

All concrete obove the construction joint in the end bents is included in the Estimated
Quontities for Slop on Concrete I-Girder.
All reinforcement in the end bents is included in the Estimated Quantities for slab on
Concrete I-Girder.
All reinforcement in the intermediate bent concrete di ophroams except reinforcement
embedded in the beam cop is included in the Estimoted Quontities for siob on
Concrete I-Girder.
Al concrete above the intermediate beam cap is included in the Estimated Quantities

Foundation Data					
	Design Doto	Bent Number			
Type		1	2	3	4
$\begin{aligned} & \text { Loord } \\ & \text { Beoring } \\ & \text { Pile } \end{aligned}$	Pile Type and Size	HP 12x53	---	---	HP 12×53
	Number ea	4	---	---	4
	Approximate Length Per Each ft	30	--	---	30
	Pile Point Reinforcement ea	All	---	---	AII
	Min. Galvanized Penetration (Elev.) ft	ull length	---	---	ull length
	Pile Driving Verification Method	DF	---	--	DF
	Resistance Foctor	0.4	---	---	0.4
	Minimum Nominal Axial al	505	---	---	505
RockSocke +	Number ea		2	2	
	- Foundation Material	---	Rock	Rock	---
	Elevation Range ft	---	838-835	844-839	---
	$\stackrel{\infty}{\curvearrowright}$ Minimum Nominal Axial - $\begin{aligned} & \text { Compressive Resistance } \\ & \text { (Side Resistance) }\end{aligned}$	---	28.6	28.6	---
	\sim Foundation Material	---	Rock	Rock	---
	Elevation Range ft	---	835-821	839-830	---
	$\stackrel{0}{0}$ Minimum Nominal Axial O Compressive Resistance	---	28.6	28.6	---
	Minimum Nominal Axial (Tip Resistance)	---	12.	12.	---

FF = FHWA-modified Gates Dynamic Formula
Minimum Nominal Axial Compressive Resistance $=\underline{\text { Maximum Factored Loods }}$
Minimum Nominol 1 Axiol Compressive Resistance
(Side Resistonce + Tip Resistance)
Nanufactured pile point reinforcement shall be used on all piles in this structure
performed on all drilled shofts and rock sockets.

General Notes.

2020 AASHTO
Seismic Performance Category AR From Design Layout

Design Looding:

Equivalent Flid id Pressure = $45 \mathrm{lb/Cf}$
Superstructure:
Simply-Supported. Non-composite for dead lood.
Cont inous compos ite for 1ive lood.
Design Unit Stresses:

Design Unit Stresses:
Closs B Concrete (Substructure)
Closs B-2 Concrete (Drilled Shefts Rock sockest $\quad f^{\prime} \mathrm{c}=3.000 \mathrm{psi}$
loss B-2 Concrete (Drilled Shafts \& Rock Sockets) $\quad f^{\prime} \mathrm{C}=4.000 \mathrm{psi}$
Closs B-2 Concrete (Superstructure, except
Prestressed Girders ond Barrier)
Reinforcing Steel (Grade 60) \qquad esses, see shēé
$f^{\prime} \mathrm{c}=4,000 \mathrm{psi}$
$\mathrm{fy}=60,000 \mathrm{psi}$
$\begin{array}{ll}\text { Steel Pile (ASTM A709 Grade 50) } & f y=60.000 \mathrm{pS}\end{array}$
For precost prestressed panel stresses. see Shleet No. 18.
For prestressed girder stresses, see Sheets No. $14 \& \& 15$.

$$
.000 \text { ps i }
$$

Neoprene Pads:

- -

Neoprene beari
with Sec 716 .
Joint Filler:
All joint filler shall be in accordance with Sec 1057 for preformed
sponge rubber expansion and partition joint filler, except os noted.
Reinforcing steel:
Minimum clearonce to reinforcing steel shall be $11 / 2^{\prime \prime}$. unless
otherwise shown.
Traffic Honding:
Structure to be closed dur ing construction. Traffic to be maintained
on other routes. See roodway plons for traffic control.
Miscelloneous:

Estimated Quantities for SIab on Concrete I-Girder		
Item		Total
Closs B-2 Concrete	cu. yord	2042
Reinforcing Steel (Epoxy Coated)	pound	49,540

 The Estimated Quantities for slab on concrete 1-6irder are based on skewed precast prestressed end panels. The prestressed panel quantities are not included in the toble of Estimated Quantities for slab on concrete
I-Girder. Closs B-2 Concrete quantity is based on minimum top flange thickness and minimum joint material thickness.

plan of beam

PLAN OF $\begin{aligned} & \text { BEAM SHOWING REINFORCEMENT } \\ & \text { khown for clority. }\end{aligned}$
4 Spoces @ 6"

SECTION THRU KEY

STEEL PILE SPLICE

* Galvanizing material shall be
omitted or removed one inch
clear of welldyocations.
ocoordonce with Sec 702.

Generol Notes:
Work this sheet with Sheets No. 12 \& 13 .
Allu bars and poirs of V bars shall be ploced
parallel to centerline of roadway.
Reinforcing steel shall be shifted to clear piles.
U bors shall clear piles by at least $1 / 2$ inches.

hese quantities ore included in the estimated quantities table
on sheet No. 2 .

DETAIL A

DETAILS OF END BENT NO. 4

ELEVATION D-D

* \#8-H Bors ot $3^{\prime \prime}$ cts
* \#8-H Bors of 3"cts.

ELEVATION E-E

CHAMFER DETAIL

General Notes:

Work this sheet with Sheets No. 11 \& 12
For location of Sections A-A, B-B \& C-C and Elevations D-D \&
For reinforcement of the safety barrier curb, see
Sheet No. 24 .

SECTION A-A

Cel In Tasks: Slob Sheet Detais (Bottom of Slob Elevotion Diogram)

TYPICAL SLAB ELEVATIONS DIAGRAM

Cels in Cosks: siab sheet details comber iocrom)
(Pill in information from design.

GIRDER CAMBER DIAGRAM
If girder camber is different from that shown in the camber diagram, in order
to mo moin in minimum slob thickness odjustment of the s ob hounches. on increase O maintain minimum slab thickness adjustment of the slab haunches. on increase
in slab thickness or araise in grade uniformly throughout the structure shall

Concrete in the slab, hounches is included in the Estimated Quantities for Slab
on Concrete I-Girder.
Conversion factors for girder camber (estimated at 90 days

$0.25 \mathrm{pt} .=0.7125 \times 0.5 \mathrm{pt}$.

** Elevations are based on a constant slab thickness of $8^{1 / 2^{\prime \prime} \text { and include allowance for theoretical }}$ dead load deflections due to weight of slab (including precast panel ond barrier curb).

OPTIONAL SHIFTING TOP BARS AT BARRIER

Dimensions.
See design.

half section near midspan
half section near intermediate bent

24' -0" Roodway

DATE REREPARED

SECTION THRU SLAB

* Alternate bar shape ovailable, see barrier sheet,

Slab sections for other types of girders ore ovailable outside
the border of the stondard drowing.

ond see EPG ${ }^{751.50(\text { H. }}$) for proper notes.
Adjust detail to the appropriate skew.

	Sequence of Pours			Min. Cu Rete Yds Of / Prour
	Direction			with Retorder
Bosic	$\frac{1}{\text { End to } 2}$	$\frac{2}{1+03}$	$\frac{3}{2 \text { to End }}$	25
Alternate pours to the basic sequence are subject to the approval of the engineer in occordance with Sec 703.				
Alternote A Pours	$1+2$		$\frac{3}{2+0 \text { End }}$	25
$\begin{gathered} \text { Alternate B } \\ \text { Pours } \end{gathered}$	End to 3 $1+2$		End to End	.25 ${ }^{\text {a }}$

The controctor shall furnish an approved retarder foretard the set of the concrete
to 2.5 hours, ond sholl pour ond sotisfoctorily finish the slob pours of the rote given. The concrete diaphragm at the intermediate bents and integral end bents shall be poured
a minimum of 30 minutes and a maximum of 2 hours before the slab is poured.

SLAB POURING SEQUENCE

Tosks, slab Sheet Details
Parobolio Crown Detoil - 2% Slope

full depth slab

SLAB CONSTRUCTION JOINT
 INT

 Finish each sideof oint with
rodius edtin

Cons. Joint
(Ex+end fult
width of deck

DETAIL B

slab on panels

Notes:
for details of precast prestressed panels, see Sheet No.
For reinforcement of barrier not shown, see Sheet No.
For Theoretical Bottom of Slab Elevations, Girder Camber Diagram and
Theoretical Siob Haunching Diagram, see Sheet No.
SLAB DETAILS
Sheet No. 22
for plon of Slob showing Reinforcement, see Sheet No.

BAROi Use current standord sheet found in Projectwise Bridge/A_BR-Std_Dwgs/Borriers BAR-BA (Use oppropriate version for barrier type, noted on Bridge Memo or Design Loyout)

PART PLAN SHOWING PILE \& DRILLED SHAFT NUMBERING FOR RECORDING AS-BUILT PILE DATA
\& AS-BUILT DRILLED SHAFT DATA

This portion drown by detaiter

As-Built Pile Data			
$\begin{aligned} & \mathrm{P}_{\mathrm{i} 1}, \mathrm{e} \\ & \text { No. } \end{aligned}$	$\left.\begin{gathered} \text { Leng+h } \\ \text { in } \\ \text { Poce } \\ (f+1) \end{gathered} \right\rvert\,$	Computed Nominol Comial Compressive Resistonce (kips)	Remorks
			End Bent No. 1
1			
2			
3			
4			
			Intermediate Bent No. 3
5			
6			
7			
8			
9			
			End Bent No. 4
10			
11			
12			
13			

As-Built Drilled Shaft Data				
Shoft No.	$\begin{aligned} & \text { Top of } \\ & \text { Sound } \\ & \text { Rock } \\ & \text { (Elev.) } \end{aligned}$	$\begin{aligned} & \text { Tipo of } \\ & \text { Cosing } \\ & \text { (Elev.) } \end{aligned}$	$\begin{gathered} \text { Bot ofor } \\ \text { Rof } \\ \text { Rocke } \\ \text { Socket } \end{gathered}$	Remorks
				Intermediate Bent No. 2
1				
2				

