

Cell in Tasks: Bridge Detailing Notes (B3.1 "Estimated Quantities" Box)

-		
Ectimato	d Oughtities	

	Estimated Quanti	ties				
	I tem			Substr.	Superstr.	Total
	Class 1 Excavation	cu.	yard	80		80
	Removal of Bridges (X-186)	lump	o sum			1
	Drilled Shafts (3 ft. 6 in. Dia.)	linear	foot	94		94
	Rock Sockets (3 ft. 0 in. Dia.)	linear	foot	32		32
	Video Camera Inspection		each	4		4
	Foundation Inspection Holes	linear	foot	72		72
	Sonic Logging Testing		each	4		4
	Galvanized Structural Steel Piles (12 in.)	linear	foot	196		196
	Pile Point Reinforcement		each	8		8
	Class B Concrete (Substructure)	cu.	yard	70.4		70.4
	Slab on Concrete I-Girder	sq.	yard		635	635
*	Safety Barrier Curb	linear	foot		491	491
	Type 6 (54 in.), Prestressed Concrete I-Girder	linear	foot		632	632
	Reinforcing Steel (Bridges)	ļ	bound	15,270		15,270
	Steel Intermediate Diaphragm for P/S Concrete Girders		each		6	6
	Slab Drain		each		36	36
	Vertical Drain at End Bents		each			2
	Plain Neoprene Bearing Pad		each		6	6
	Laminated Neoprene Bearing Pad		each		12	12

* Safety barrier curb shall be cast-in-place option or slip-form option.

All concrete above the construction ioint in the end bents is included in the Estimated Quantities for Slab on Concrete I-Girder.

All reinforcement in the end bents is included in the Estimated Quantities for Slab on Concrete I-Girder.

All reinforcement in the intermediate bent concrete diaphragms except reinforcement embedded in the beam cap is included in the Estimated Quantities for Slab on Concrete I-Girder.

All concrete above the intermediate beam cap is included in the Estimated Quantities for Slab on Concrete I-Girder. Notes B. EPG 751.50

	Foundati	on Data			
-			Bent	Number	
Туре	Design Data	1	2	3	4
	Pile Type and Size	HP 12×53			HP 12x53
	Number ea	4			4
	Approximate Length Per Each ft	30			30
	Pile Point Reinforcement ea	AII			AII
Bearing Pile	Min. Galvanized Penetration (Elev.) ft	Full length			Full lengt
1116	Pile Driving Verification Method	DF			DF
	Resistance Factor	0.4			0.4
	Minimum Nominal Axial Compressive Resistance kip	505			505
	Number ea		2	2	
	– Foundation Material		Rock	Rock	
	L Elevation Range ft		838-835	844-839	
Rock	Minimum Nominal Axial Compressive Resistance (Side Resistance) ksf		28.6	28.6	
Socke†	N Foundation Material		Rock	Rock	
	Elevation Range ft		835-821	839-830	
	∬Minimum Nominal Axial Compressive Resistance ⊂ (Side Resistance) ksf		28.6	28.6	
	Ninimum Nominal Axial Compressive Resistance (Tip Resistance) ksf		12.0	12.0	

DF = FHWA-modified Gates Dynamic Formula

Detailed Aug. 2019

Checked_ Aug. 2019

Minimum Nominal Axial Compressive Resistance = <u>Maximum Factored Loads</u> Resistance Factor

Notes E2, EPG 751,50 Minimum Nominal Axial Compressive Resistance = <u>Maximum Factored Loads</u> (Side Resistance + Tip Resistance) Resistance Factors

Manufactured pile point reinforcement shall be used on all piles in this structure.

Sonic logging testing shall be performed on all drilled shafts and rock sockets.

lorder text cell in Tasks: General Annotation (Second Sheet Text)

General Notes: Notes A, EPG 751.50

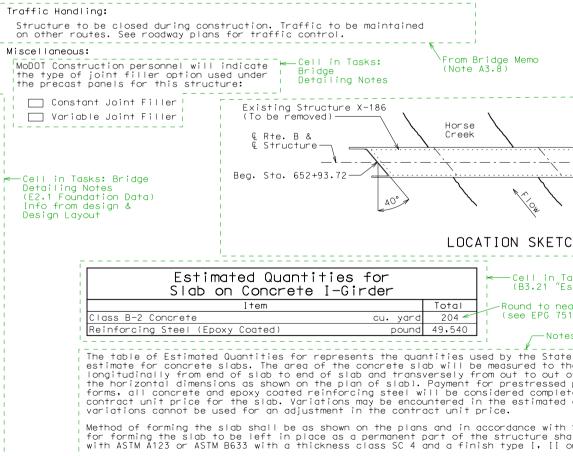
Design Specifications:

2012 AASHTO LRFD Bridge Design Specifications (6th Ed.) and 2013 Interim Revisions $__$ Seismic Performance Category A K -From Design Layout, If not specified, use "A" Design Logding: Vehicular = HL-93 - From Design Layout Future Wearing Surface = 35 lb/sf (Min.) $Earth = 120 \ Ib/cf$ Equivalent Fluid Pressure = 45 lb/cf Superstructure: Simply-Supported, Non-Composite for dead load. Continuous Composite for live load. Design Unit Stresses:

Class B Concrete (Substructure) f'c = 3.000 psiClass B-2 Concrete (Drilled Shafts & Rock Sockets) f'c = 4,000 psi Class B-1 Concrete (Safety Barrier Curb) f'c = 4.000 psiClass B-2 Concrete (Superstructure, except Prestressed Girders and Safety Barrier Curb) f'c = 4,000 psi

Reinforcing Steel (Grade 60)	ty = 60,000 psi
Steel Pile (ASTM A709 Grade 50)	,fy-=,50,000 psi
For precast prestressed panel stresses, see	
For prestressed girder stresses, see Sheets	No. 14 & 15

Neoprene Pads:


Neoprene bearing pads shall be 60 durometer and shall be in accordance with Sec 716.

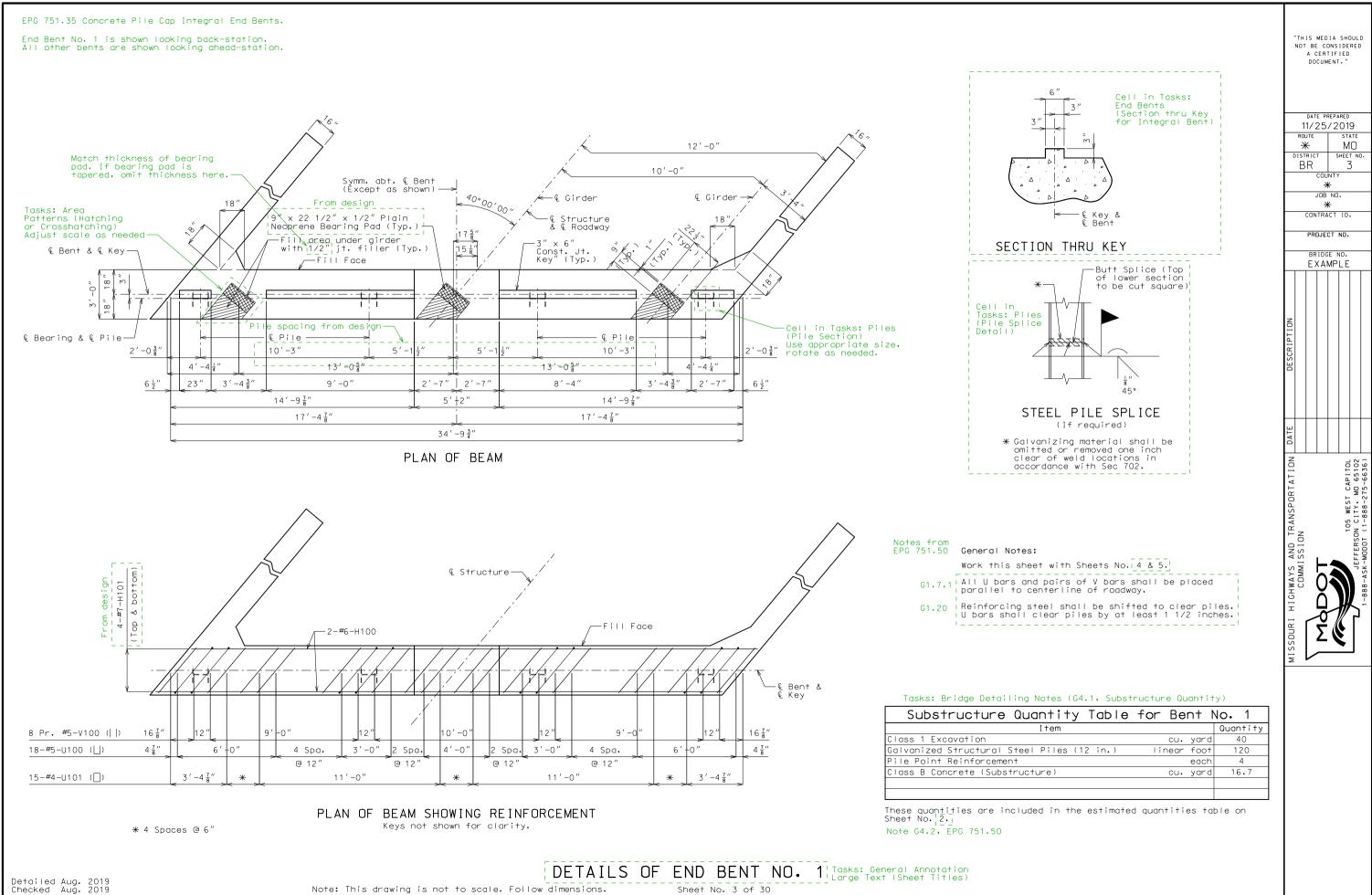
Joint Filler:

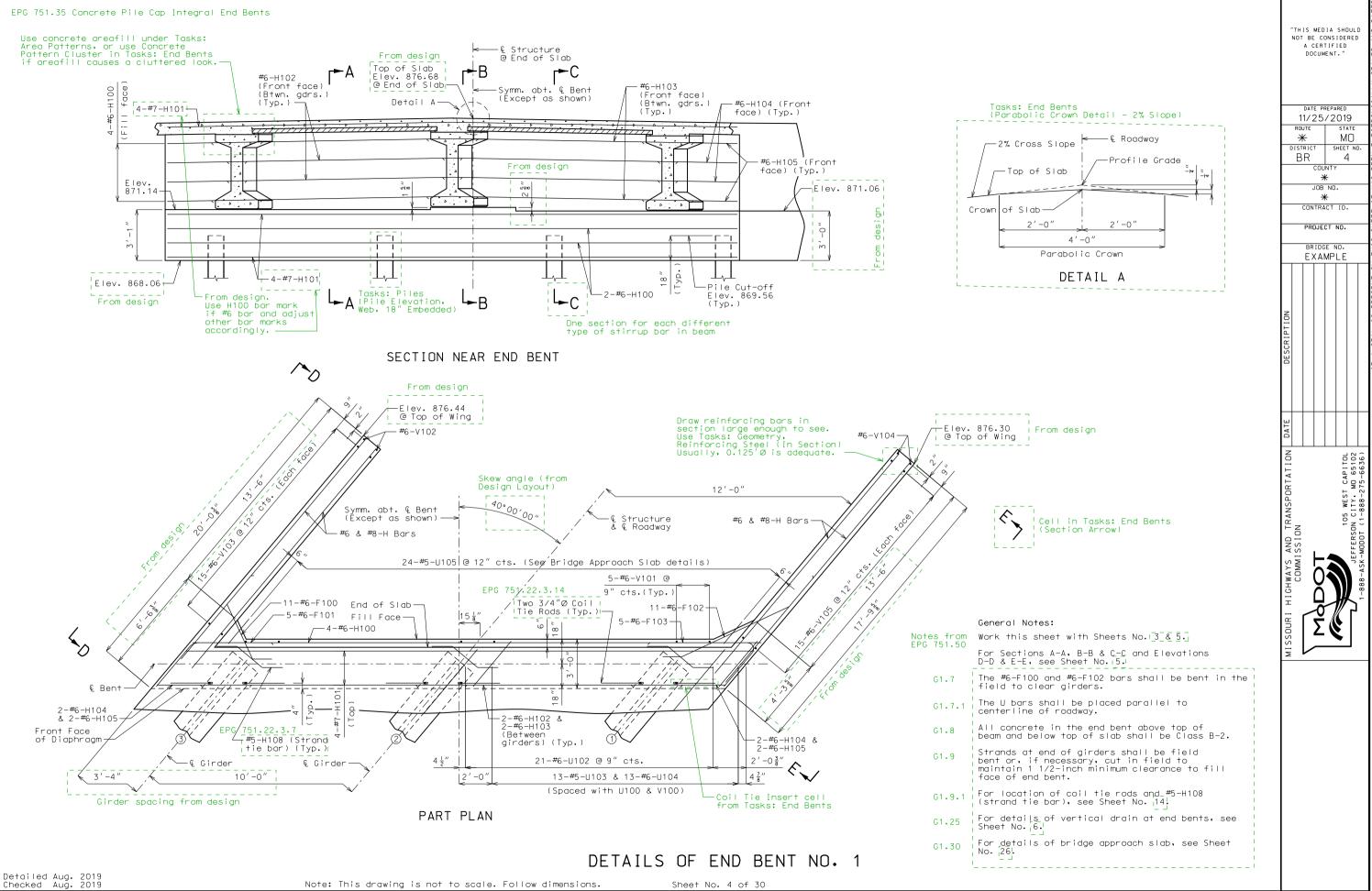
All joint filler shall be in accordance with Sec 1057 for preformed sponge rubber expansion and partition joint filler, except as noted.

Reinforcing Steel:

Minimum clearance to reinforcing steel shall be 1 1/2", unless otherwise shown,

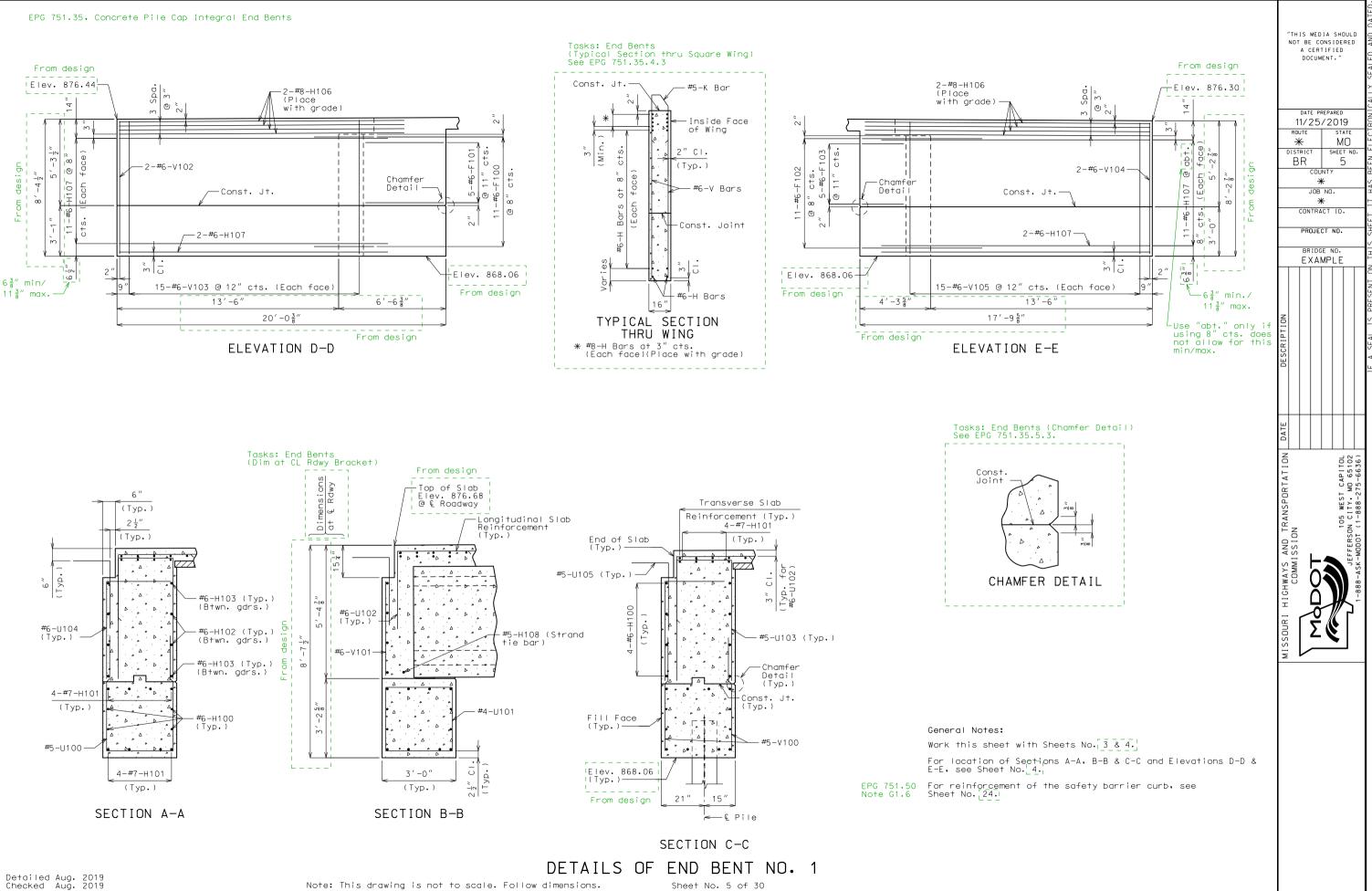
The Estimated Quantities for Slab on Concrete 1-Girder are based on skewed preco

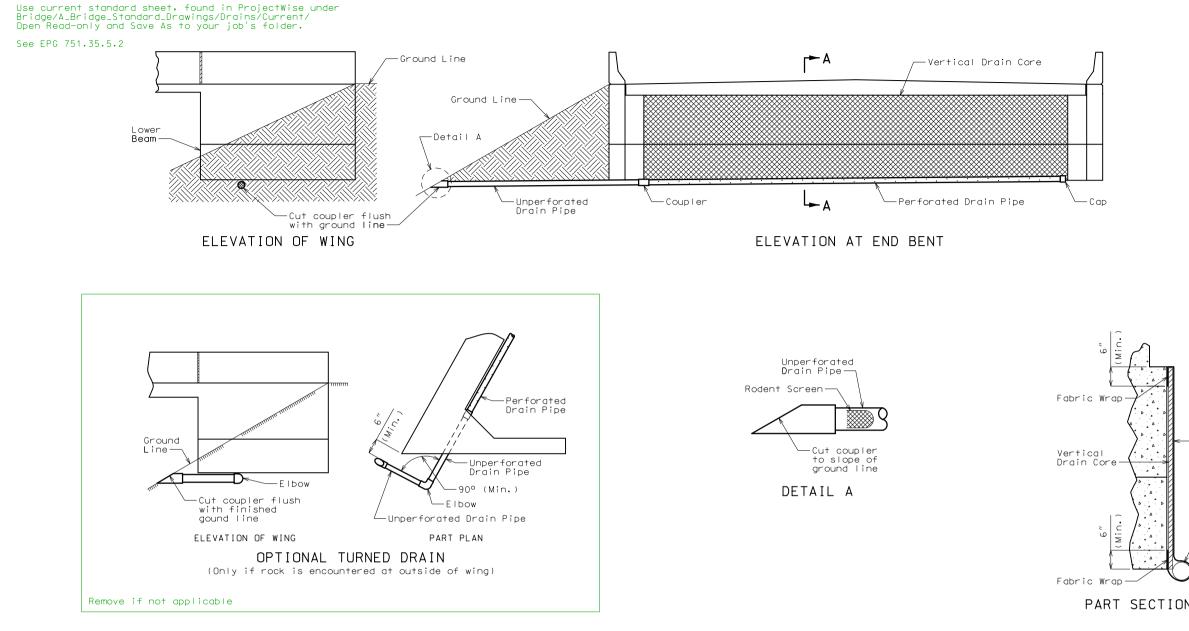

The prestressed panel quantities are not included in the table of Estimated Quar I-Girder.


Class B-2 Concrete quantity is based on minimum top flange thickness and minimum

GENERAL NOTES AND QUANTITIES

Note: This drawing is not to scale. Follow dimensions. Sheet No. 2 of 30


Cell in Tasks: Front Sheets (Hydrologic Data) See EPG 751.5.2.1.5		
See EPG 751.5.2.1.5 Info from Design Layout for stream	" T ULC 1	
crossing only.		EDIA SHOULD CONSIDERED
Hydrologic Data		RTIFIED JMENT."
Drainage Area = 18 mi ²		
Design Flood Frequency = 50 years		
Design Flood Discharge = 5,700 cfs		
Design Flood (D.F.) Elevation = 354.4		
Base Flood (100-year)		prepared 5/2019
Base Flood Elevation = 354.8	ROUTE	STATE
Base Flood Discharge = 6,700 cfs	*	MO
Estimated Backwater = 0.77 ft	DISTRICT	SHEET NO.
Average Velocity thru Opening = 5.7 ft/s		2 2001 Y TAUC
Freeboard (50-year)		*
Freeboard = 1.7 ft	JC	ю. Ж
	CONT	本 RACT ID.
Roadway Overtopping		
Overtopping Flood Discharge = 3,700 cfs	PRO	IECT NO.
Overtopping Flood Frequency = 10 years	DD I	DGE NO.
Overtopping Flood Elevation = 354.1		AMPLE
See EPG 751.50 for General Notes and Estimated Quantities notes. Notes marked with [MS Cell] in EPG are available as cells in Tasks: Bridge Detailing Notes. "Notice and Disclaimer Regarding Boring Log Data"	ZO	
may be placed on this sheet if it would not fit on the front sheet. Add "For locations of borings, see Sheet No. 1"	DESCRIPTION	
1		
om Bridge Memo Cell in Tasks: Front Sheets	ш	
ote A3.8) (North Arrow) —	DATE	
	NOI	TOL
Proposed Structure	TRANSPORTATION ON	105 WEST CAPITOL SON CITY. MO 65102 (1-888-275-6636)
	AND SS II	JEFFERSI
Record on Plat about		
Based On Fight Sheet	HIGHWAYS COMMI	ASI
OCATION SKETCH in Layout folder. See EPG 751.5.2.1.5	ΝŪ	
	lº [יי אוג נ
Cell in Tasks: Bridge Detailing Notes (B3.21 "Estimated Quantities For)	ssouri +	
I Round to nearest 1 cubic yard (see EPG 751.50, notes after B3.21)	MIS	
40 Notes B3c, EPG 751.50		
es used by the State in preparing the cost I be measured to the nearest square yard y from out to out of bridge slab (or with ent for prestressed panels, conventional e considered completely covered by the ed in the estimated quantities but the hit price.		
in accordance with Sec 703. All hardware of the structure shall be coated in accordance finish type 1, 11 or 111.		
sed on skewed precast prestressed end panels. e of Estimated Quantities for Slab on Concrete		
ckness and minimum joint material thickness.		

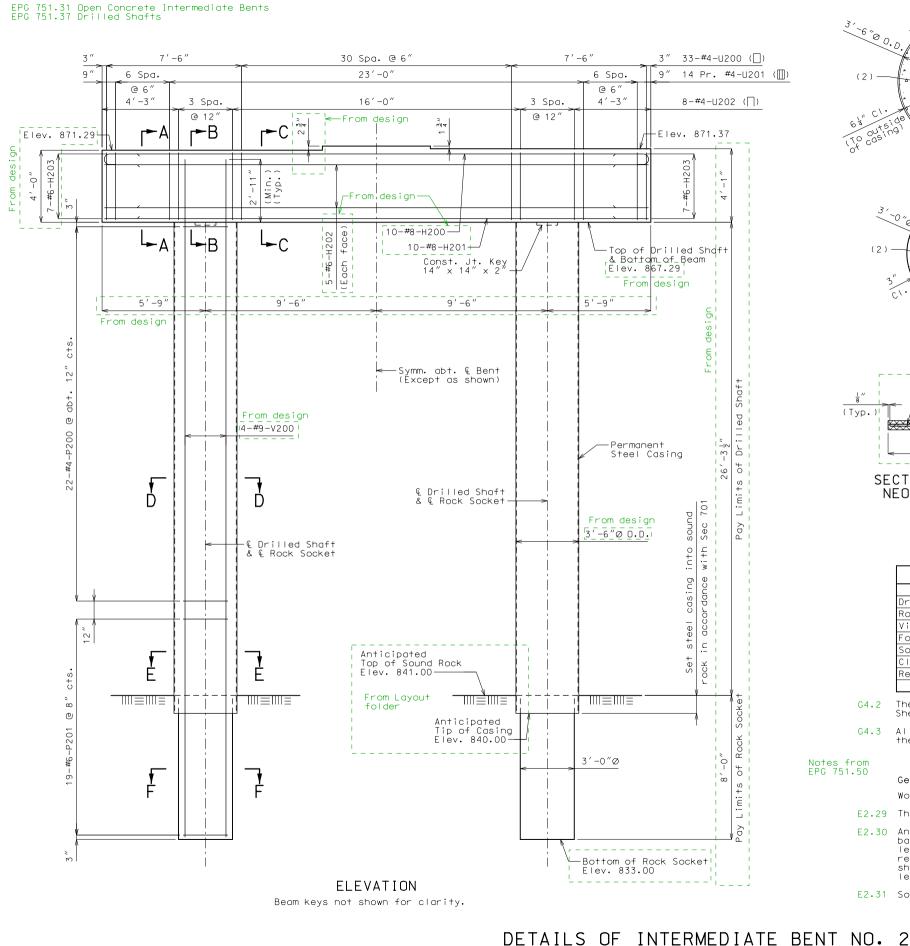


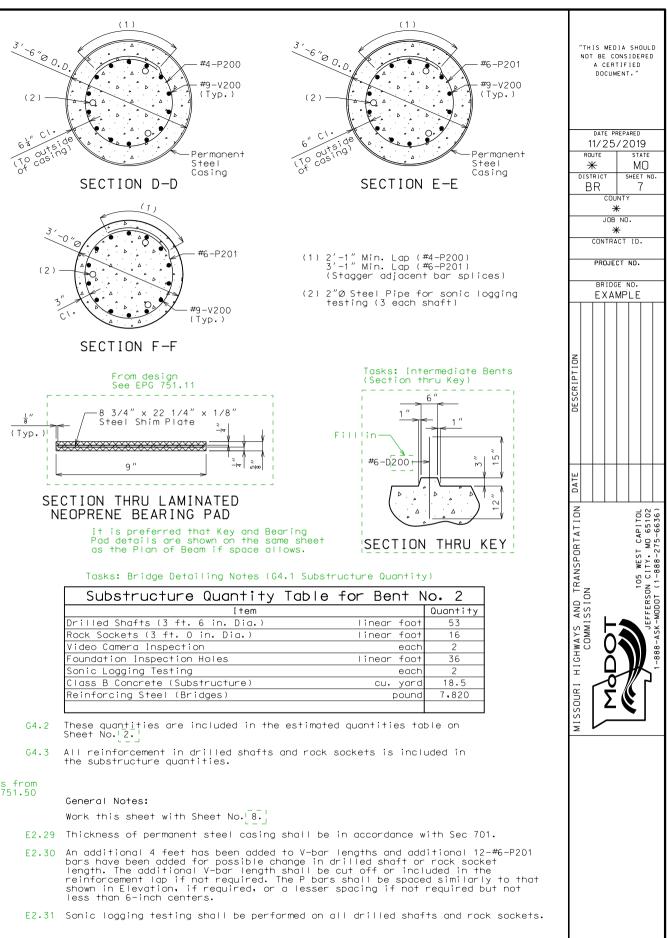
IF A SEAL IS PRESENT ON THIS SHEET IT HAS BEEN ELECIMONICALLY SEALED AND DAIED

For end bents with intermediate wing, see Bridge Standard Drawings sheet DRAIN03.

Note:

Drain pipe may be either 6 metallic-coated steel pipe corrugated polyvinyl chlor diameter corrugated polyet


Place drain pipe at fill f lowest grade of ground lin of end bent by 1 1/2 inche

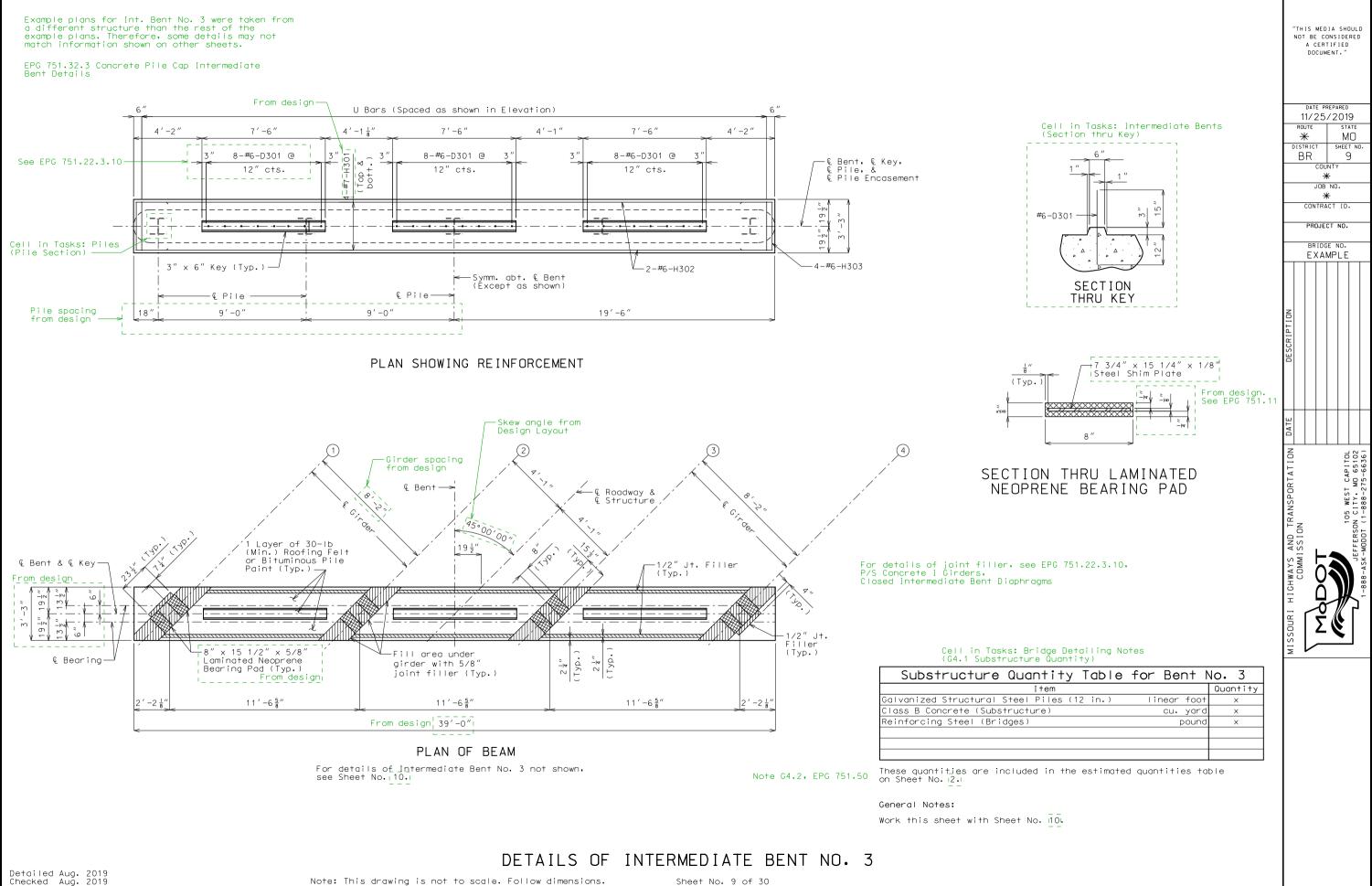

Perforated pipe shall be p bottom of end bent and pla vertical drain ends to the

VERTICAL DRAIN AT END BENTS

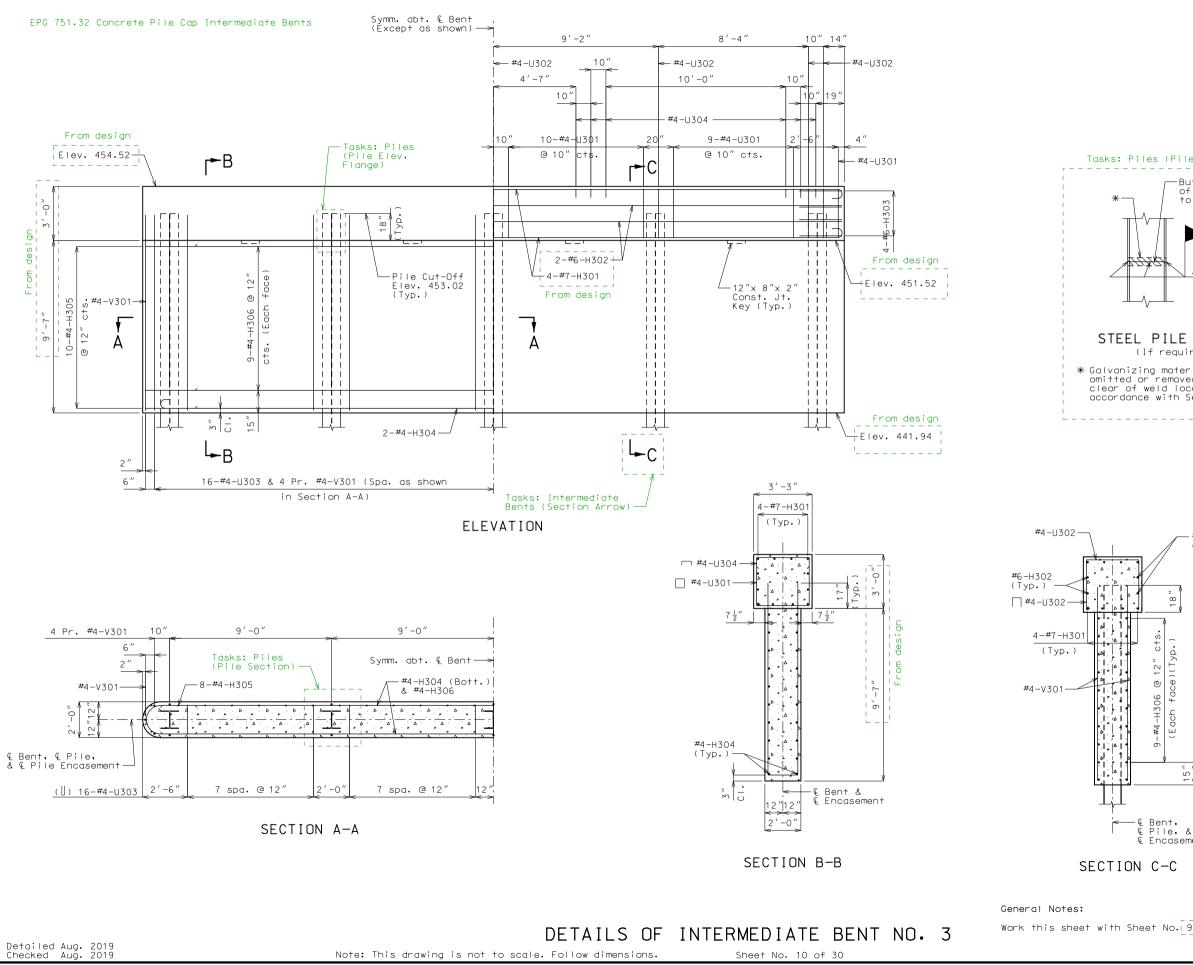
Detailed Checked

	NOT BE (A CEF	DIA SHOULD CONSIDERED RTIFIED MENT."	LY SEALED AND DATED.
	11/25 ROUTE B DISTRICT BR CONTR PROJU BRID	PREPARED 5/2019 STATE MO SHEET NO. 6 NUNTY RNON B NO. 0546 RACT ID. ECT NO. DIGE NO. MPLE	ON THIS SHEFT IT HAS BEEN FLECTRONICALLY SEALED
	DESCRIPTION		IF A SFAL IS PRESFNT
—Geotextile Fabric	ATION DATE	AP1 T0L 65102 -6636)	
Perforated Drain Pipe N A-A	MISSOURI HIGHWAYS AND TRANSPORTATION COMMISSION	105 WEST CAPITOL JEFFERSON CITY, M0 65102 1-888-ASK-MODDT (1-888-275-6636)	
6-inch diameter corrugated e underdrain, 4-inch diameter ride (PVC) drain pipe, or 4-inch thylene (PE) drain pipe. face of end bent and slope to ne, also missing the lower beam es. (See Elevation at End Bent.) placed at fill face side at the ain pipe shall be used where the e exit at ground line.	MISSON		
Example_plans_006_2015_vertdra.dqn 3:3	36:11 PM	11/25/2019	

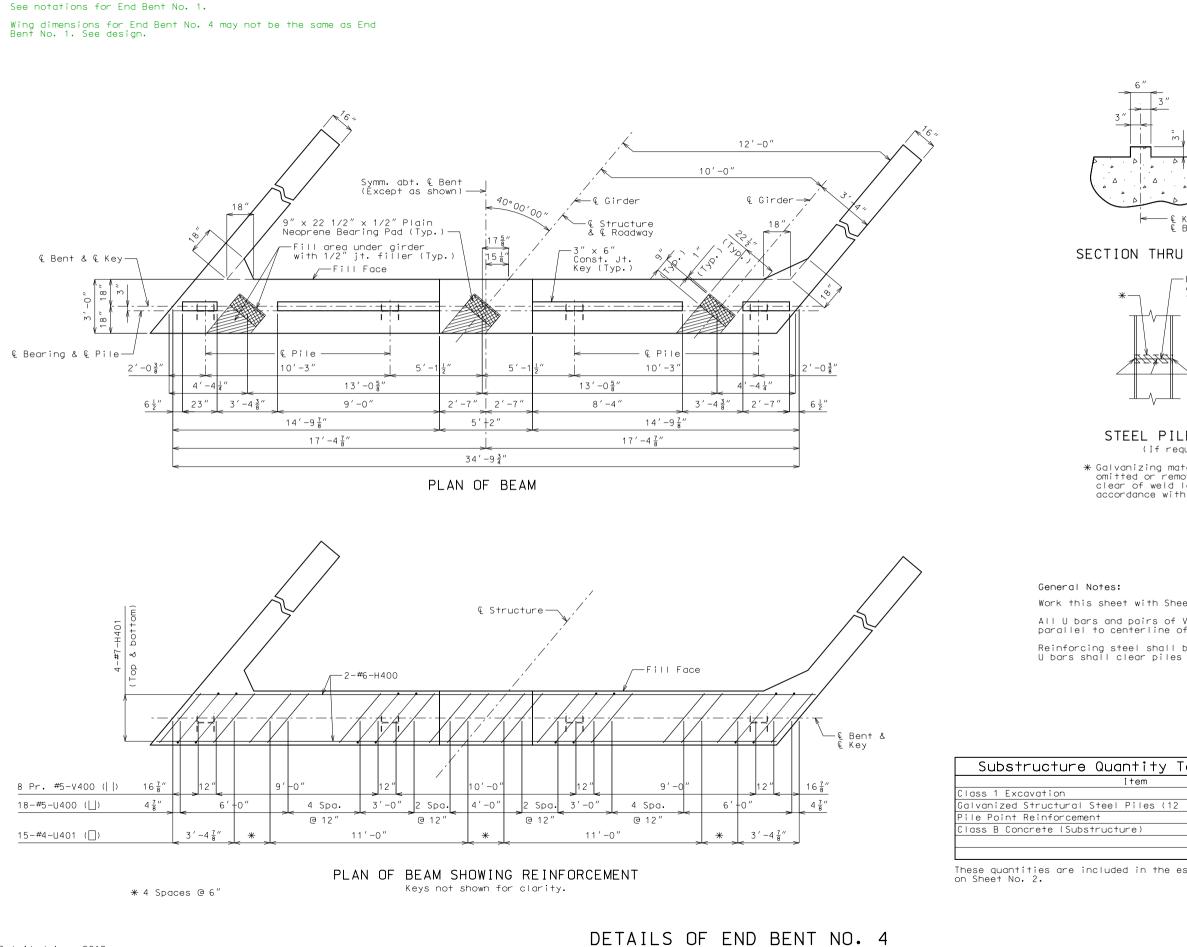




Detailed Aug. 2019 Checked Aug. 2019

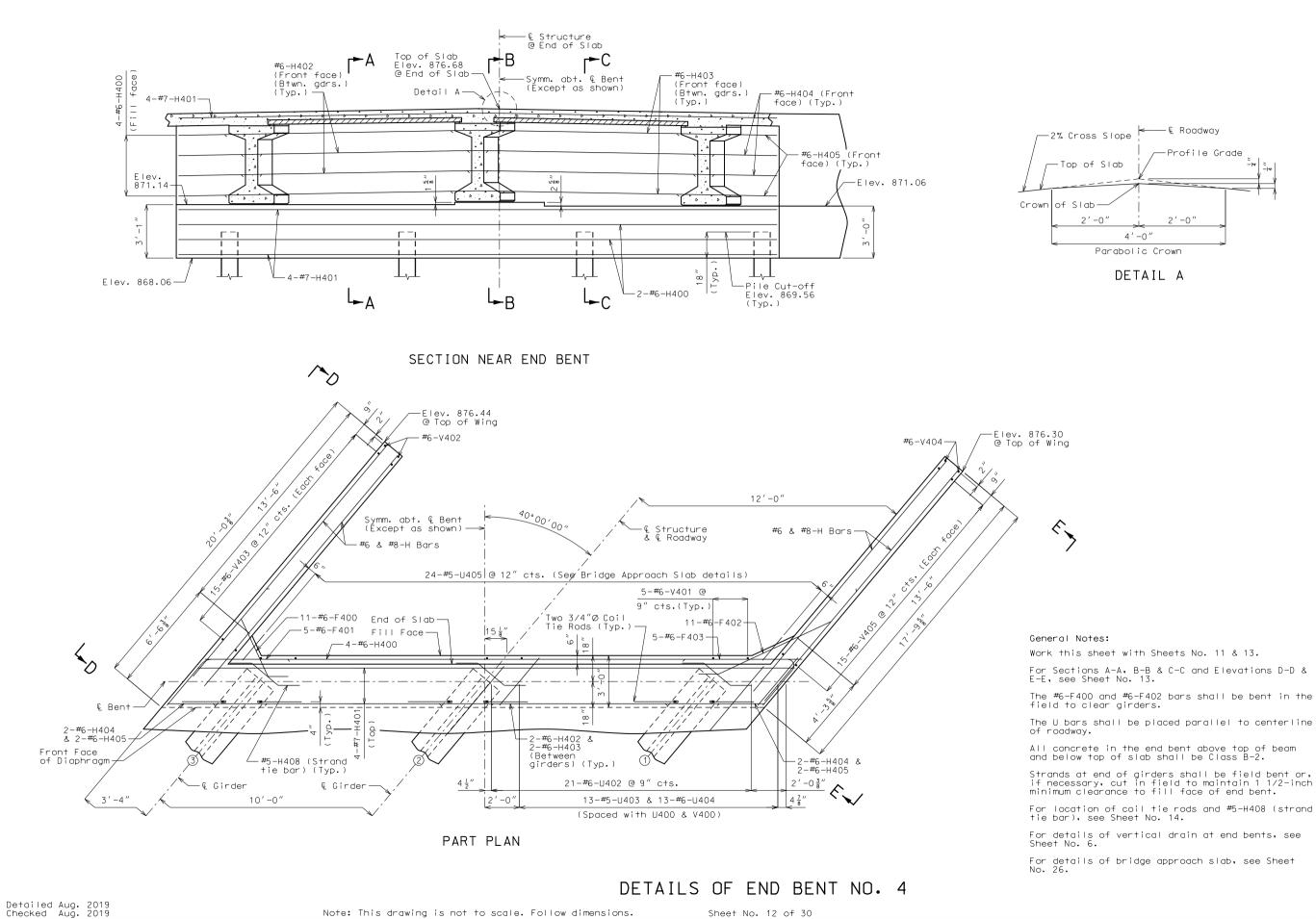

Note: This drawing is not to scale. Follow dimensions.

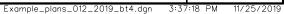
Sheet No. 7 of 30

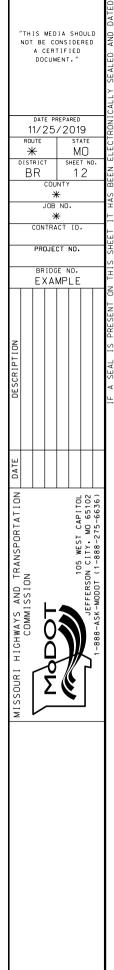


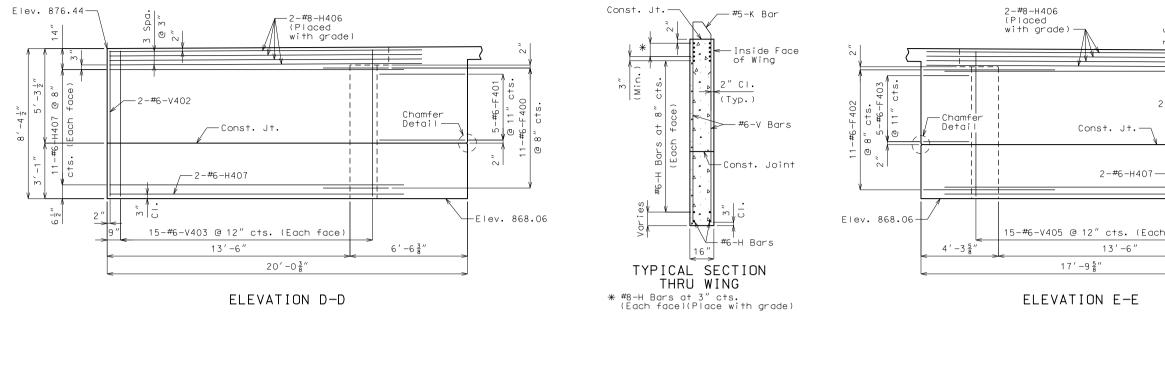
Example_plans_009_2019_bt3.dgn :36:46 PM

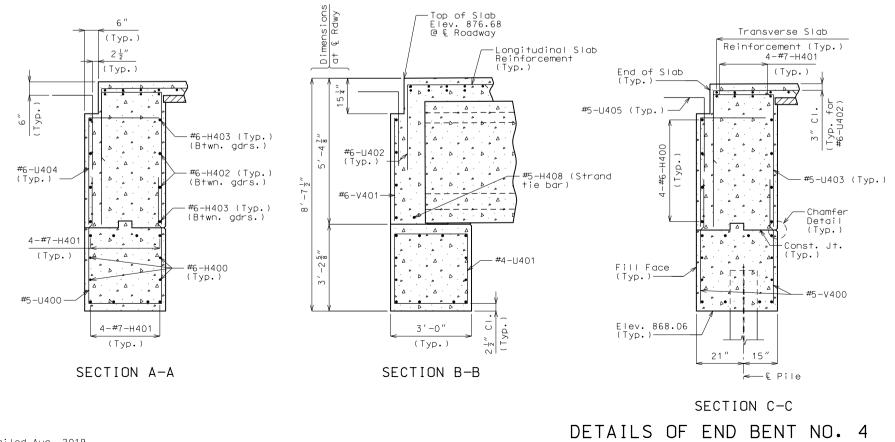
	"THIS MEDIA SHOULD NOT BE CONSIDERED A CERTIFIED DOCUMENT."
e Splice Detail) utt Splice (Top f lower section o be cut square)	DATE PREPARED 11/25/2019 ROUTE STATE MO DISTRICT SHEET NO. BR 10 COUNTY * COUNTY * CONTRACT ID. PROJECT NO. BRIDCE NO. EXAMPLE
SPLICE ired) rial shall be ed one inch cations in Sec 702.	DESCRIPTION
-#6-H302 (Typ.)	MISSOURI HIGHWAYS AND TRANSPORTATION DATE COMMISSION COMMISSION INFORMATION INFORMATION INFORMATION INFORMATION
& ment	
 9. i Example_plans_010_2019_bt3.dgn 3:36	:59 PM 11/25/2019

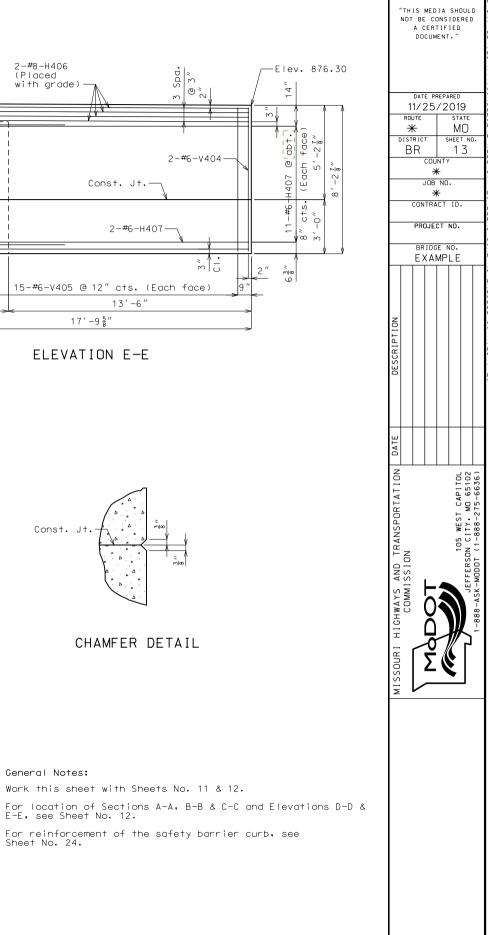


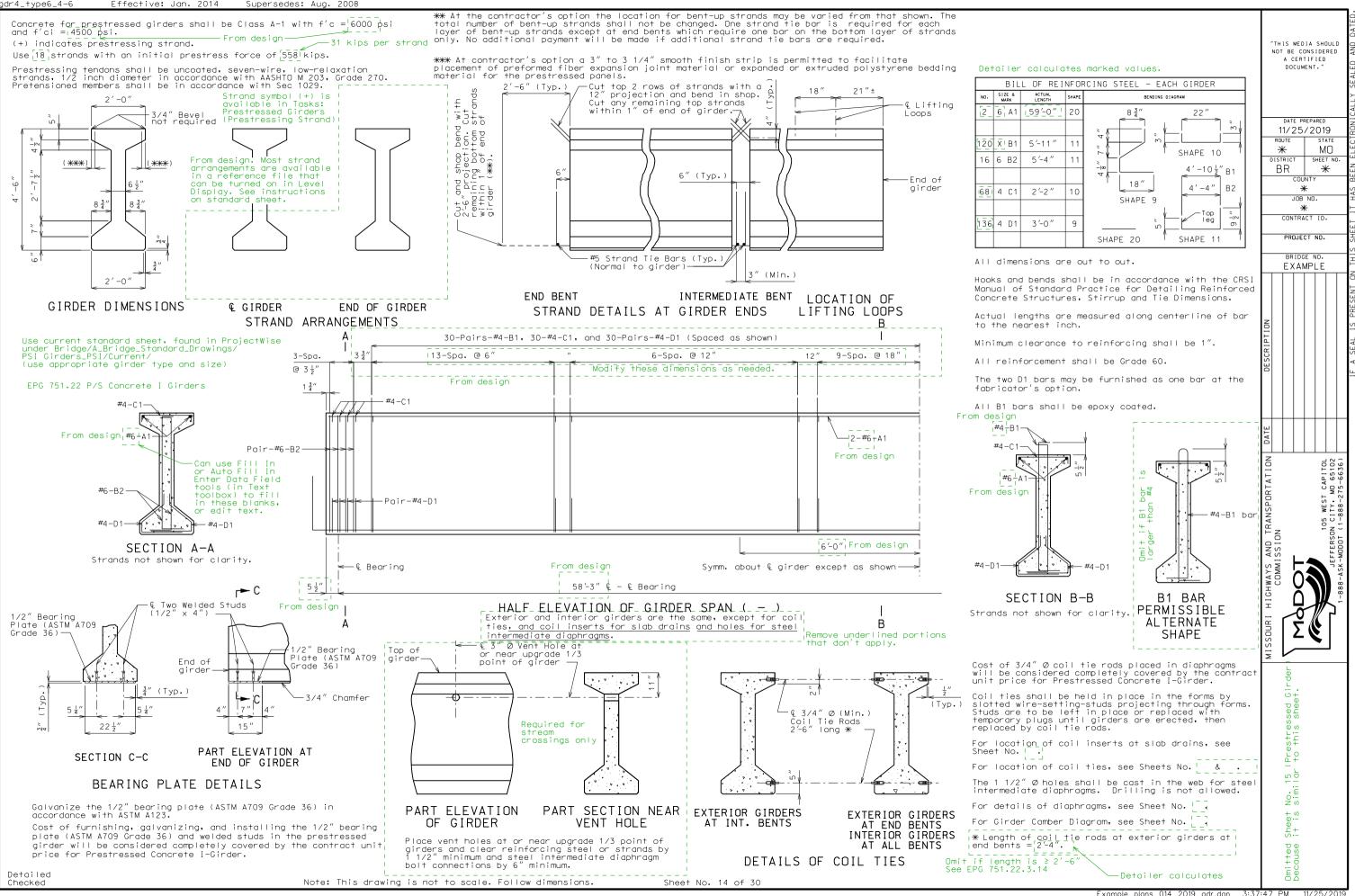

Detailed Aug. 2019 Checked Aug. 2019

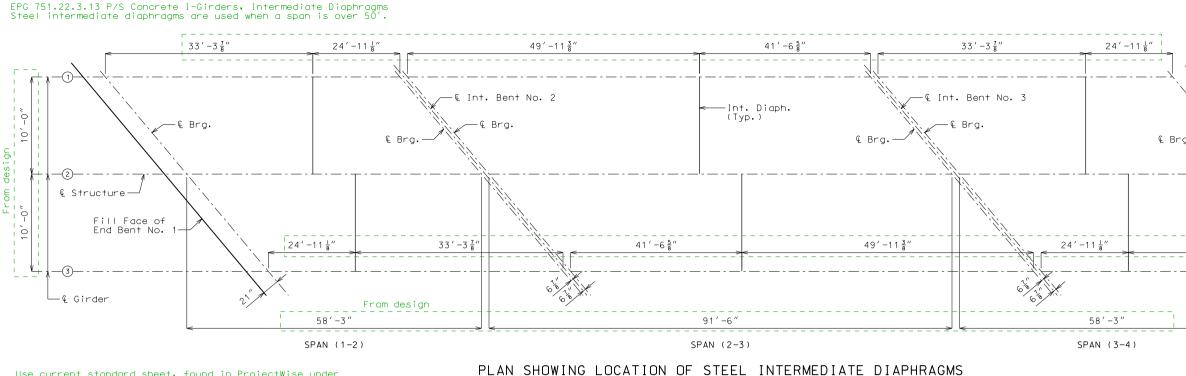

Note: This drawing is not to scale. Follow dimensions. Sheet No. 11 of 30


Sheet No. 11 of 30


		IS ME T BE C A CEF DOCU	ONSI RTIFI	DERI ED		FLECTRONICALLY SEALED AND DATED.
Key & Bent J KEY -Butt Splice (Top of lower section to be cut square)	RO DIS E	J DE	5/20 S+ UNTY # 3 NO. # ACT GE N	019 STAT MC IEET 11 ID.	E) NO.	IS PRESENT ON THIS SHEET IT HAS REEN FLECTRONICAL
. <u>↓</u> "`` 45°	DESCRIPTION					IF A SEAL IS DEFSE
LE SPLICE guired) terial shall be oved one inch locations in h Sec 702.	TRANSPORTATION DATE			105 WEST CAPITOL		
eets No. 12 & 13. V bars shall be placed of roadway. be shifted to clear piles. s by at least 1 1/2 inches.	MISSOURI HIGHWAYS AND T COMMISSION	TOOCM			1-888-ASK-MODOT	
Cable for Bent No. 4 Quantity cu. yard 40 in.) linear foot 120 each 4 cu. yard 16.7 estimated quantities table						
Example plans 011 2019 bt4 dag 3:37	:08	РМ	11/2	05.72	2019	

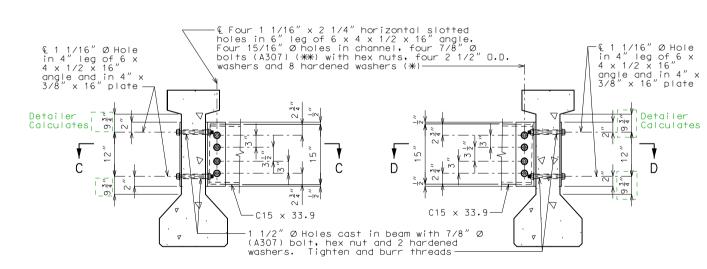


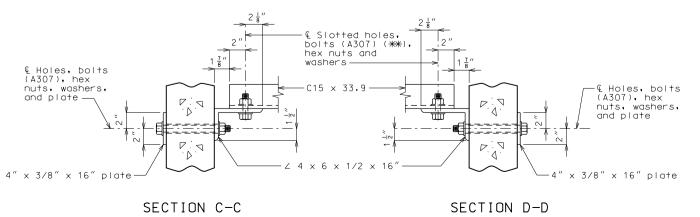




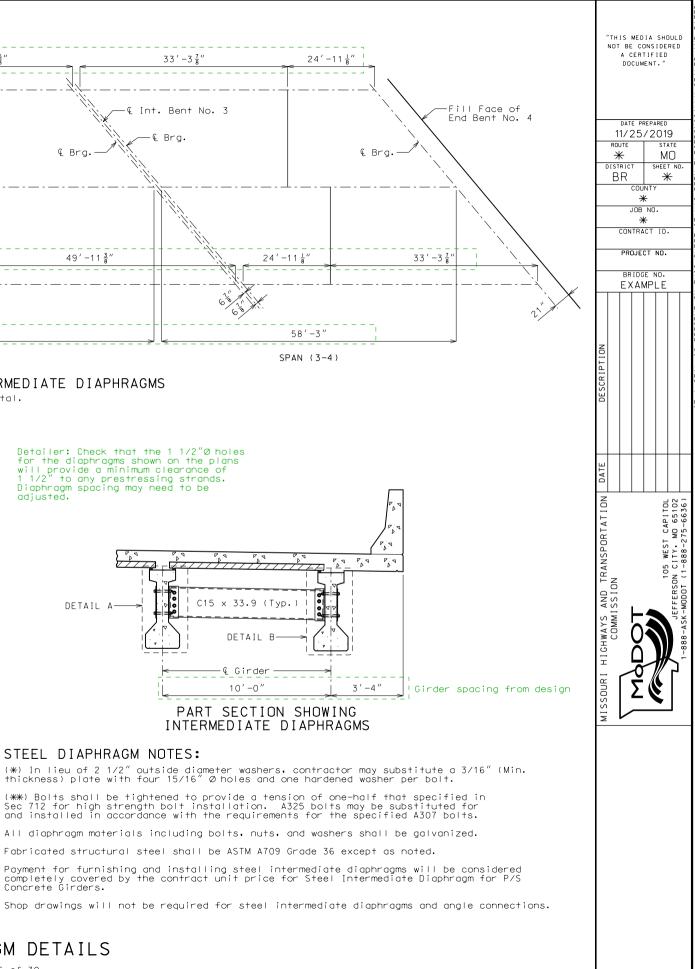
General Notes:

Note: This drawing is not to scale. Follow dimensions. Sheet No. 13 of 30


Example_plans_013_2019_bt4.dgn PM


Longitudinal dimensions are horizontal.

Use current standard sheet, found in ProjectWise under Bridge/A_Bridge_Standard_Drawings/Diaphragms_DIA/ Current/ (Use appropriate version for girder type, skew, precast panels or cast in place slab.)

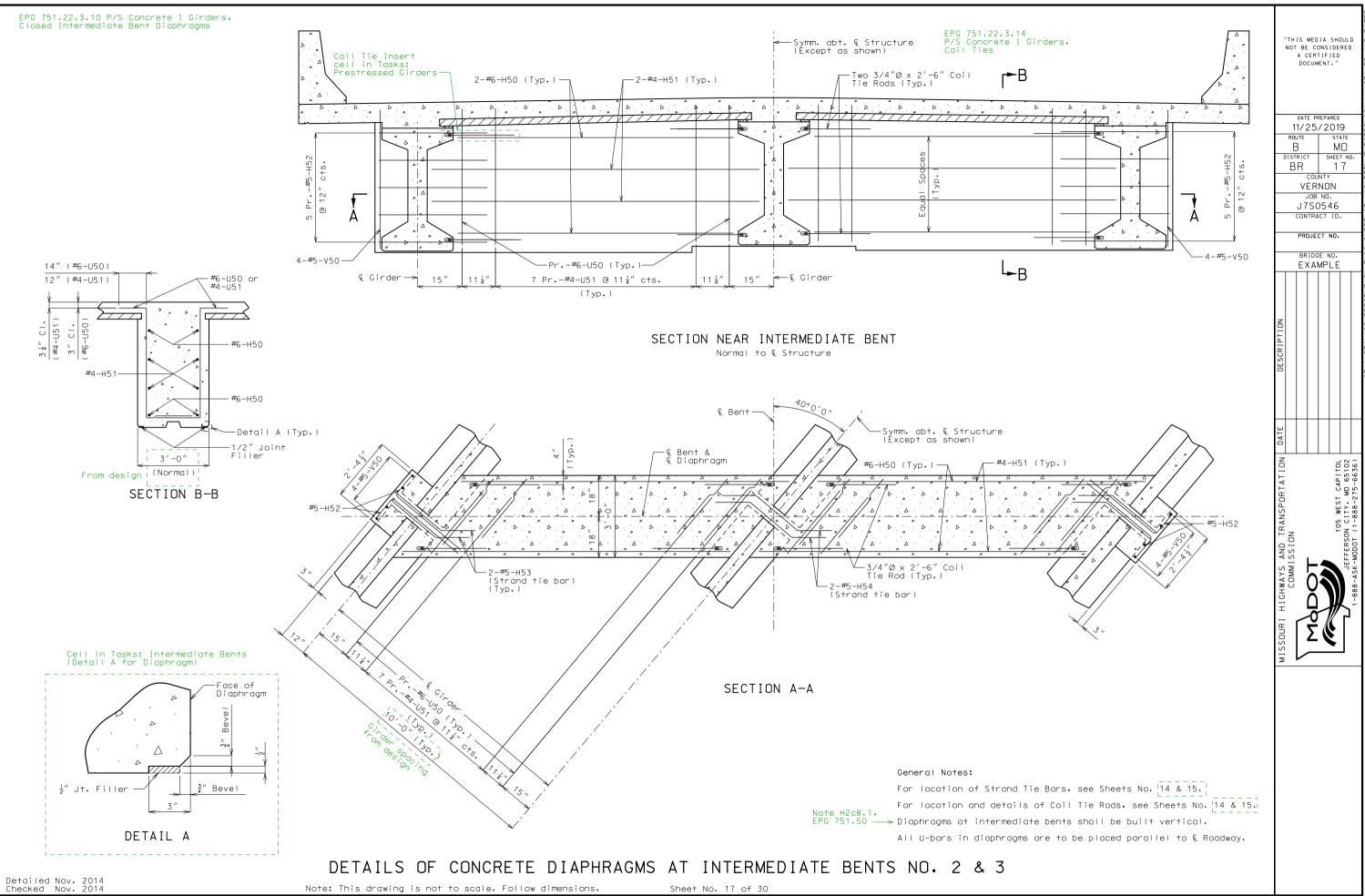


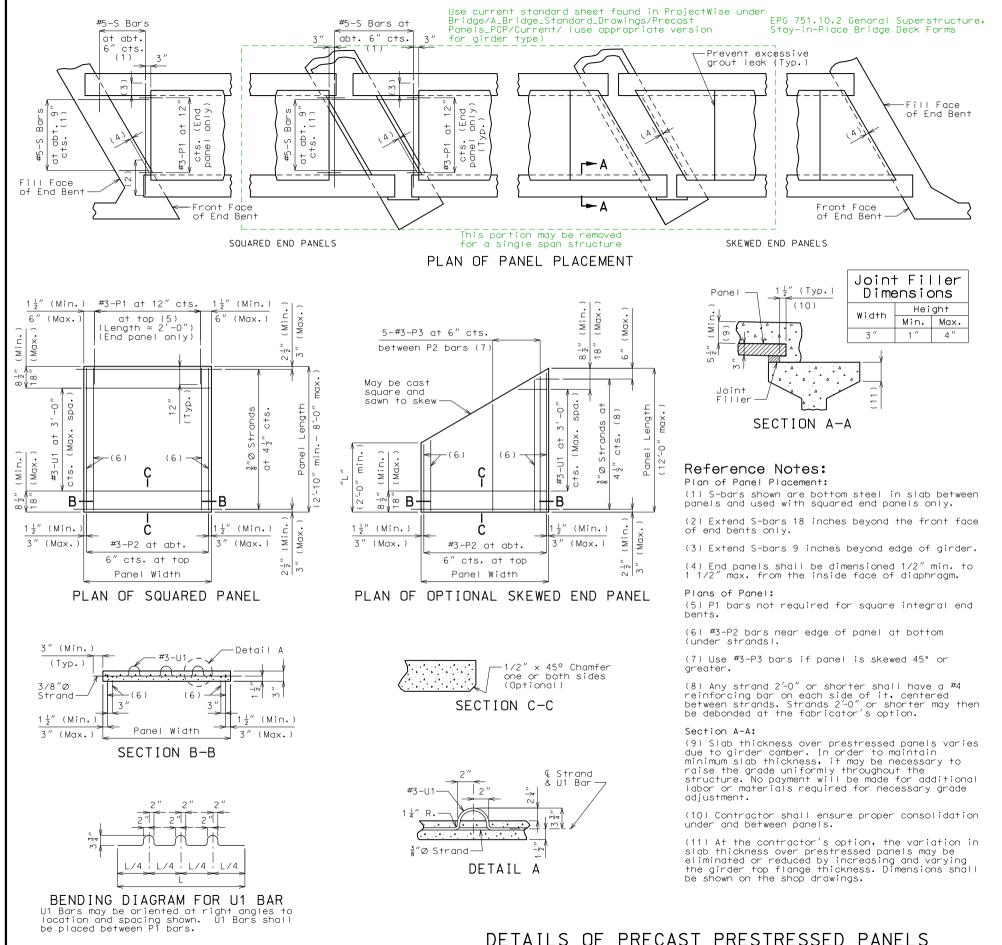
DETAIL A

DETAIL B

Detailer: Check that the 1 1/2"Ø holes for the diaphragms shown on the plans will provide a minimum clearance of 1 1/2" to any prestressing strands. Diaphragm spacing may need to be adjusted.

STEEL DIAPHRAGM NOTES:


Concrete Girders.


Detailed Nov. 2014

Checked Nov. 2014

STEEL INTERMEDIATE DIAPHRAGM DETAILS

Note: This drawing is not to scale. Follow dimensions. Sheet No. 16 of 30

General Notes: Prestressed Panels:

Concrete for prestressed panels f'c = 6,000 psi, f'ci = 4,000 p.

The top surface of all panels sh a depth of scoring of 1/8" perpe strands in the panels.

Prestressing tendons shall be hi seven-wire, low-relaxation stran accordance with AASHTO M 203 Gra strand = 3/8" and nominal area = ultimate strength = 22.95 kips (used with the same spacing and i

Initial prestressing force = 17.

The method and sequence of relea on the shop drawings.

Suitable anchorage devices for I panels, provided the devices are approved by the engineer. Panel the contractor and shown on the

When squared end panels are used portion shall be cast full depth made for additional concrete and

Support from diaphragm forms is skewed end until cast-in-place c compressive strength.

Precast panels shall be brought condition just prior to the deck standing water on the panels or

The prestressed panel quantities estimated quantities for the sla

Reinforcing Steel: All dimensions are out to out.

Hooks and bends shall be in accc Standard Practice for Detailing Stirrup and Tie Dimensions.

Minimum clearance to reinforcing otherwise shown.

If U1 bars interfere with placen be bent over, as necessary, to c

Welded wire fabric or welded det minimum area of reinforcing perp in./ft., with spacing parallel proper handling, may be used in Wire or bar diameter shall not b above alternative reinforcement the #3-P3 bars, when required, of than 2 feet.

The reinforcing steel shall be t with the following maximum spaci #3-P2 bars at 16 inches. Welded wire fabric or welded

d Tie the #3-U1 bars to the #3-P2 fabric or the welded deformed bo

Minimum reinforcement steel leng

All reinforcement other than pre-

Precast panels may be in contact diaphragms.

S-bars are not listed in the bil

Cost of S-bars will be considere contract unit price for the slab

Joint Filler: Joint filler shall be preformed accordance with Sec 1057 or expo bedding material in accordance v

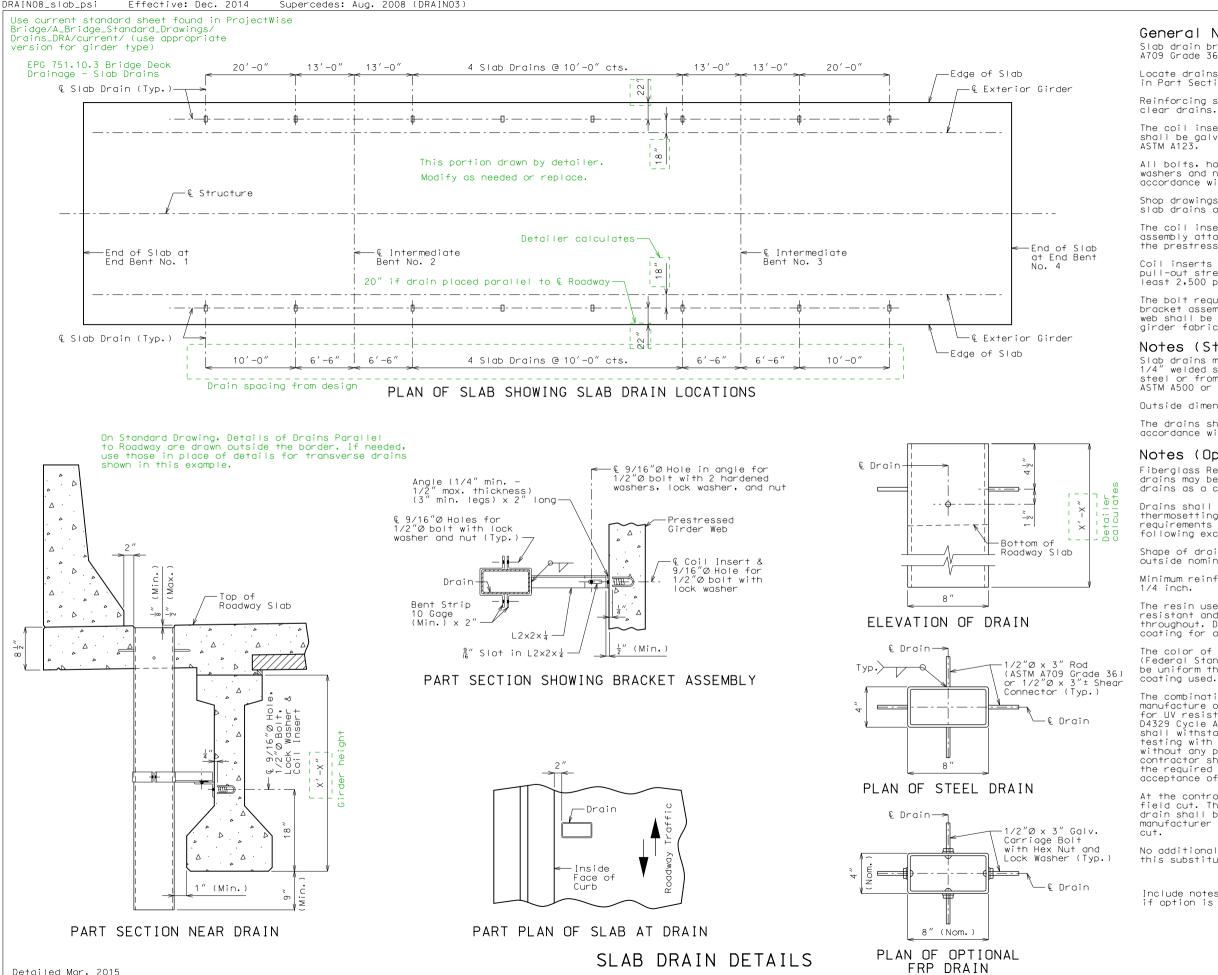
Use Slab Haunching Diagram on Sh thickness of joint filler within Joint Filler Dimensions.

Thicker material may be used on to reduce cast-in-place concrete

The same thickness of preformed shall be used under any one edge where top flange thickness may be thickness between adjacent pane polystyrene bedding material may match haunch height above top of

Joint filler shall be glued to t 1 1/2 inches, the joint filler s glue used shall be the type reco manufacturer.

Edges of panels shall be uniform before slab reinforcement is pla


Detailed Nov. 2014 Checked Nov. 2014

Note: This drawing is not to scale. Follow dimensions.

Sheet No. 18 of 30

shall be Class A-1 with si. hall receive a scored finish with endicular to the prestressing	"THIS MEDIA SHOULD NOT BE CONSIDERED A CERTIFIED DOCUMENT."
<pre>igh-tensile strength, uncoated, nds for prestressed concrete in ade 270, with nominal diameter of = 0.085 sq.in. and minimum (270 ksi). Larger strands may be initial tension. .2 kips/strand. asing the strands shall be shown lifting panels may be cast in e shown on the shop drawings and lengths shall be determined by shop drawings. d at skewed bents, the skewed h. No separate payment will be d reinforcing required. required under the optional concrete has reached 3.000 psi to saturated surface-dry (SSD) k pour. There shall be no free in the area to be cast. s are not included in the table of ab.</pre>	DATE PREPARED 11/25/2019 ROUTE STATE MO DISTRICT SHEET NO. BR * COUNTY * JOB NO. * CONTRACT ID. PROJECT ND. BRIDCE NO. EXAMPLE
ordance with the CRSI Manual of Reinforced Concrete Structures, g steel shall be 1 1/2″, unless	DESCRIPTION
ment of slab steel, U1 loops may clear slab steel. formed bar mats providing a pendicular to strands of 0.22 sq. to strands sufficient to ensure lieu of the #3-P2 bars shown. be larger than 0.375 inch. The criteria may be used in lieu of and placed over a width not less	0N DATE DATE ON DATE ON CON CON CON CON CON CON CONCEPTION CONCEPT
tied securely to the 3/8"Ø strands ing in each direction: deformed bar mats at 2'-0". bars, to the welded wire ar mats at about 3'-0" centers. gth shall be 2'-0". estressing strands shall be epoxy t with stirrup reinforcing in ll of reinforcing. ed completely covered by the b.	MISSOURI HIGHWAYS AND TRAN COMMISSION COMMISSION
fiber expansion joint material in anded or extruded polystyrene with Sec_1073. Fill in heet No.!XX for determining n the limits noted in the table of	
one or both sides of the girder e thickness to within tolerances. fiber expansion joint material e of any panel except at locations be stepped. The maximum change in ls shall be 1/4 inch. The y be cut with a transition to f flange.	
the girder. When thickness exceeds shall be glued top and bottom. The ommended by the joint filler mly seated on the joint filler aced. Example_plans_018_2015_pcp.dan 3:38	3:13 PM 11/25/2019

A SEAL IS PRESENT ON THIS SHEET IT HAS BEEN ELECTRONICALLY SEALED AND D,

Note: This drawing is not to scale, Follow dimensions,

Sheet No. 19 of 30

xample_plans_019_2015_dra.dan	Z-ZO-22 DM	11/25/2010
xumple_plans_019_2015_ara.agn	J.JO.ZZ FIVI	11/23/2019

- General Notes: Slab drain bracket assembly shall be ASTM A709 Grade 36 steel. Locate drains in slab by dimensions shown in Part Section Near Drain. Reinforcing steel shall be shifted to The coil inserts and bracket assembly shall be galvanized in accordance with All bolts, hardened washers, lock washers and nuts shall be galvanized in accordance with ASTM A153. Shop drawings will not be required for the slab drains and the bracket assembly.
- The coil insert required for the bracket assembly attachment shall be located on the prestressed girder shop drawings.
- Coil inserts shall have a concrete pull-out strength (ultimate load) of at least 2,500 pounds in 5,000 psi concrete.
- The bolt required to attach the slab drain bracket assembly to the prestressed girder web shall be supplied by the prestressed girder fabricator.

Notes (Steel Drain):

Slab drains may be fabricated of either 1/4" welded sheets of ASTM A709 Grade 36 steel or from 1/4" structural steel tubing ASTM A500 or A501.

Outside dimensions of drains are 8" x 4".

The drains shall be aalvanized in accordance with ASTM A123.

Notes (Optional FRP Drain)

Fiberglass Reinforced Polymer (FRP) slab drains may be substituted for steel slab drains as a contractor's option.

Drains shall be machine filament-wound thermosetting resin tubing meeting the requirements of ASTM D2996 with the following exceptions:

Shape of drains shall be rectangular with outside nominal dimensions of 8" x 4".

Minimum reinforced wall thickness shall be

The resin used shall be ultraviolet (UV) resistant and/or have UV inhibitors mixed throughout. Drains may have an exterior coating for additional UV resistance.

The color of the slab drain shall be Gray (Federal Standard #26373). The color shall be uniform throughout the resin and any

The combination of materials used in the manufacture of the drains shall be tested for UV resistance in accordance with ASTM D4329 Cycle A. The representative material shall withstand at least 500 hours of testing with only minor discoloration and without any physical deterioration. The contractor shall furnish the results of the required ultraviolet testing prior to acceptance of the slab drains.

the contractor's option, drains may be field cut. The method of cutting FRP slab drain shall be recommended by the manufacturer to ensure a smooth, chip free

No additional payment will be made for this substitution.

Include notes and details of FRP drains if option is to be used.

"THIS MEDIA SHOULD NOT BE CONSIDERED A CERTIFIED DOCUMENT.

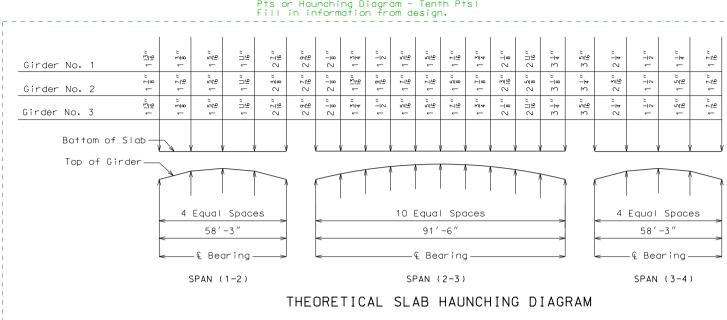
DATE PREPARED 11/25/2019 ROUTE STATE * MO DISTRIC SHEET NO ΒR * * JOB NO

* CONTRACT ID

PROJECT NO

BRIDGE NO EXAMPLE

EST CAPITOL 1. MO 65102 3-275-6636)

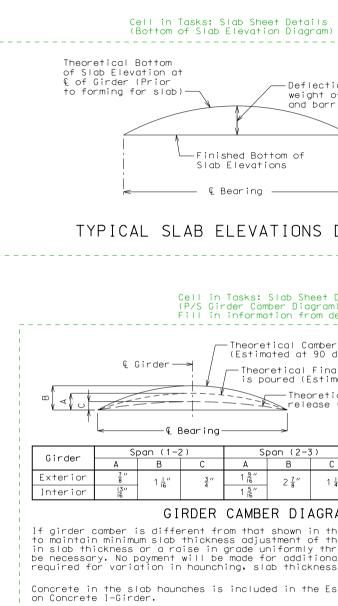

02

NO

6

AND SS I

WAYS COMMI

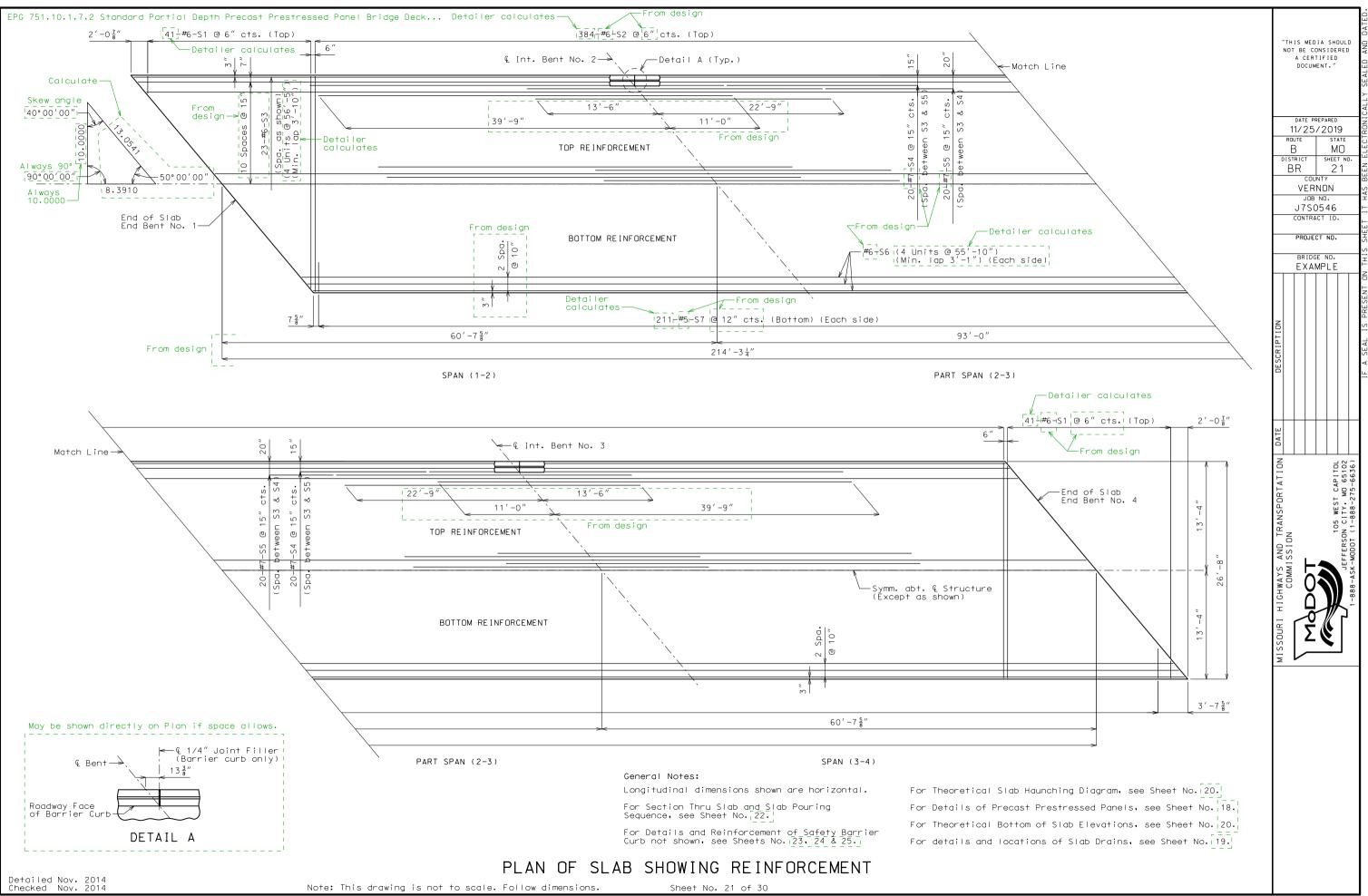


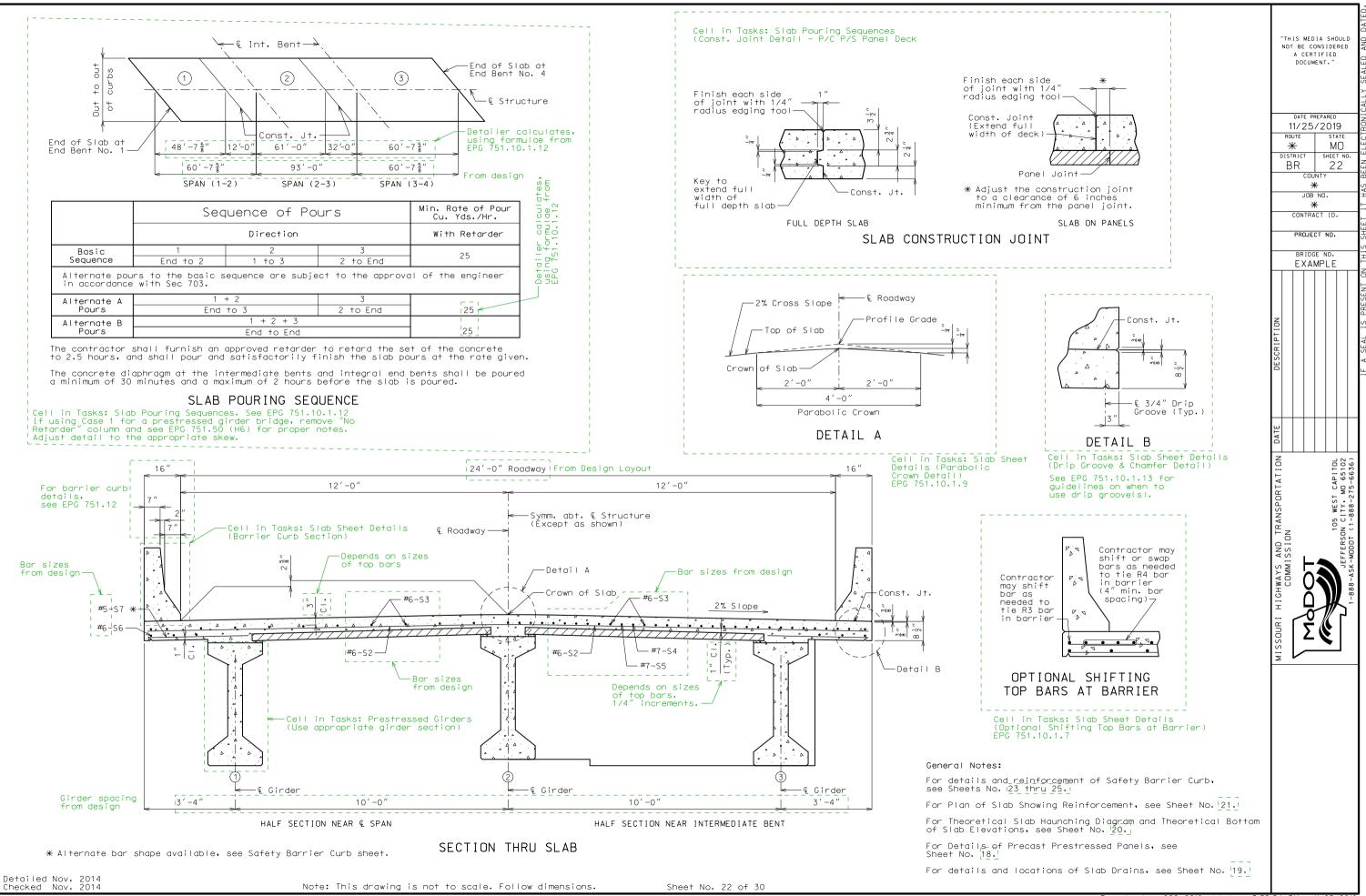
Use quarter points for spans less than $75^\prime\cdot$. Use tenth points for spans 75^\prime or more.

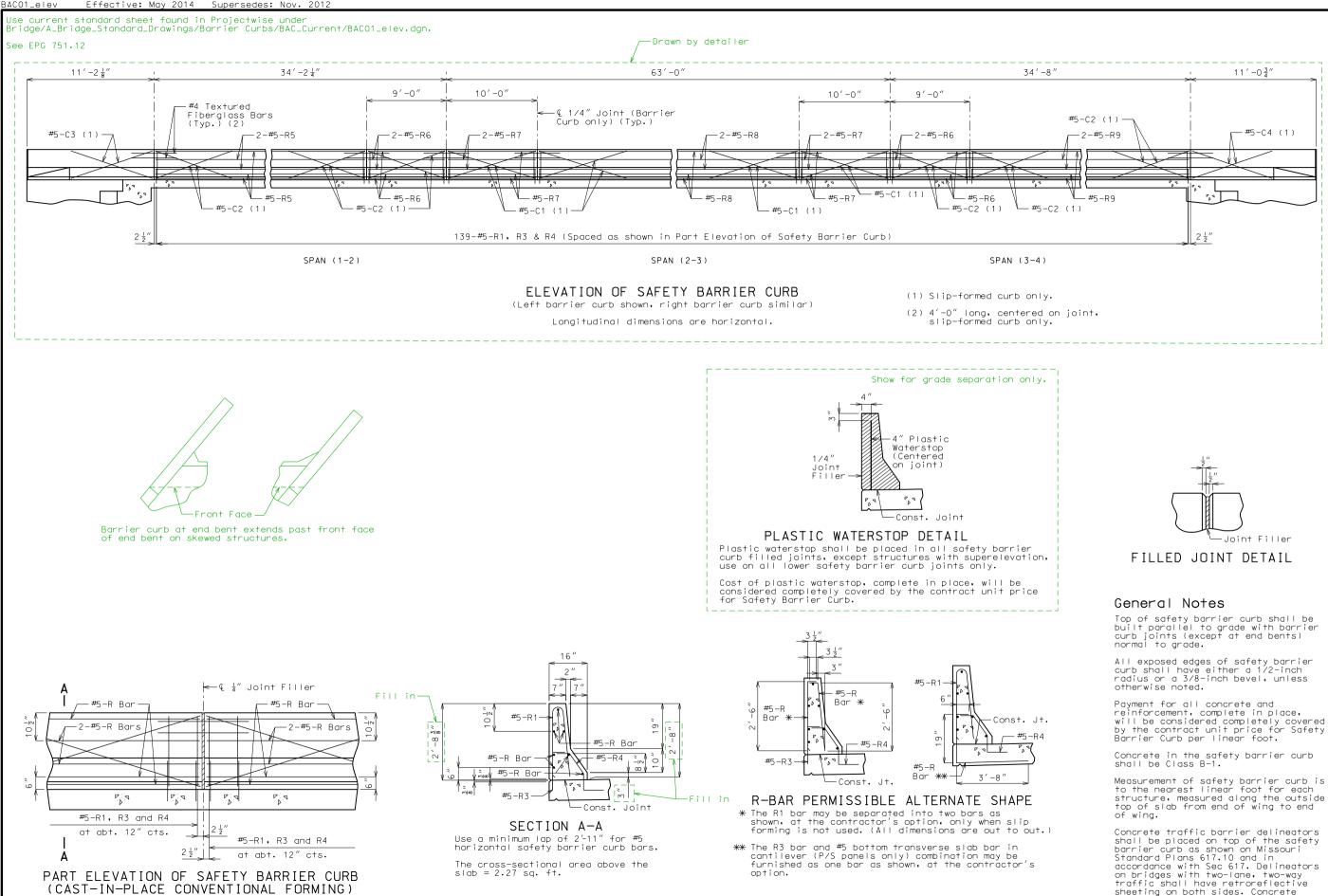
Cell in Tasks: Slab Sheet Details (Bottom of Slab Elevations - Quarter Pts or Bottom of Slab Elevations - Tenth Pts) Fill in information from design.

١T	Theoretical Bottom of Slab Elevations at & of Girder (Prior to forming for slab) **										
Girder	Span			brg, -	•						
Number	€ brg.	.25	.50	.75	€ brg.						
1	875.75	875.84	875.92	875.99	876.05						
2	875.98	876.06	876.14	876.21	876.27						
3	875.84	875.92	876.00	876.07	876.13						
				Span (2	2-3) (91'	'−6″€ br	ʻg. – € t	org.)			
	€ brg.	.10	.20	.30	.40	.50	.60	.70	•80	.90	€ brg.
1	876.05	876.13	876.21	876.28	876.34	876.39	876.43	876.46	876.48	876.50	876.51
2	876.28	876.36	876.44	876.52	876.58	876.63	876.67	876.70	876.72	876.73	876.73
3	876.14	876.22	876.29	876.36	876.42	876.47	876.51	876.55	876.57	876.58	876.59
	Span	(3-4) (9	58′-3″€	brg. –	€ brg.)						
	€ brg.	.25	.50	.75	€ brg.						
1	876.52	876.60	876.68	876.75	876.81						
2	876.74	876.83	876.91	876.97	877.03						
3	876.60	876.69	876.77	876.83	876.89						

** Elevations are based on a constant slab thickness of 8 1/2" and include allowance for theoretical dead load deflections due to weight of slab (including precast panel and barrier curb).



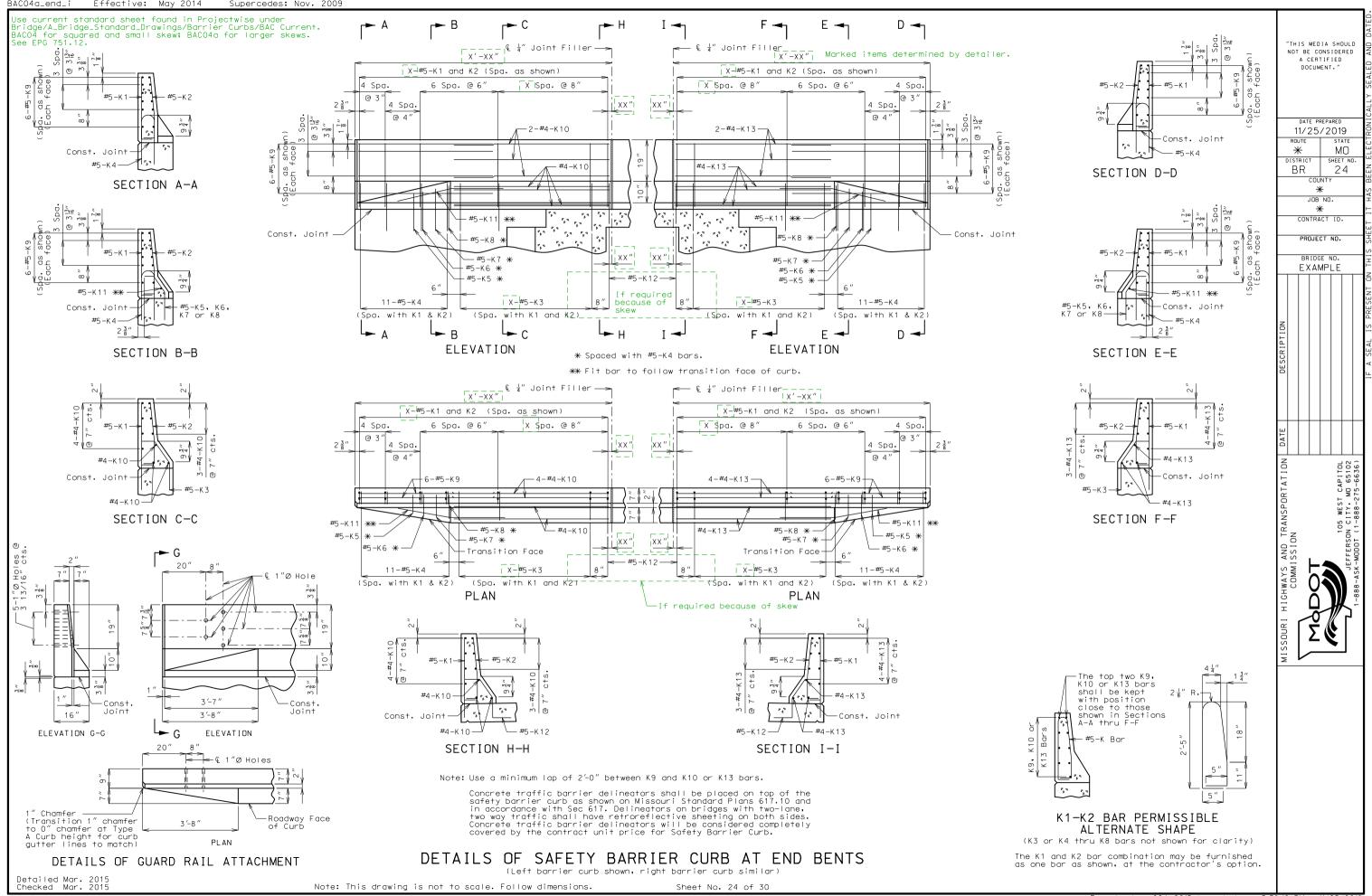

Conversion factors for girder camber (estimated at

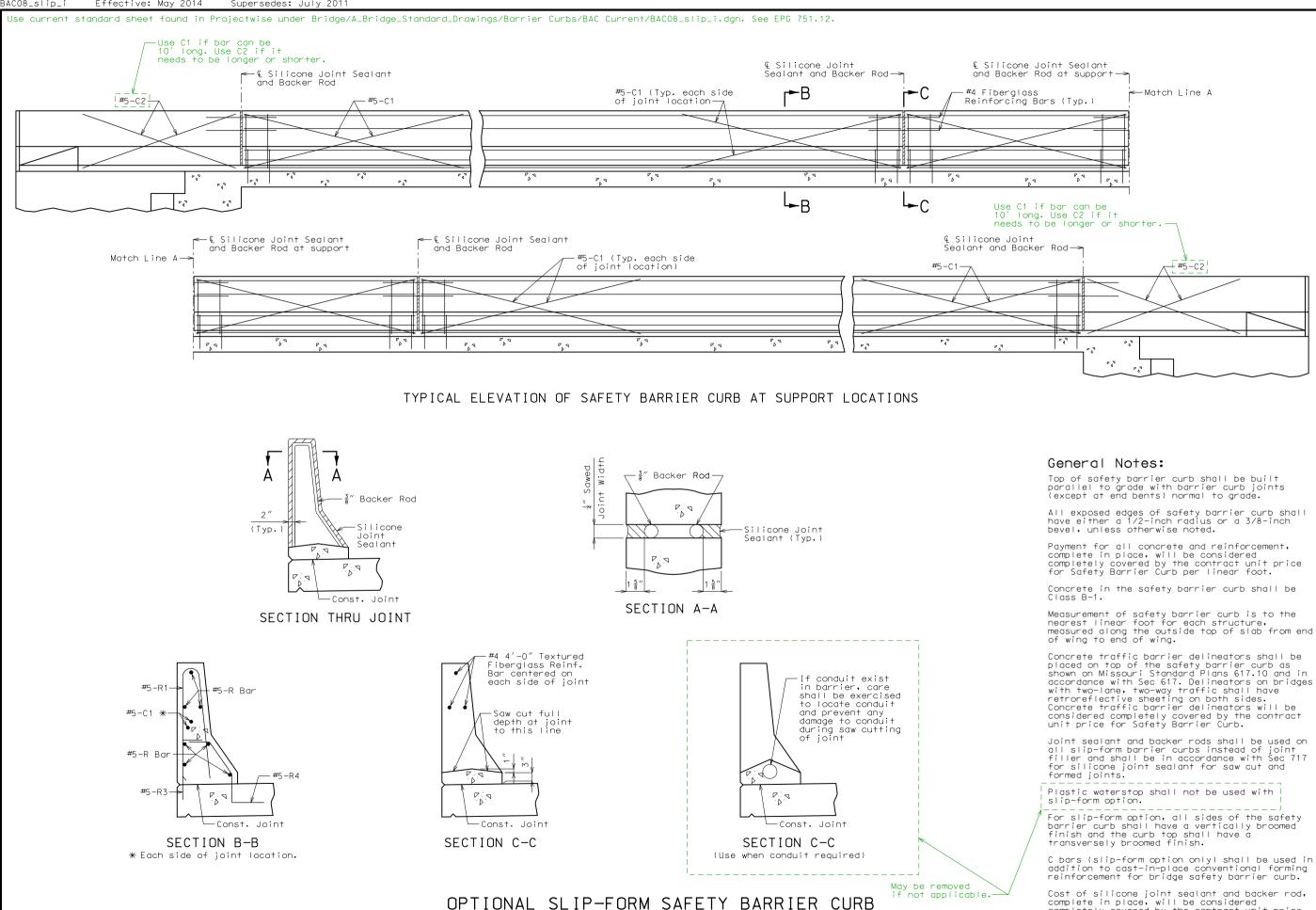

0.2 pt. 0.3 pt.	= 0.314 × = 0.593 × = 0.813 × = 0.952 ×	0.5 pt. 0.5 pt.
0.25 pt.	= 0.7125	x 0.5 pt.

					_
		HIS MED T BE CI A CER DOCUM	ONSIDE	RED	
) ions due to of slab rier curb	RI	VER JOB J7SC CONTRA PROJE BRIDC	/201 ST. M SHEE 2 INTY NON NO. 0546	9 ATE 0 T ND. 0	
DIAGRAM	DESCRIPTION				
Details m) design. er after erection days) val Camber after slab mated at 90 days) ical Camber after strand (Estimated at 7 days) $\frac{\hline A & B & C}{\hline \frac{1}{4}'' & \frac{7}{8}'' & 1\frac{1}{16}'' & \frac{3}{4}''}}$ RAM the camber diagram, in order the slab haunches, an increase	MISSOURI HIGHWAYS AND TRANSPORTATION DATE COMMISSION	MODOT	105 WEST CAPITOL	JEFFERSON CITY, MO 65102	
roughout the structure shall hal labor or materials so or grade adjustment. stimated Quantities for Slab 90 days)	MISS]	

Example_plans_020_2015_hnch.dgn

DETAILS OF SAFETY BARRIER CURB

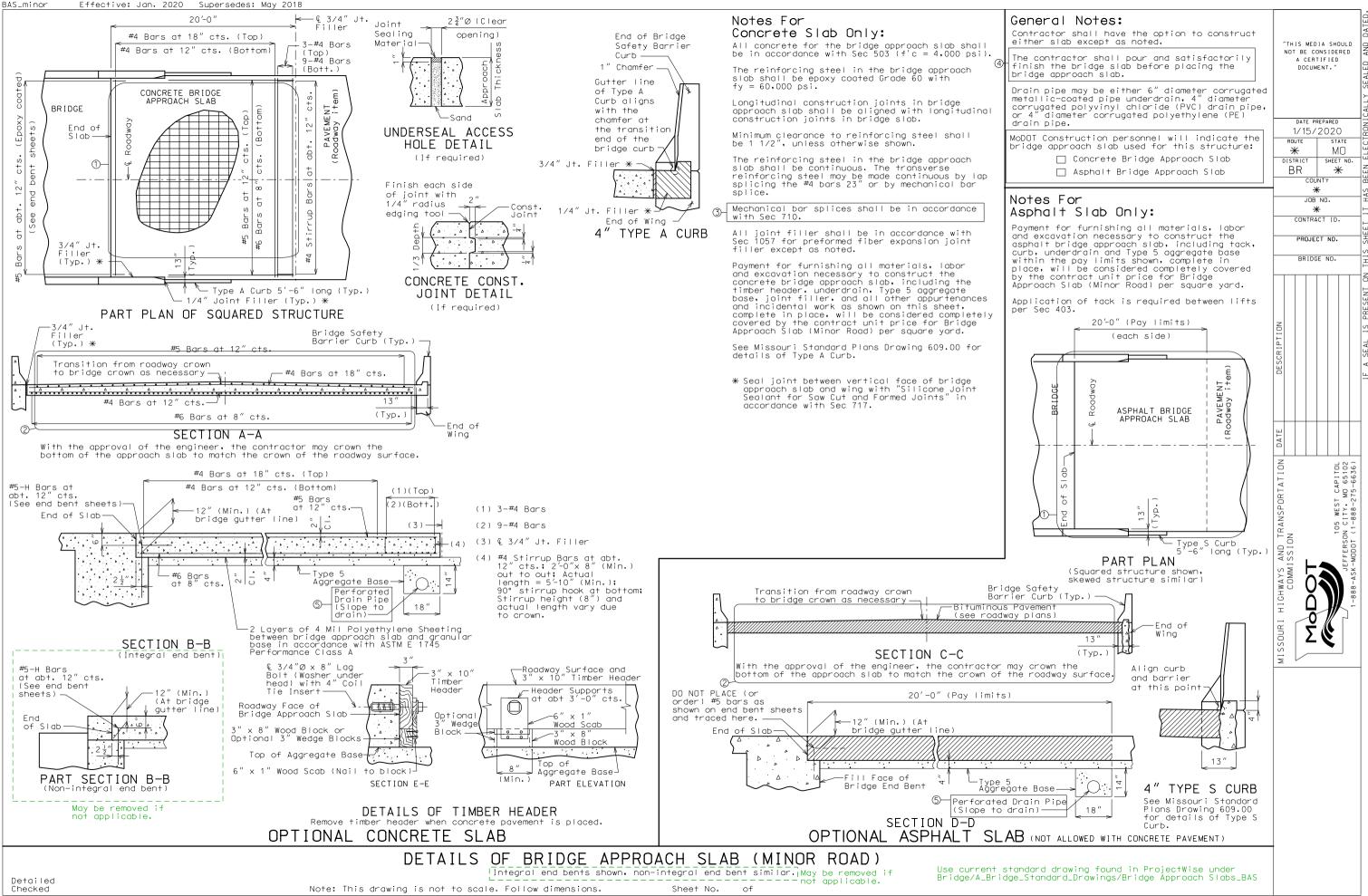

Detailed Nov. 2014 Checked Nov, 2014


Note: This drawing is not to scale. Follow dimensions. Sheet No. 23 of 30

sheeting on both sides. Concrete traffic barrier delineators will be considered completely covered by the contract unit price for Safety Barrier Curb.

Example_plans

"THIS MEDIA SHOULD NOT BE CONSIDERED A CERTIFIED DOCUMENT." DATE PREPARED 1/15/2020 ROUTE STATE B MO DISTRICT SHEET NO. BR 223 COUNTY VERNON JOB NO. JT 7 SO 546 CONTRACT ID. PROJECT NO. BRIDGE NO. EXAMPLE STATE NOILLING STATE ROUTE STATE B MO DISTRICT SHEET NO. BRIDGE NO. EXAMPLE STATE NOILLING STATE CONTRACT ID. PROJECT NO. BRIDGE NO. EXAMPLE STATE ST		NOT ROU	BE DO DO DAT I/1 JTE RIC R	E PI 5/	REPA	RED 20 ST/ HEE 2)	CLN FIFCTONICALLY CLALED AND DATED
F 1 ON DATE						N 46 10 ND.			T ON THE FUELS OF THE NO T
F I ON 1 T OL 5 1 0 2 6 3 6)	DESCRIPTION								
	I I ON	COMMISSION		MODOT		105 WEST CAPITOL	JEFFERSON CITY, MD 65102	1-888-ASK-MODOT (1-888-275-6636)	

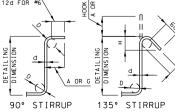

Detailed Nov. 2014 Checked Nov. 2014

Note: This drawing is not to scale. Follow dimensions. Sheet No. 25 of 30

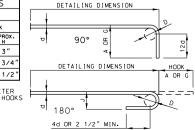
complete in place, will be considered completely covered by the contract unit price for Safety Barrier Curb.

		DATI DOT DOT DOT DOT DOT DOT DOT DOT			IDE IED 	9 ATE	
	(J 7 CON PRC		ст Е М	46 10	•	
DESCRIPTION		E X	. 41	MP1	_ <u></u> _		
MISSOURI HIGHWAYS AND TRANSPORTATION DATE	COMMISSION		MoDOT		105 WFST CAPITOL	JEFFERSON CITY, MO 65102	1-888-ASK-MODOT (1-888-275-6636)

Example_plans_025_2015_bcslip.dgn



Example_plans_026_2019_appslab.dgn 11:32:35 AM 1/15/2020


barbill i	Effective:	Aug 2008	Supercedes:	Fob	2006

barbill_i	Effective	: Au	ıg.	2008 St	upercede	es: Feb.	2006																				
				BILL	OF R	EINFO	RCINO	S STEE	EL									BILL	OF R	EINFO	RCING	STEE	EL				
MARK NO, D.	(E)	ND.	(X)		1	D	IMENSION	1	1	1	NOMINAL LENGTH ACTUAL LENGTH	WEIGHT	REQ'D.	MARK NO+	_	(E) ND.	с (x) (x) (x) (z)		1	D	IMENSIONS				NOMINAL FNGTH	ACTUAL	WEI
NO. RE SIZE MARK	LOCATION	SHAPE NO. STIRRUP (S)	ARIES		C	D	E	F	H	K			ND. RE		LOCATION	POXY SHAPE	STIRRUP (S) SUBSTR. (X) VARIES (V) ND FACH	B	C	D	E	F	H	K			
2	SUBSTRUCTURE		0/ -	FI. IN.	FI. IN.	• F I • I N •	FI. IN	FI. IN.	FI. IN.	FI. IN.	FT.IN.FT.IN	· LBS.				E 10		FI. IN		FT. IN.	FI. IN.	FI. IN.	FI. IN.	FI. IN		5 13 3	3
													1	_		E 13		3 7.000		3 7.000	2 7,500					2 12 11	1
	INT. BENT 2												4		DIAPHRAGM	E 19		2 11.000	_							583	;
16 6 D200	KEY	20	x	2 6.000							2626	60	2		DIAPHRAGM DIAPHRAGM	E 10 E 19		3 10.500	4 9.500 3 7.000	2 11.000					12		4
															DIAPHRAGM	E 20		2 6.000	-						2		5
10 8 H200		18	х	30 3.000							32 1 32 1	857															
10 8 H201 10 6 H202		20 20	X X	30 3.000 30 3.000							30 3 30 3 30 3 30 3	808 454	1	6 5 V100	BEAM DIAPHRAGM	E 20 E 20		4 11.000								1 4 11 0 3 10	
14 6 H202		10 S		30 3.000	22,000	3 8.000					7 4 7 0			2 6 V101		E 20		8 1.000								1 8 1	1
														0 6 V103		E 20		8 1.000								1 8 1	it the second se
44 4 P200		16		2 5,500	2 1.000)					8 7 8 7	252		2 6 V104		E 20		7 11.000	_							1 7 11	_
50 6 P201	SHAF T	16	X	2 6.000	3 1.000)					9292	688	3	0 6 V105	WING	E 20		7 11.000)						7 1	1 7 11	-
33 4 U200	BEAM	13 S	x	3 9.000	3 9.000	3 9.000	3 9.000	1			15 9 15 6	342	-													+	+
28 4 U201		13 S		2 6.000		2 6.000					13 3 13 0																+
8 4 U202	BEAM	10 S	х		3 9.000	3 9,000					11 3 11 1	59			END BENT 4												
28 9 V200	SHAFT	20		41 1.000							41 1 41 1	3911		1 6 F 400	WINC	E 15	c .	14.000	3 8.000	14.000	12.750	5.875	12.750	5.875	6	0 5 10	
28 9 7200	SHAFT	20	$\left \right $	41 1.000							41 1 41 1	2911			DIAPHRAGM	E 23		3 5.625		14,000	12.150	5.015	2 7.875	2 2,750		5 8 4	4
													1			E 15		14.000		14.000	5.875	12.750	5.875	12.750		6 9 6	ŝ
	INT. BENT 3													5 6 F 403	DIAPHRAGM	E 21	S	6 10.125	5 3 5.625				5 2.875	4 4.750	10 ·	499	j
16 6 D300	KEY	20	x	2 6.000							2626	60	-	8 6 H400	BEAM & DIAPH	1 5 20		34 5.000							34	5 34 5	
18 8 0500	KE I	20	Ĥ	2 8.000							2 0 2 0	00	1		BEAM & DIAPH			34 5.000								5 34 5	5
10 8 H300			х	30 3.000							32 1 32 1	857			DIAPHRAGM	E 20		12 0.000								0 12 0	ر ر
10 8 H301			x	30 3.000							30 3 30 3	808			DIAPHRAGM	E 20		10 1.000								1 10 1	1
10 6 H302 14 6 H303		20 10 S	X	30 3.000	22 000	3 8.000					30 3 30 3 7 4 7 0	454) 147			DIAPHRAGM DIAPHRAGM	E 20 E 20		3 8.000			-				3	838 828	
	DE AM	10 5			22:000							/ 141	1	_		E 20		17 5.000								5 17 5	5
34 4 P300		16		2 5.500	2 1.000						8 7 8 7	195	4			E 20		16 5.000								5 16 5	; ·
66 6 P301	SHAFT	16	X	2 6.000	3 1.000						292	909		3 5 H408	STRAND TIE	E 23	S	15.000	2 0.000	15.000	9.625	11.500	9.625	11.500	4	6 4 5	ز
33 4 U300	BEAM	13 S	x	3 9.000	3 9.000	3 9.000	3 9.000	1			15 9 15 6	342		8 5 U400	BEAM	E 10	S		4 11.000	3 7.000					13	5 13 3	3
28 4 U301		13 S		2 6.000							13 3 13 0		1			E 13		3 7.000			2 7.500					2 12 11	1
8 4 U302	BEAM	10 S	х		3 9.000	3 9.000					11 3 11 1	59	4		DIAPHRAGM	E 19		2 11.000							8		5
28 9 V300	SHAFT	20		35 6.000							35 6 35 6	3380	2		DIAPHRAGM DIAPHRAGM	E 10 E 19		3 10.500	4 9.500 3 7.000	2 11,000					12	6 12 4	
28 9 4300	SHAFT	20		55 8.000							35 6 55 6	5 5560			DIAPHRAGM	E 20		2 6.000	-						2		- 3
																										-	
	SUPERSTR.	\square	\square											6 5 V400		E 20		4 11.000								1 4 11	_
	END BENT 1													9 6 V401 2 6 V402	DIAPHRAGM	E 20 E 20		3 10.000								0 3 1C 1 8 1	-
														0 6 V402		E 20		8 0.000								0 8 0	5
11 6 F100		15 S		14.000		14.000	12.750	5.875			6 0 5 10			2 6 V404		E 20		8 2.000								282	_
		23 S		3 5.625					2 7.875		8 5 8 4	-	3	0 6 V405	WING	E 20		8 1.000)						8	1 8 1	
11 6 F102		15 S 21 S			7 2.000		5.875	12.750	5.875 5 2.875		9 6 9 6 10 4 9 9	-	_								-						
5 6 1 103		21 5		0 101125	5 5.025	,			5 2:015	4.130		15															
	BEAM & DIAPH E										34 5 34 5																
	BEAM & DIAPH E			34 5.000							34 5 34 5				DIAPH. AT	++-									<u> </u>	<u> </u>	+
		20 20		12 0.000							12 0 12 0 10 1 10 1		-		INT. BENTS	++										+	+
		20	\vdash	3 8.000		1				1	3 8 3 8		1	6 6 H5O	DIAPHRAGM	E 20		10 1.000							10	1 10 1	it –
	DIAPHRAGM E	20		2 8,000							2828	16	1	6 4 H51	DIAPHRAGM	E 20		12 0.000								0 12 0	_
16 8 H106		20		17 5.000							17 5 17 5	-			DIAPHRAGM	E 19		-	3 1.500							0 3 11	_
48 6 H107 3 5 H108		20 23 S			2 0.000	15.000	9.625	11.500	9.625	11.500	16 5 16 5 4 6 4 5	5 1184 5 14		_	STRAND TIE	E 23	S S	15.000	-		9.625	11.500	9.625 9.625			534 645	_
		25 5						1													3.025		3.023			+	+
													1	6 6 U5O	DIAPHRAGM	E 28	S		3 1.000	4 11.000	14.000					2 8 10	٦ ر
6d FOR #4 AND	#5 , ၂୦																							_	B	-	

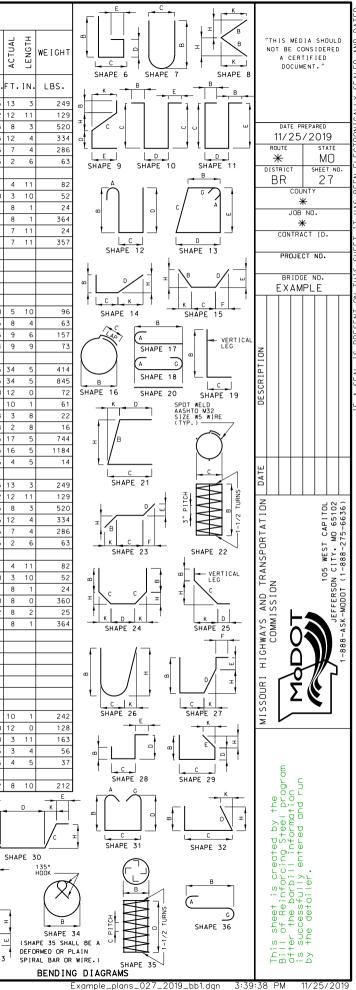
6d FOR #4 AND 12d FOR

			100K D 0 - 50 ·		0113	
~	BAR	D	90° HOOK	135°		Ħ
×	SIZE	(IN.)	HODK A OR G	HOOK A DR G	APPROX. H	σ
0,	#4	2″	4 1/2″	4 1/2"	3″	
/	#5	2 1/2"	6″	5 1/2″	3 3/4"	
	#6	4 1/2″	12″	8″	4 1/2"	
	NOTE; UN	LESS OTH	HERWISE	NOTED DI	AMETER	
		HE SAME			ND HOOKS	-

END	ноок	DIMENSIONS

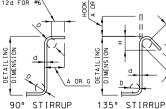
				ALL GRADES	•
	BAR SIZE	D (IN.)	180*	HOOKS	90° HOOKS
	SIZE	(10.7	A OR G	J	A OR G
•	#3	2 1/4"	5″	3″	6″
	#4	3"	6″	4″	8″
1	#5	3 3/4"	7″	5″	10″
•	#6	4 1/2"	8″	6″	12″
5	#7	5 1/4"	10″	7"	14″
_	#8	6″	11″	8″	16″
_	#9	9 1/2"	15″	11 3/4"	19″
	#10	10 3/4"	17″	13 1/4"	22″
	#11	12″	19″	14 3/4"	2'-0"
	#14	18 1/4″	2'-3"	21 3/4"	2′-7″

NOTE:	
ALL STANDARD HOOKS AND BENDS OTHER THAN 180 DEGREE ARE TO BE BENT WITH SAME	
PROCEDURE AS FOR 90 DEGREE STANDARD HOOKS.	
HOOKS AND BENDS SHALL BE IN ACCORDANCE WITH THE PROCEDURES AS SHOWN ON THIS SHEE	Τ.

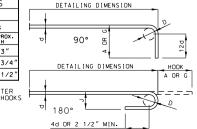

- к

<u>∿ –</u>

SHAPE 33


HOUGED HE AS TOK SO LEVELE IN ACCORDANCE WITH THE PROCEDURES AS SHOWN ON THIS SHEET. E = EPOXY COATED REINFORCEMENT. S = STIRUP. X = BAR IS INCLUDED IN SUBSTRUCTURE QUANTITIES. Y = BAR JIMENSIONS VARY IN EQUAL INCREMENTS BETWEEN DIMENSIONS SHOWN ON THIS LINE AND THE FOLLOWING LINE. NO. EA. = NUMBER OF BARS OF EACH LENGTH. NOMINAL LENGTHS ARE MASSUE ON QUIT TO QUI DIMENSIONS SHOWN IN BENDING DIAGRAMS AND ARE LISTED FOR FABRICATORS USE. (NEAREST INCH) ACTUAL LENGTHS ARE MASSUED ALDING CENTERLINE BAR TO THE NEAREST INCH. PAYWEIGHTS ARE BASED ON CUILLENGTHS. FOUR ANGLE OR CHANNEL SPACERS ARE REQUIRED FOR EACH COLUMN SPIRAL. SPACERS ARE TO BE FLACED ON INSIDE OF SPIRALS. LENGTH AND WEIGHT OF COLUMN SPIRALS DO NOT INCLUDE SFLICES OR SPACERS. REINFORCING STEEL (GRADE GO) FY = 60.000 PSI.

Detailed Aug. 2019 Checked Aug. 2019


barb	ill_i	Effectiv	/e: /	Aug.	20	008 S	upercede	s: Feb.	2006																						
						BILL	OF R	EINFC	DRCIN	G STE	EL										BILL	OF	REINF	ORC	INC	G STE	EL				
0,D.	MARK NO.		(E) 40.	(S) (X)	СН (1		DIMENSION	IS			NOMINAL	ACTUAL	WEIGH		MARK NO+		(E) 40.	с (<u>x</u>)				DIMEN	ISION	s	1	-1	NOMINAL LENGTH	ACTUAL	2 WF
RE	S I ZE MARK	LOCATION	EPOXY (E) SHAPE NO.	STR.	RIES D. EA	В	C	D	E	F	Н	К	NOM F	ACT			S I ZE MARK	LOCATION	JXY HAPE N	STIRRUP (S) SUBSTR. (X) VARIES (V) NO. EACH	В	C	D		E	F	Н	K	LEN LEN	ACT	
N	S I M				AF N	FT. IN.	FT. IN.	FT. IN	.FT. IN	.FT. IN	.FT. IN.	FT. IN	FT.IN	I.FT.IN.		ġ	S I MZ			S UB	FT. IN	1. FT. 1	N.FT.	[N. FT.	IN.	FT. IN	FT. IN	.FT. I	N.FT.IN.	.FT.IN	1. I
56	4 U51	DIAPHRAGM	E 28	s			2 9,000	4 11.000	0 12.000	2			8	8 8 6	31	י_ ⊢	7 8		E			_							_	<u> </u>	+
16	5 V50	DIAPHRAGM	E 20			5 0.000	1						5	0 5 0	8	3	8		E												
-		SLAB		+										-		┨┝──	9	TOTAL						_							_
																		TOTAL	E												
82	6 S1		E 20	+	V 2	2 2 1.000							-	1 2 1	4.70	.	_													<u> </u>	_
-		INCREMENT = 7.125 INCH	+	+		25 11.000		-					25 1	1 25 11	172			Slab on										-	<u> </u>	+	+
386	6 S2		E 20			26 5.000							26	5 26 5	1531			Girder											+	+	+
	6 S3		E 20			56 5.000								5 56 5	779																
	7 54		E 20			50 9.000								9 50 9	414		4		E												
	7 \$5		E 20			36 3.000							-	3 36 3	296		5		E										<u> </u>	+	+
	6 S6 5 S7		E 20 E 20	_		55 10.000 3 8.000		+			+			0 55 10 8 3 8			6		E	+++									+	+	+
		02.10				0 01000											8		E										+	-	+
																		TOTAL													
		BARRIER CURB																										_		<u> </u>	
146	5 K1	BARRIER CURB	F 19	_		2 5,000	5,125						2 1	0 2 9	41			Reinforcing												+	+
	5 K2	BARRIER CURB		_		5,125	11,125		0		2.000	17.875	-	0 2 9				Steel											+	+	+
94	5 K 3	BARRIER CURB	E 27	s		3 0.000	5.125	12.000	0 2 2.125	5	9.875	6.875	6	765				(Bridges)											-	1	
	5 K 4	BARRIER CURB	_	_		3 0.000	6.000						-	262			4														
	5 K5	BARRIER CURB	_	_		2 6.500	6.750				5.500	4.000		6 3 5	1		6													<u> </u>	
	5 K6 5 K7	BARRIER CURB BARRIER CURB	_	_		2 5.500 2 4.125	7.875				6.500 7.875	4.500	-	635 635	1		8							_					+	+	+
	5 K8	BARRIER CURB		_		2 2.750	11.250				9.250	6,500		6 3 6				TOTAL											+	-	+
48	5 K 9	BARRIER CURB				5 7,000							_	757	28																
	4 K10					15 1.000							-	1 15 1	22													_		<u> </u>	_
	5 K11 5 K12	BARRIER CURB BARRIER CURB	_	_		2 2.125	5.125	12.000	0 7.125	5 12.000	2 2.000 9.875	2.375	-	4 4 4 5 4 2	1		-	Safety Barrier												+	+
	4 K13		_	_		16 3.000	5.125	12.000	1.12	12.000	5 5.015	0.015		3 16 3				Curb											+	+	+
																	4		E										-	1	-
_	5 R1	BARRIER CURB	_			2 6.000	4.250		5		2 6.000	3.000	5				5		E												
	5 R3	BARRIER CURB	_	_		17.000	6.000						-	3 0 22				TOTAL										_	<u> </u>	──	_
	5 R4 5 R5	BARRIER CURB BARRIER CURB	_			9 9.000	6,000	11.250	0 7.000	12.000	9,250	6.375	_	0 2 10 9 9 9																	-
	5 R6	BARRIER CURB	-	+		47 1.000							_	9 9 9 9 1 47 1	68		1	Slip Form	$\left \right $										+	+	+
	5 R7	BARRIER CURB				37 10.000							_	0 37 10				Option													1
14	5 R8	BARRIER CURB	E 20			46 0.000							46	0 46 0	67	2	5		E											I	T
—				+														TOTAL	\parallel	+++				_					——	<u> </u>	+
<u> </u>		SLIP FORM	+	+							+			+		┨┣──			$\left \right $	+++				_						+	+
		BARRIER CURB	+	+				1					1	1		1┣──			H	+++		+							+	+	+
	5 C1		E 20			10 0.000								0 10 0																	
8	5 C2	SLIP FORM	E 20	++		15 2.000							15	2 15 2	12	4															+
			+	+				+			+		+	+					$\left \right $										+	+	+
			+	+										1		1			$\left \right $										+	+	+
		TOTALS	\square	Ц															$\downarrow\downarrow\downarrow$											<u> </u>	\perp
<u> </u>			+	+						-					4 7 7					+++								-	<u> </u>	+	+
	4		E	+				-						+	173 114		-		$\left \right $	+++		-		_						+	+
	5		E	+									1	1	1354				$\left \right $										+	+	+
	6														291																T
	6		E												3487	4															

6d FOR #4 AND #5, 12d FOR #6

ျပ

_									
			STI	RRUP H	100K D	IMENSI	ONS	DET	AILING
			(GRADES 4	0 - 50 -	- 60 KSI			
` /	×	、	BAR SIZE	D (IN.)	90° HOOK HODK A OR G	135° HOOK A OR G	HOOK APPROX .	The second secon	90°
	0		#4	2″	4 1/2"	4 1/2"	3″		
)	Ŷ		#5	2 1/2"	6″	5 1/2"	3 3/4"	DE T	ALLING
Ì			#6	4 1/2″	12″	8″	4 1/2″		
			NOTE: UN "D" IS T DN A BAR	HE SAME	HERWISE FOR ALL	NOTED D BENDS	IAMETER AND HOOKS	₹ 180	
								100	

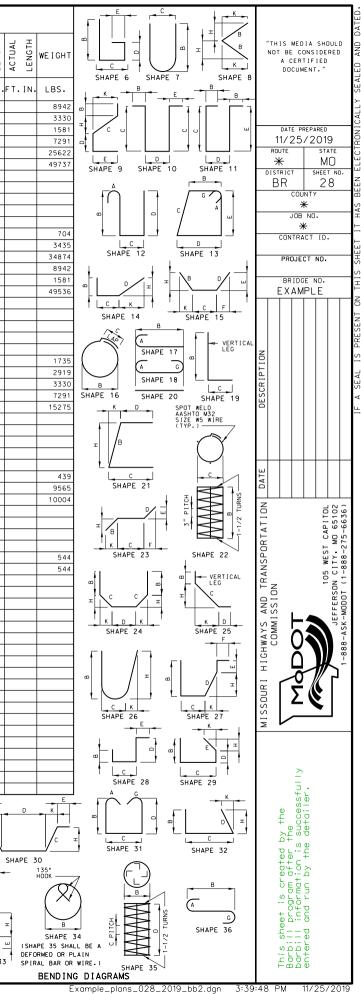
END	HOOK	DIMENSIONS

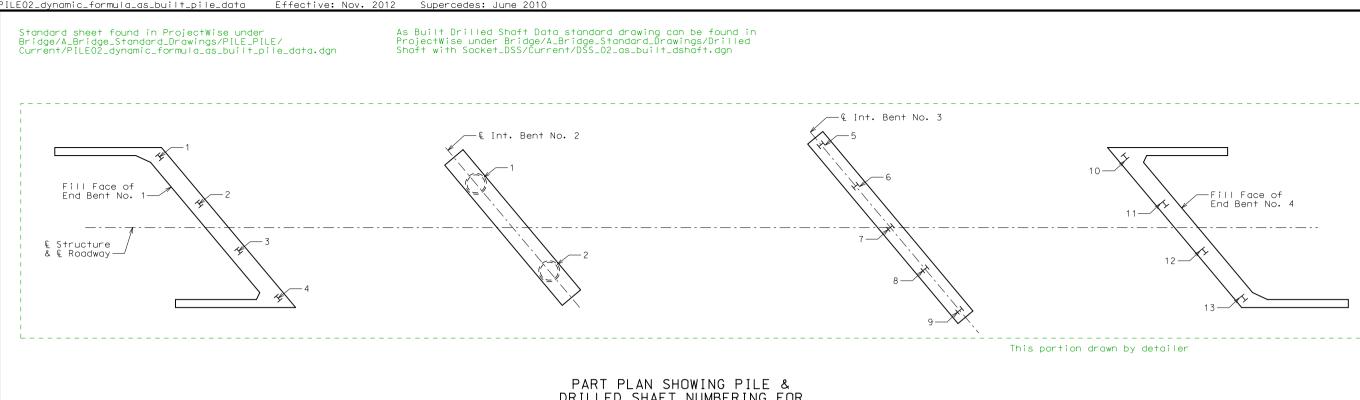
			ALL GRADES	
BAR SIZE	D (IN.)	180*	HOOKS	90° HOOKS
SIZE	(10.7	A OR G	J	A OR G
#3	2 1/4"	5″	3″	6″
#4	3"	6″	4″	8″
#5	3 3/4"	7″	5″	10″
#6	4 1/2"	8″	6″	12″
#7	5 1/4"	10″	7″	14″
#8	6″	11″	8″	16″
#9	9 1/2"	15″	11 3/4"	19″
#10	10 3/4"	17″	13 1/4"	22″
#11	12″	19″	14 3/4"	2'-0"
#14	18 1/4"	2'-3"	21 3/4"	2'-7"

_	NOTE:
	ALL STANDARD HOOKS AND BENDS OTHER THAN 180 DEGREE ARE TO BE BENT WITH SAME
	PROCEDURE AS FOR 90 DEGREE STANDARD HOOKS.
┥	HOOKS AND BENDS SHALL BE IN ACCORDANCE WITH THE PROCEDURES AS SHOWN ON THIS SHEET.

В

N ⊔


SHAPE 33


HODKS AND BENDS SHALL BE IN ACCORDANCE WITH THE PROCEDURES AS SHOWN ON THIS SHEET. E = EPOXY COATED REINFORCEMENT. S = STIRUP. X = BAR IS INCLUDED IN SUBSTRUCTURE QUANTITIES. V = BAR DIMENSIONS VARY IN EQUAL INCREMENTS BETWEEN DIMENSIONS SHOWN ON THIS LINE AND THE FOLLOWING LINE. NOMINAL LENGTHS ARE BASED OF EACH LENGTH. NOMINAL LENGTHS ARE BASED OF ON OUT TO OUT DIMENSIONS SHOWN IN BENDING DIAGRAMS AND ARE LISTED FOR FARICATORS USE. (NEAREST INCH) ACTUAL LENGTHS ARE MEASURED ALDNG CENTERLINE BAR TO THE NEAREST INCH. PAYWEIGHTS ARE BASED ON ACTUAL LENGTHS. FOUR ANGLE OR CHANNEL SPACERS ARE REQUIRED FOR EACH COLUMN SPIRAL. SPACERS ARE TO BE PLACED ON INSIDE OF SPIRALS. LENGTH AND WEIGHT OF COLUMN SPIRALS DO NOT INCLUDE SPLICES OR SPACERS. REINFORCING STELL (GRADE 60) FY = 60.000 PSI.

Detailed Aug. 2019 Checked Aug. 2019

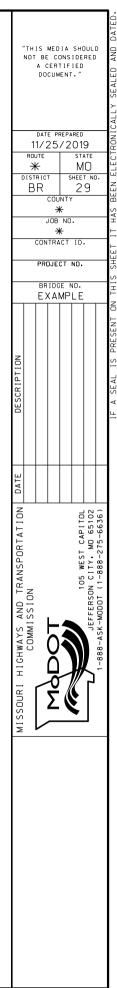
Note: This drawing is not to scale. Follow dimensions.

Sheet No. 28 of 30

PART PLAN SHOWING PILE & DRILLED SHAFT NUMBERING FOR RECORDING AS-BUILT PILE DATA & AS-BUILT DRILLED SHAFT DATA

Modify tables as needed

	As-Built Pile Data						
Pile No.	Length in Place (ft)	Computed Nominal					
			End Bent No. 1				
1							
2							
3							
4							
			Intermediate Bent No. 3				
5							
6							
7							
8							
9							
			End Bent No. 4				
10							
11							
12							
13							


	As-Built Drilled Shaft Data						
Shaft No.	Top of Sound Rock (Elev.)	Tip of Casing (Elev.)	Bottom of Rock Socket (Elev.)	Remarks			
				Intermediate Bent No. 2			
1							
2							

Note: Indicate in remarks column: A. Pile type and grade B. Batter C. Driven to practical refusal

This sheet to be completed by MoDOT construction personnel.

Detailed Nov. 2014 Checked Nov. 2014 AS-BUILT PILE AND DRILLED SHAFT DATA

Note: This drawing is not to scale. Follow dimensions. Sheet No. 29 of 30

Detailed Aug. 2019 Checked Aug. 2019

bit Scotting Scot			Missouri Department of Transp Construction and Materials Boring Data	ortation	Page 1 of 1		Cor	nstruct	ion and	Transporta Materials	
m. Attab. Baser, et al. 30. M. Couldse - 2004 (Cited Workeld) 1 Loge My (East) 2003 Dear Wine, (2003) (200	No.: J6S20	088	County: St. Charles	Route: P							Route
1 Logad by: Real Table Operator: Rearrow Lharm 1 100000 Description Descrip											Locati
m: 119-94.0 Norhing: 10201/2 Date 4 Wes: 00/12/02/13/2 State: 119-26 Northing: 11928/2 Marcine: 10.201/2 Dept Heb Open Dept Heb Open Dept Heb Open Northing: 11928/2 Northing: 10261/2 Marcine: 10.201/2 Dept Heb Open Dept Heb Open Dept Heb Open Northing: 10261/2 Northing: 10261/2 Marcine: 10.201/2 Dept Heb Open Dept Heb Open Dept Heb Open Northing: 10261/2 Northing: 10261/2 Marcine: 10.201/2 Dept Heb Open Dept Heb Open Dept Heb Open Northing: 10261/2 Repeated Marting: 10261/2 <td>-</td> <td></td> <td></td> <td></td> <td>_</td> <td>Bent: <u>1</u></td> <td> Logged By:</td> <td>Ricard</td> <td>o Todd</td> <td></td> <td>Opera</td>	-				_	Bent: <u>1</u>	Logged By:	Ricard	o Todd		Opera
e 60. Earling Total 10000. Earling Earling Total 10000. Earling Total 10000. Earling Total 10000. Earling Earling Total 10000. Earling Earling Total 10000. Earling Earling Total 10000. Earling					_	Station: <u>119+20.3</u>	Northing:	<u>1103499</u>	.8		Date o
Bits Bits <th< th=""><th></th><th></th><th></th><th></th><th></th><th>Offset: 19.2 R</th><th>Easting: _7;</th><th>26081.1</th><th></th><th></th><th>Depth</th></th<>						Offset: 19.2 R	Easting: _7;	26081.1			Depth
related Station: 119:43.2 Requested Station: 120:42.2 Requested Station: 120:42.2 relation: Lacation Nex: Offent data 10:20:07.2 Requested Station: 120:42.2 Requested Station: 120:42.2 relation: Lacation Nex: Offent data 10:20:07.2 Requested Station: 120:42.2 Requested Station: 120:42.2 relation: Lacation Nex: Offent data 10:20:07.2 Requested Station: 120:42.2 Requested Station: 120:42.2 relation: Lacation Nex: Offent data 10:20:42.2 Requested Station: 120:42.2 Requested Station: 120:42.2 relation: Lacation Nex: Offent data 10:20:42.2 Requested Station: 120:42.2 Requested Station: 120:42.2 relation: Lacation Nex: Description: 40:0 40:0 120:00:00:00:00:00:00:00:00:00:00:00:00:0						Elevation: 455	Requested I	Northing	: _110350)2.4	Depth
ender Offent is 27.1 Explorment: Adder Sol X3,2 Ortson Fight Ager interest Envertion: 35.4 Coastion Nois: Offend as a partonil Explorment: Adder Sol X3,5 Construction: 35.5 interest Envertion: 35.4 Coastion Nois: Offend as a partonil Explorment: Adder Sol X3,5 Coastion Nois: Offend as a partonil Harmer Efficiency: 45% interest Envertion: 35.4 Coastion Nois: Offend as a partonil Explorment: Adder Sol X3,5 Coastion Nois: Offend as a partonil Harmer Efficiency: 45% interest Envertion: 35.4 Coastion Nois: Offend as a partonil Explorment: Adder Sol X3,5 Harmer Efficiency: 45% int 3.4 Coastion Nois: Offend as and all most in the interest inter						Requested Station: 119+20.3	Requested I	Easting:	726075.	2	Time (
ented Evolution: <u>640</u> Location Note: <u>Clusted Evolution:</u> <u>640</u> 1.3.6.7 Crow, CRAVELLY LEAN CLAY scalared garral, loss: <u>640</u> <u>640</u> <u>640</u> <u>640</u> 1.3.6.7 Crow, CRAVELLY LEAN CLAY scalared garral, loss: <u>640</u> <u>640</u> <u>640</u> <u>640</u> 1.3.6.7 Crow, CRAVELLY LEAN CLAY scalared garral, loss: <u>640</u> <u>640</u> <u>640</u> <u>640</u> 1.3.6.7 Crow, CRAVELLY LEAN CLAY scalared garral, loss: <u>640</u> <u>640</u> <u>640</u> <u>640</u> 1.1.2.10° Linestone, meduni hard <u>640</u> <td< td=""><td></td><td></td><td></td><td></td><td></td><td>Requested Offset: 12.7 R</td><td>Equipment:</td><td>Acker</td><td>Soil XLS ,</td><td>Split-Spoon S</td><td>ampler, NC</td></td<>						Requested Offset: 12.7 R	Equipment:	Acker	Soil XLS ,	Split-Spoon S	ampler, NC
Image: Control of the second seco				Flight Auger		Requested Elevation: 455.6	Location Nc	ote: Off	set due to	guardrail	
gg Description gg	uested Eleva	ation: 454.9	Location Note: Offset due to guardrail		_			-			Drillin
13 X ASPHALT, and have natively 45 45 45 13 X ASPHALT, and have natively 455 455 455 14 X ASP (ALV) scattered gravel, locate, mold, coarse gravined, poorly graded 450 455 455 17 X ASP (ALV) scattered gravel, locate, mold, coarse gravined, poorly graded 400 400 455 455 455 17 X ASP (ALV) methods and settime of point of borehole at 18.0 feet. 400 400 455											
13.6.7 Gry, GRAVELLY LEAK CLAY teacher de servit, lose, moist, coarse grained, poorly graded 40 40 45 40 45 40 45 40 45 415 15 42 45 43 10 44 45 45 12 46 14 47 45 48 15 <td< td=""><td>(ft) Graphic</td><td></td><td>Description</td><td></td><td>Elevatio (ft)</td><td>De taphic</td><td>scription</td><td>(ft)</td><td>Type</td><td>v Counts (N₆₀)</td><td>3</td></td<>	(ft) Graphic		Description		Elevatio (ft)	De taphic	scription	(ft)	Type	v Counts (N ₆₀)	3
Comparison of bornhole at 18.0 feet. Comparison of bornhole at 28.2 f					450				San R (
17.4-18 Linestone, medium hard	-	-		ned, poorly graded			ELLY LEAN CLAY trace				
Bottom of borehole at 18.0 feet.		17 4-18' Limestone medium	h bard		<u> </u>	cobbles, stiff, moist					
10 62-14-5 Brown, SAND trace gravel, medium 10 66-14-5 Brown, SAND trace gravel, medium 10 66-14-5 Brown, SAND trace gravel, medium 11 14-5-15-2 Limestone, highly weathered 15 225 Z Cherly Limestone, pay, hin bedded, moderately hard, slightly weathered, 440 10 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 10 20 435 30 400.2 10 10 100 10 101 10 102 10 103 10 104 10 105 10 106 10 107 10 108 10 109 10 100				0 feet.				450	67		
14.5-15.2 Limestone, highly weathered 300 440.2 15.225.2 Cherty Limestone, erray, thin 300 440.2 16.225.2 Cherty Limestone, erray, thin 300 440.2 20 430 100 100 22 Bottom of borehole at 25.2 feet. 100 100 19.6 Auguston of borehole at 25.2 feet. 100 100 19.6 Auguston of borehole at 25.2 feet. 100 100 19.6 Auguston of borehole at 25.2 feet. 100 100 10.2 100 100 100 100 10.2 100 100 100 100 10.2 100 100 100 100 10.2 100 100 100 100 10.2 100 100 100 100 10.2 100 100<											
15 -14.5-15.2 Limestone, highly weathered, fine grained 440 300 440.2 15 25.2 C Cherty Limestone, gray, thin bedded, moderately hard, slightly weathered, fine grained 9 9 20 435 100 100 21 Bottom of borehole at 25.2 feet. 100 100 100 21 Bottom of borehole at 25.2 feet. 100 100 100 100 22								445	73		
16 -00 14.5-15.2 Limestone, highly weathered 44.0 500 440.2 15.2-25.2 Cherty Limestone, gray, bin 98 90 98 90 98 20 435 100 98 100 98 100 98 20 430 435 100 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>[]</td><td></td><td>(24)</td><td></td></t<>								[]		(24)	
15.2.25.2° Chorderately hard, slightly weathered, fine grained 98 100 435 100 435 100 430 100						2 15 14.5-15.2' Limestor		440	200	14/0 2	
Nume - Emblohim Nume - Corrected N value for standard 60% SPT efficiency. Em - Measured hammer efficiency in (1) = Assumed, (2) = Actual						🖉 bedded, moderatel	mestone, gray, thin hard, slightly weathered,				
Bottom of borehole at 25.2 feet.								435	(24)	Qi UC
N _u = Em(60)Nm N _u - Corrected N value for standard 60% SPT efficiency; Em - Measured hammer efficiency in (90) 430 N _u = Em(60)Nm N _u - Corrected N value for standard 60% SPT efficiency; Em - Measured hammer efficiency in (90) 430 N _u = Carrected N value for standard 60% SPT efficiency; Em - Measured hammer efficiency in								400		_	۲
N _u = Em(60)Nm N _u - Corrected N value for standard 60% SPT efficiency; Em - Measured hammer efficiency in (90) 430 N _u = Em(60)Nm N _u - Corrected N value for standard 60% SPT efficiency; Em - Measured hammer efficiency in (90) 430 N _u = Carrected N value for standard 60% SPT efficiency; Em - Measured hammer efficiency in								I]			Qu
Image: Second											
Bottom of borehole at 25.2 feet. Bottom of borehole at 25.2 feet.								+ !	· ·	, 	Ŷ
N ₈₀ = (Em/60)Nm N ₈₀ - Corrected N value for standard 60% SPT efficiency; Em - Measured hammer efficiency in (1) = Assumed, (2) = Actual							arabala at 25 2 faat	430		_	
N ₉₀ = (Em/60)Nm N ₉₀ - Corrected N value for standard 60% SPT efficiency; Em - Measured hammer efficiency in (1) = Assumed, (2) = Actual							nenole at 20.2 leet.				
N ₉₀ = (Em/60)Nm N ₉₀ - Corrected N value for standard 60% SPT efficiency; Em - Measured hammer efficiency in (1) = Assumed, (2) = Actual						15:24					
N ₈₀ = (Em/60)Nm N ₈₀ - Corrected N value for standard 60% SPT efficiency; Em - Measured hammer efficiency in (1) = Assumed, (2) = Actual						0/13					
N ₈₀ = (Em/60)Nm N ₈₀ - Corrected N value for standard 60% SPT efficiency; Em - Measured hammer efficiency in (1) = Assumed, (2) = Actual						10/1					
N ₈₀ = (Em/60)Nm N ₈₀ - Corrected N value for standard 60% SPT efficiency; Em - Measured hammer efficiency in (1) = Assumed, (2) = Actual											
백 (1) = Assumed, (2) = Actual											
백 (1) = Assumed, (2) = Actual						07-29					
백 (1) = Assumed, (2) = Actual											
백 (1) = Assumed, (2) = Actual							for standard COV CDT -4			mmor off-i '	
Coordinate System: Modified U.S. State Plane 1983 Coordinate Zone: Missouri East						, $N_{60} = (Em/6U)NM N_{60}$ - Corrected N value \underline{H} (1) = Assumed, (2) = Actual	ior standard 60% SPT efficienc	y; ⊏m - M	easured hai	mmer emiciency i	i percent; N
						Coordinate System: Modified U.S.	State Plane 1983 Coordi	nate Zor	ne: Misso	ouri East	C
inate System: Modified U.S. State Plane 1983 Coordinate Zone: Missouri East Coordinate Proj. Factor: 1.000078 Coordinate Datum: NAD 83 (CONUS) Coordinate Units: U.S. Survey Feet	rdinate System	Modified U.S. State Plane 1983	Coordinate Zone: Missouri East	Coordinate Proj. Factor: 1.000078		Coordinate Datum: NAD 83 (CON	US) Coordi	nate Uni	ts: <u>U.S.</u>	Survey Feet	
inate Datum: NAD 83 (CONUS) Coordinate Units: U.S. survey Feet Coordinate Units: U.S.	rdinate Datum:	NAD 83 (CONUS)	Coordinate Units: U.S. Survey Feet			* Persons using this information are cautio					nd accuracy

Standard sheet found in ProjectWise under Bridge/A_Bridge_Standard_Drawings/Boring Template/ BOR_01.dgn for two portrait-oriented sheets, BOR_02.dgn for one landscape-oriented sheet. The magenta box is for ease of placement only and may be ignored and deleted.

BORING DATA

See EPG 751.5.8.4 for a link to Instructions for A Boring Log PDFs to Final Plans

Sheet No. 30 of 30

Showing only one boring sheet in this example, but there may be several.

Note: This drawing is not to scale. Follow dimensions.

Note: For locations of borings, see Sheet No. 1.

				NOT B	MEDIA SHOULD E CONSIDERED
	oute: <u>P</u>		NO. O-13-80 Page 1 of 1		CERTIFIED DCUMENT."
	cation: <u>About 4</u>		entzville_		te prepared 25/2019
	perator: <u>Chad A</u> ate of Work: 08/			ROUTE	STATE
	epth to Water: 1				
	epth Hole Open:			BR	30 COUNTY
	me Change: r, NQ				* JOB NO.
	, 1102				* NTRACT ID.
D	rilling Method: _	Hollow Stem Aug	er		
	igth	S.	ې د		OJECT ND.
	Shear Strength Data	Field Tests	Index Tests		RIDGE NO. XAMPLE
	hear D	Field	linde		
	N				
				z	
				10	
				SCRIPTION	
			LL = 30 PL = 19	DES	
				DATE	
				AND TRANSPORTATION SSION	105 WEST CAPITOL FERSON CITY, MO 65102 MODDT (1-888-275-6636)
				RTA	. CAF MO 6
	Qu Test Results			SPO	WEST TY: 88-2
	UCS = 854.6 ksf MC = 0%			RAN	105 N CI (1-8
	γ _{moist} = 165.6 pcf			L ON	ERSOI 00T
	Qu Test Results UCS = 1057.8 ksf			-	
	MC = 0% $\gamma_{moist} = 164.6$			IWAYS COMM I	
	pcf			H I GHWAYS COMM	-BBB - ASK -I
				ц	
				I I I	₹ <i>∦</i> []
				SSOUR	2 &
				Ψ	
	at National States				
rce	nt; Nm - Observed N				
	Coordinate Pro	j. Factor: <u>1.000</u>	0078		
	iracy of the "log of m	aterials" is limited th	ereby and		
			o.oby and		
n¢	for Attach	ina			
15	TOF ATTUCH	u ly			
	F	xample plans	030_2019_bor.dgr		11/25/2019