503 (f'c = 4,000 psi).

(K1.2)

All joint filler shall be in accordance with Sec 1057 for preformed fiber expansion joint filler, except as noted.

(K1.3) Use for Bridge Approach Slab (Major Road) and omit underlined part for concrete sub-class Bridge Approach Slab (Minor Road).

The reinforcing steel in the bridge approach slab and the sleeper slab shall be epoxy coated Grade 60 with Fy = 60,000 psi.

(K1.4)

Minimum clearance to reinforcing steel shall be 1 1/2", unless otherwise shown.

(K1.5) Use for Bridge Approach Slab (Major Road) and omit underlined part and substitute #4 bars 23” for concrete sub-class Bridge Approach Slab (Minor Road).

The reinforcing steel in the bridge approach slab and the sleeper slab shall be continuous. The transverse reinforcing steel may be made continuous by lap splicing the #5 bars 29”.

(K1.6) Use underline portion when mechanical bar splices are required due to staged construction.

Mechanical bar splices shall be in accordance with Sec 710. (Estimated ____ splices per slab)

(K1.7)

Seal joint between vertical face of approach slab and wing with sealant in accordance with Sec 717 for Silicone Joint Sealant for Saw Cut and Formed Joints.

(K1.11)

The contractor shall pour and satisfactorily finish the bridge or semi-deep slab before pouring the bridge approach slab.

(K1.12)

Longitudinal construction joints in approach slab and sleeper slab shall be aligned with longitudinal construction joints in bridge or semi-deep slab.

(K1.13) Use for Bridge Approach Slab (Major Road)

Payment for furnishing all materials, labor and excavation necessary to construct the approach slab, including the timber header, sleeper slab, underdrain, Type 5 aggregate base, joint filler and all other appurtenances and incidental work as shown on this sheet, complete in place, will be considered completely covered by the contract unit price for Bridge Approach Slab (Major Road) per sq. yard.

(K1.14a) Use for Bridge Approach Slab (Minor Road) – Concrete Slab Only

Payment for furnishing all materials, labor and excavation necessary to construct the concrete bridge approach slab, including the timber header, underdrain, Type 5 aggregate base, joint filler and all other appurtenances and incidental work as shown on this sheet, complete in place, will be considered completely covered by the contract unit price for Bridge Approach Slab (Minor Road) per sq. yard.

K1.14b) Use for Bridge Approach Slab (Minor Road) – Asphalt Slab Only

Payment for furnishing all materials, curb, labor and excavation necessary to construct the concrete asphalt bridge approach slab, including curb, underdrain, Type 5 aggregate base within the pay limits shown, complete in place, will be considered completely covered by the contract unit price for Bridge Approach Slab (Minor Road) per sq. yard.

(K1.15) Use for Bridge Approach Slab (Major Road) and Bridge Approach Slab (Minor Road) – Concrete Slab Only

For Concrete Approach Pavement details, see roadway plans.

(K1.16) Use for Bridge Approach Slab (Major Road)

See Missouri Standard Plans 609.00 for details of Type A Curb.

(K1.17) Use for Bridge Approach Slab (Minor Road) – Asphalt Slab Only

See Missouri Standard Plans 609.00 for details of Type S Curb.

(K1.18)

With the approval of the engineer, the contractor may crown the bottom of the approach slab to match the crown of the roadway surface.

(K1.19) [MS Cell] Use boxed note for Bridge Approach Slab (Minor Road)

MoDOT Construction personnel will indicate the bridge approach slab used for this structure:
Concrete Bridge Approach Slab
Asphalt Bridge Approach Slab

(K1.20)

Drain pipe may be either 6" diameter corrugated metallic-coated pipe underdrain, 4" diameter corrugated polyvinyl chloride (PVC) drain pipe, or 4" diameter corrugated polyethylene (PE) drain pipe.