

Cell in Tasks: Bridge Detailing Notes (B3.1 "Estimated Quantities" Box)

Estimated Quanti	ities			
Item		Substr.	Superstr.	Total
Class 1 Excavation	cu, yard	80		80
Removal of Bridges (X-186)	lump sum			1
Drilled Shafts (3 ft. 6 in. Dia.)	linear foot	94		94
Rock Sockets (3 ft. 0 in. Dia.)	linear foot	32		32
Video Camera Inspection	each	4		4
Foundation Inspection Holes	linear foot	72		72
Sonic Logging Testing	each	4		4
Galvanized Structural Steel Piles (12 in.)	linear foot	196		196
Pile Point Reinforcement	each	8		8
Class B Concrete (Substructure)	cu, yard	70.4		70.4
Slab on Concrete I-Girder	sq. yard		635	635
Type D Barrier	linear foot		491	491
Type 6 (54 in.), Prestressed Concrete I-Girder	linear foot		632	632
Reinforcing Steel (Bridges)	pound	15,270		15,270
Steel Intermediate Diaphragm for P/S Concrete Girders	each		6	6
Slab Drain	each		36	36
Vertical Drain at End Bents	each			2
Plain Neoprene Bearing Pad	each		6	6
Laminated Neoprene Bearing Pad	each		12	12

All concrete above the construction ioint in the end bents is included in the Estimated Quantities for Slab on Concrete I-Girder.

All reinforcement in the end bents is included in the Estimated Quantities for Slab on Concrete I-Girder.

All reinforcement in the intermediate bent concrete diaphragms except reinforcement embedded in the beam cap is included in the Estimated Quantities for Slab on Concrete I-Girder.

All concrete above the intermediate beam cap is included in the Estimated Quantities for Slab on Concrete I-Girder. Notes B. EPG 751.50

	Found	ati	on Data			
-				Bent	Number	
Туре	Design Data		1	2	3	4
	Pile Type and Size		HP 12×53			HP 12×53
	Number	ea	4			4
	Approximate Length Per Each	f†	30			30
Load Bearing Pile	Pile Point Reinforcement	ea	AII			AII
	Min. Galvanized Penetration (Elev.)	f†	Full length			Full lengt
I I I E	Pile Driving Verification Method		DF			DF
	Resistance Factor		0.4			0.4
	Minimum Nominal Axial Compressive Resistance	kip	505			505
	Number		2	2		
	- Foundation Material			Rock	Rock	
	Levation Range	f†		838-835	844-839	
Rock	♥ Minimum Nominal Axial Compressive Resistance □ (Side Resistance)	ksf		28.6	28.6	
Socket	N Foundation Material			Rock	Rock	
	L Elevation Range	f†		835-821	839-830	
	Minimum Nominal Axial Compressive Resistance (Side Resistance)	ksf		28.6	28.6	
	Minimum Nominal Axial Compressive Resistance (Tip Resistance)	ksf		12.0	12.0	

DF = FHWA-modified Gates Dynamic Formula

Detailed Aug. 2019

Checked_ Aug. 2019

Minimum Nominal Axial Compressive Resistance = <u>Maximum Factored Loads</u> Resistance Factor

Notes E2, EPG 751.50 Minimum Nominal Axial Compressive Resistance = <u>Maximum Factored Loads</u> (Side Resistance + Tip Resistance) Resistance Factors

Manufactured pile point reinforcement shall be used on all piles in this structure.

Sonic logging testing shall be performed on all drilled shafts and rock sockets.

lorder text cell in Tasks: General Annotation (Second Sheet Text)

Notes A, EPG 751.50 General Notes:

Design Specifications:

2020 AASHTO LRFD Bridge Design_Specifications (9th Ed.) Seismic Performance Category A -From Design Layout. If not specified, use "A" Design Logding: Vehicular = HL-93 - From Design Layout Future Wearing Surface = 35 lb/sf (Min.) $Earth = 120 \ Ib/cf$ Equivalent Fluid Pressure = 45 lb/cf Superstructure: Simply-Supported, Non-Composite for dead load. Continuous Composite for live load. Design Unit Stresses: f'c = 3.000 psiClass B Concrete (Substructure)

	1 0 0,00	50 poi
Class B-2 Concrete (Drilled Shafts & Rock Sockets)	f'c = 4.00)0 psi
Class B-1 Concrete (Barrier)	f'c = 4.00)0 psi
Class B-2 Concrete (Superstructure, except Prestressed Girders and Barrier)	f'c = 4,00)0 psi
Reinforcing Steel (Grade 60) Steel Pile (ASTM A709 Grade 50)	fy = 60.00 fy = 50.00	
For precast prestressed panel stresses, see Sheet No For prestressed girder stresses, see Sheets No $\stackrel{1}{,}$ 14 &		

Neoprene Pads:

Neoprene bearing pads shall be 60 durometer and shall be in accordance with Sec 716.

Joint Filler:

All joint filler shall be in accordance with Sec 1057 for preformed sponge rubber expansion and partition joint filler, except as noted.

Reinforcing Steel:

Minimum clearance to reinforcing steel shall be 1 1/2", unless otherwise shown.

The prestressed panel quantities are not included in the table of Estimated Quar I-Girder.

Class B-2 Concrete quantity is based on minimum top flange thickness and minimum

GENERAL NOTES AND QUANTITIES

Note: This drawing is not to scale. Follow dimensions. Sheet No. 2 of 30

	-		
Cell in Tasks: Front Sheets (Hydrologic Data)			
See EPG 751.5.2.1.5 Info from Design Layout for stream	<i>"</i> ти 1		SHOULD
crossing only.	NOT	BE CONS	SIDERED
Hydrologic Data		A CERTIN DOCUMEN	
Drainage Area = 18 mi²			
Design Flood Frequency = 50 years			
Design Flood Discharge = 5,700 cfs			
Design Flood (D.F.) Elevation = 354.4			
Base Flood (100-year)		date pref 2/28/2	
Base Flood Elevation = 354.8			STATE
Base Flood Discharge = 6,700 cfs	*		MO
	DIST	-	SHEET NO.
Estimated Backwater = 0.77 ft	<u> </u>	COUNT	2
Average Velocity thru Opening = 5.7 ft/s		*	
Freeboard (50-year)		JOB N	0.
Freeboard = 1.7 ft		* CONTRACT	. 10
Roadway Overtopping		CONTINACT	10.
Overtopping Flood Discharge = 3,700 cfs		PROJECT	NO.
Overtopping Flood Frequency = 10 years	L	DDIDOS	NO
Overtopping Flood Elevation = 354.1		BRIDGE E X A MF	
See EPG 751.50 for General Notes and Estimated Quantities notes. Notes marked with [MS Cell] in EPG are available as cells in Tasks: Bridge			
Detailing Notes.			
"Notice and Disclaimer Regarding Boring Log Data" may be placed on this sheet if it would not fit	0 I		
on the front sheet. Add "For locations of borings, see Sheet No. 1"	SCRIPTION		
borings, see Sheet No. 1"	SCR		
	DES		
	$\left + \right $	++	+ $+$ $+$
om Bridge Memo Cell in Tasks: Front Sheets	Щ		
ote A3.8) (North Arrow)	DAT		
·	101		T0L 102 36
\sim Proposed Structure	RANSPORTATION		WEST CAPITOL ITY. MO 65102 888-275-6636)
reek / A7987	DR T		т с МО 275
	SPC		5 WES CITY. -888-
	AN		ဖျပ၊
	⊢z		
	Q		ERS DOT
	AND I SS I (MO
	ΥN		-XS
Based on Plat sheet _I in Layout folder, _I	VA, CON		8 - A
OCATION SKETCH See EPG 751.5.2.1.5	HIGHWAYS COMMI	Ň	JEFFERS -888-ASK-MODOT
	Ξ	ų,	╢╲╴
∟ └────Cell in Tasks: Bridge Detailing Notes └───CB3.21 "Estimated Quantities For)	SSOUR I	5	
Round to nearest 1 cubic yard (see EPG 751.50, notes after B3.21)	MISSO		
40 Notes B3c, EPG 751.50			
es used by the State in preparing the cost			
I be measured to the nearest square yard			
y from out to out of bridge slab (or with ent for prestressed panels, conventional			
e considered completely covered by the			
d in the estimated quantities but the nit price.			
in accordance with Sec 703. All hardware			
f the structure shall be coated in accordance finish type I, II or III.			
sed on skewed precast prestressed end panels.			
of Estimated Quantities for Slab on Concrete			
ckness and minimum joint material thickness.			
	1		

IF A SEAL IS PRESENT ON THIS SHEET IT HAS BEEN ELECTRONICALLY SEALED AND D

TRANSPORTATION	DN DATE DESCRIPTION		
COMMISSION			B
			COU H JOB H TRA
		νР	
105 WEST CAPITC			нее 6
JEFFERSON CITY. MO 65102	2		5
-MODOT (1-888-275-6636).

Detailed Aug. 2019 Checked Aug. 2019

Note: This drawing is not to scale. Follow dimensions.

Sheet No. 7 of 30

Example_plans_008_2019_bt2.dgn 37:31 PM 12/28

Note: This drawing is not to scale. Follow dimensions. Sheet No. 9 of 30

	_	_	_	_			
		NOT	S ME BE ' A CEI DOCU	CONS RTIF	I D E I E D		
			DATE /28				
		ROU	TE	T	ST/	ΔTE	
	D		RICT		M	T NO	•
e Splice Detail)		В		UNT	1	0	
utt Splice (Top f Lower section				*			
f lower section o be cut square)				в NC Ж			
		C	ONTF	ACT	ID.	•	
			PROJ	ECT	NO.		
			BRIC				
			EXA	AMP T	LE		_
45°							
SPLICE	NO						
ired)	DESCRIPTION						
rial shall be	SCR I						ľ
ed one inch cations in Sec 702.	Ш						
Sec 702.							
	ш						-
	DATE						
						N	2
	TIC				PITC	6510	6636
	DRT/				⊤ CA	Q	275-
-#6-H302 (Тур.)	ISPC				WES	ΤΥ.	888-
(1)()	RAN	-			105	С z	
	Г Q					ERSO	001
	AN	VI SS	F	. 4		JEFF	OM-
	MISSOURI HIGHWAYS AND TRANSPORTATION	MMD	<u>'</u>		\mathbf{N}	JEFFERSON CITY. MO 65102	-ASI
	GHV	0	č	$\langle \cdot \rangle$			-886
	Ξ		7		$/\!\!/$	ל	-
	IUR I	ſ	5	- (
	SSC		-	- \	5		
	Ν	1					
8							
å ment							
9. 1							
Example_plans_010_2019_bt3.dgn 3:33	7:5	1 PI	M	2/2	87	202	20

Detailed Aug. 2019 Checked Aug. 2019

Note: This drawing is not to scale. Follow dimensions. Sheet No. 11 of 30

Sheet No. 11 of 30

				_
	NOT A			LY SEALED AND DATED.
Key & Bent V KEY -Butt Splice (Top of lower section to be cut square)		E	2020 STATE MO SHEET NO. 11 ITY T ID. T NO. E NO.	IS PRESENT ON THIS SHEET IT HAS BEEN ELECTRONICALLY SEALED AND DATED.
	DESCRIPTION			IF A SEAL I
LE SPLICE quired) terial shall be oved one inch locations in n Sec 702.	TRANSPORTATION DATE		105 WEST CAPITOL XSON CITY. M0 65102	
ets No. 12 & 13. V bars shall be placed f roadway. be shifted to clear piles. by at least 1 1/2 inches.	MISSDURI HIGHWAYS AND	MADOT	JEFERO	
Cable for Bent No. 4 Quantity cu. yard 40 in.) linear foot 120 each 4 cu. yard 16.7 stimated quantities table				
Example plans 011 2019 bt4.dan 3:38	3:00 PM	1 12	/28/202	

General Notes:

Note: This drawing is not to scale. Follow dimensions. Sheet No. 13 of 30

SEAL IS PRESENT ON THIS SHEET IT HAS BEEN ELECTRONICALLY SEALED AT

Note: This drawing is not to scale. Follow dimensions. Sheet No. 17 of

A A A A A A A A A A A A A A A A A A A	ICH MY COUNT SHOULD NOT BE CONSIDERED A CERTIFIED DOCUMENT." DATE PREPARED 12/28/2020 RUTE STATE MO ISTATE MO JOB NO. BR JOB NO. BRIDGE NO. EXAMPLE OUNITS SHEET NO. DECOMMISSION BRIDGE NO. EXAMPLE OUSITION BRIDGE NO. EXAMPLE OUSITION BRIDGE NO. EXAMPLE OUSITIAN SOLUTION
see Sheets No. 14 & 15. Tie Rods, see Sheets No. 14 & 15. shall be built vertical.	MISSOURI HIGHWAYS AND COMMISSIC COMMISSIC

General Notes: Prestressed Panels:

Concrete for prestressed panels c = 6,000 psi, f'ci = 4,000 p

The top surface of all panels sh a depth of scoring of 1/8" perpe strands in the panels.

Prestressing tendons shall be hi seven-wire, low-relaxation stran accordance with AASHTO M 203 Gra strand = 3/8" and nominal area = ultimate strength = 22.95 kips (used with the same spacing and

Initial prestressing force = 17.

The method and sequence of relea on the shop drawings.

Suitable anchorage devices for panels, provided the devices are approved by the engineer, Panel the contractor and shown on the

When squared end panels are used portion shall be cast full depth made for additional concrete and

Support from diaphragm forms is skewed end until cast-in-place of compressive strength.

Prestressed panels shall be brou (SSD) condition just prior to th free standing water on the panel

The prestressed panel quantities estimated quantities for the sla

Reinforcing Steel: All dimensions are out to out.

Hooks and bends shall be in accc Standard Practice for Detailing Stirrup and Tie Dimensions.

Minimum clearance to reinforcing otherwise shown.

If U1 bars interfere with placer be bent over, as necessary, to a

Deformed welded wire reinforceme of reinforcing perpendicular to spacing parallel to strands sufnot be larger than 0.375 inch. 1 reinforcement criteria may be us when required, and placed over

The following reinforcing steel strands with the following maxim #3-P2 bars at 16 inches. WWR at 24 inches,

The #3-U1 bars shall be tied see strands (when placed between P1

Minimum reinforcement steel leng

All reinforcement other than pre

Precast panels may be in contact

S-bars are not listed in the bi

Cost of S-bars will be consider contract unit price for the slat

Joint filler shall be preformed accordance with Sec 1057 or expo bedding material in accordance w

Use Slab Haunching Diagram on Sh thickness of joint filler within Joint Filler Dimensions.

Thicker material may be used on to reduce cast-in-place concrete

The same thickness of preformed where top flange thickness may be thickness between adjacent panel polystyrene bedding material may match haunch height above top o

Joint filler shall be glued to 1 1/2 inches, the joint filler glue used shall be the type reco

Edges of panels shall be uniform before slab reinforcement is pla

Note: This drawing is not to scale. Follow dimensions.

Sheet No. 18 of

			U A T C D
shall be Class A-1 with si.		EDIA SHOULD CONSIDERED	
hall receive a scored finish with endicular to the prestressing		ERTIFIED UMENT."	
igh-tensile strength, uncoated,			
nds for prestressed concrete in ade 270, with nominal diameter of = 0.085 sa in and minimum	DATE	PREPARED	
(270 ksi). Larger strands may be initial tension.	12/2 Route	8/2020 STATE	TDON
.2 kips/strand.	₩ DISTRICT	MO Sheet No.	
asing the strands shall be shown	BR	0UNTY	
lifting panels may be cast in e shown on the shop drawings and lengths shall be determined by	JC	* ^{38 NO.}	IT UAC
d at skewed bents, the skewed	CONT	RACT ID.	
h. No separate payment will be d reinforcing required.		JECT NO.	0
required under the optional concrete has reached 3,000 psi		DGE NO. AMPLE	
ught to saturated surface-dry he deck pour. There shall be no ls or in the grea to be cast.			CENT
s are not included in the table of ab.	ION		
	SCRIPTION		CE VI
ordance with the CRSI Manual of Reinforced Concrete Structures,	DES		<
g steel shall be 1 1/2", unless			
ment of slab steel, U1 loops may	ш		
clear slab steel. ment (WWR) providing a minimum area	DAT		
o strands of 0.22 sq in./ft, with ficient to ensure proper handling. 2 bars shown. Wire diameter shall The above alternative sed in lieu of the #3-P3 bars, a width not less than 2 feet.	TRANSPORTATION	105 WEST CAPITOL N CITY. MO 65102 (1-888-275-6636)	
shall be tied securely to the mum spacing in each direction:	RANSPC	05 WEST CITY• 1-888-2	
curely to #3-P2 bars, to WWR or to bars) at about 3-foot centers.	HIGHWAYS AND TF Commission	Jefferson (1-	
gth shall be 2'-0". estressing strands shall be epoxy	C ON		
		<u>ַ</u> און נ	
t with stirrup reinforcing in	_ /		
II of reinforcing.	Ssour	- &	
ed completely covered by the b.	IW		
fiber expansion joint material in anded or extruded polystyrene with Sec_1073Fill in			
heet No. XX for determining n the limits noted in the table of			
one or both sides of the girder e thickness to within tolerances.			
fiber expansion joint material e of any panel except at locations be stepped. The maximum change in ls shall be 1/4 inch. The y be cut with a transition to f flange.			
the girder. When thickness exceeds shall be glued top and bottom. The ommended by the joint filler			
mly seated on the joint filler aced.			
Example_plans_018_2020_pcp.dgn 3:39	27 PM	12/28/2020	5

Note: This drawing is not to scale. Follow dimensions.

Sheet No. 19 of

Example_plans_019_2020_sdra.dgn	3:39:47 PM	12/28/2020

THIS MEDIA SHOULD NOT BE CONSIDERED

A CERTIFIED

DOCUMENT.

DATE PREPARED

12/28/2020

COUNT *

JOB NO. *

CONTRACT ID

PROJECT NO

BRIDGE NC EXAMPLE

STATE

MO

SHEET NO

19

ROUTE

*

ΒR

NO

S

02 02 6)

EST CAPITO Y. MO 6510 8-275-6630

02 C 02

General Notes:

Contractor shall have the option to construct either steel or FRP slab drains. All drains shall be of same type.

- Slab drain bracket assembly shall be ASTM A709 Grade 36 steel.
- Locate drains in slab by dimensions shown in Part Section Near Drain.
- Reinforcing steel shall be shifted to
- The coil inserts and bracket assembly shall be galvanized in accordance with
- All bolts, hardened washers, lock washers and nuts shall be galvanized in accordance with ASTM A153.
- Shop drawings will not be required for the slab drains and the bracket assembly.
- The coil insert required for the bracket assembly attachment shall be located on the prestressed girder shop drawings.
- Coil inserts shall have a concrete pull-out strength (ultimate load) of at least 2,500 pounds in 5,000 psi concrete.
- The bolt required to attach the slab drain bracket assembly to the prestressed girder web shall be supplied by the prestressed airder fabricator.

Notes for Steel Drain:

Slab drains may be fabricated of either 1/4" welded sheets of ASTM A709 Grade 36 ASTM A500 or A501.

- Outside dimensions of drains are 8" x 4".
- The drains shall be galvanized in accordance with ASTM A123.

Notes for FRP Drain:

Drains shall be machine filament-wound thermosetting resin tubing meeting the requirements of ASTM D2996 with the following exceptions:

Shape of drains shall be rectangular with outside nominal dimensions of $8^{\prime\prime}$ x $4^{\prime\prime}.$

Minimum reinforced wall thickness shall be

The resin used shall be ultraviolet (UV) resistant and/or have UV inhibitors mixed throughout. Drains may have an exterior coating for additional UV resistance.

The color of the slab drain shall be gray (Federal Standard 26373). The color shall be uniform throughout the resin and any

The combination of materials used in the manufacture of the drains shall be tested UV resistance in accordance with ASTM D4329 Cycle A. The representative material shall withstand at least 500 hours of testing with only minor discoloration and without any physical deterioration. The contractor shall furnish the results of the required ultraviolet testing prior to acceptance of the slab drains.

At the contractor's option, drains may be field cut. The method of cutting FRP slab drain shall be as recommended by the manufacturer to ensure a smooth, chip free

Use quarter points for spans less than $75^\prime\cdot$. Use tenth points for spans 75^\prime or more.

Cell in Tasks: Slab Sheet Details (Bottom of Slab Elevations - Quarter Pts or Bottom of Slab Elevations - Tenth Pts) Fill in information from design.

١T	Theoretical Bottom of Slab Elevations at & of Girder (Prior to forming for slab) **											
Girder	Span			brg, -	•							
Number	€ brg.	.25	.50	.75	€ brg.							
1	875.75	875.84	875.92	875.99	876.05							
2	875.98	876.06	876.14	876.21	876.27							
3	875.84	875.92	876.00	876.07	876.13							
	Span (2-3) (91'-6" & brg & brg.)											
	€ brg.	.10	.20	.30	.40	.50	.60	.70	•80	.90	€ brg.	
1	876.05	876.13	876.21	876.28	876.34	876.39	876.43	876.46	876.48	876.50	876.51	
2	876.28	876.36	876.44	876.52	876.58	876.63	876.67	876.70	876.72	876.73	876.73	
3	876.14	876.22	876.29	876.36	876.42	876.47	876.51	876.55	876.57	876.58	876.59	
	Span	(3-4) (9	58′-3″€	brg. –	€ brg.)							
	€ brg.	.25	.50	.75	€ brg.							
1	876.52	876.60	876.68	876.75	876.81							
2	876.74	876.83	876.91	876.97	877.03							
3	876.60	876.69	876.77	876.83	876.89							

** Elevations are based on a constant slab thickness of 8 1/2" and include allowance for theoretical dead load deflections due to weight of slab (including precast panel and barrier curb).

Conversion factors for girder camber (estimated at

0.2 pt. 0.3 pt.	= 0.314 × = 0.593 × = 0.813 × = 0.952 ×	0.5 pt. 0.5 pt.
0.25 pt.	. = 0.7125	x 0.5 pt.

					_
		IS MED T BE CO A CER DOCUM	DNSIDE TIFIED	RED	
) ions due to of slab rier curb	RC [DIS	DATE PH 2/28 UTE 3 TRICT VER J7SC CONTRA PROJEI BRIDC EXAI	/ 202 st N SHEE 2 NTY NON NO. 546 CT NO. CT NO. E NO.		· ·
DIAGRAM	DESCRIPTION				
Details m) design. er after erection days) al Camber after slab mated at 90 days) ical Camber after strand (Estimated at 7 days) $\overline{\frac{A \ B \ C}{\frac{1}{4}'' \ \frac{3}{16}'' \ \frac{1}{16}'' \ \frac{3}{4}''}}$ RAM the camber diagram, in order the slab haunches, an increase proughout the structure shall hal labor or materials is or grade adjustment. Estimated Quantities for Slab = 90 days)	MISSOURI HIGHWAYS AND TRANSPORTATION DATE COMMISSION	MODOT	105 WEST CABITOL	JEFFERSON CITY, MD 65102	1-888-ASK-MODOT (1-888-2/5-6636)

Example_plans_020_2015_hnch.dgn

IS PRESENT ON THIS SHEET IT HAS BEEN ELECTRONICALLY SEALED AND DATEL

TYPE D BARRIER

Sheet No. 23 of

PART ELEVATION OF BARRIER (1) Four feet long, centered on joint, slip-formed option only

Detailed July 2020 Checked July 2020

Note: This drawing is not to scale. Follow dimensions.

Remove if precast

panels are not used in the slab.

Plastic waterstop shall not be used with saw cut joints.

22 IM	MISSOURI HIGHWAYS AND TRANSPORTATION D	DATE DESCRIPTION	TION				
	COMMISSION					12 ROL 15T	
				BR	CON	2/2 JTE € RIC R	BE A (
	MoDOT			IDO	→ TR#	28 T COU	E CI
				CT BE MP	CT	/2 s	
	105 WFST CAPITOL			10.	ID	М нее 2	
	JEFFERSON CITY, MO 65102				•	20 ate 0 t no	
	1-888-ASK-MODOT (1-888-275-6636)).	

barbill i	Effective:	Aug 2008	Supercedes:	Fob	2006

barbill_i	Effective	: Au	ıg.	2008 St	upercede	es: Feb.	2006																				
				BILL	OF R	EINFO	RCINO	S STEE	EL									BILL	OF R	EINFO	RCING	STEE	EL				
MARK NO, D.	(E)	ND.	(X)		1	D	IMENSION		1	1	NOMINAL LENGTH ACTUAL LENGTH	WEIGHT	REQ'D.	MARK NO+	_	(E) ND.	с (x) (x) (x) (z)		1	D	IMENSIONS				NOMINAL FNGTH	ACTUAL	WEI
NO. RE SIZE MARK	LOCATION	SHAPE NO. STIRRUP (S)	ARIES		C	D	E	F	H	K			ND. RE		LOCATION	POXY SHAPE	STIRRUP (S) SUBSTR. (X) VARIES (V) ND FACH	B	C	D	E	F	H	K			
2	SUBSTRUCTURE		0/ -	FI. IN.	FI. IN.	• F I • I N •	FI. IN	FI. IN.	FI. IN.	FI. IN.	FT.IN.FT.IN	· LBS.				E 10		FI. IN		FT. IN.	FI. IN.	FI. IN.	FI. IN.	FI. IN		5 13 3	3
													1	_		E 13		3 7.000		3 7.000	2 7,500					2 12 11	1
	INT. BENT 2												4		DIAPHRAGM	E 19		2 11.000	_							583	;
16 6 D200	KEY	20	x	2 6.000							2626	60	2		DIAPHRAGM DIAPHRAGM	E 10 E 19		3 10.500	4 9.500 3 7.000	2 11.000					12		4
															DIAPHRAGM	E 20		2 6.000	-						2		5
10 8 H200		18	х	30 3.000							32 1 32 1	857															
10 8 H201 10 6 H202		20 20	X X	30 3.000 30 3.000							30 3 30 3 30 3 30 3	808 454	1	6 5 V100	BEAM DIAPHRAGM	E 20 E 20		4 11.000								1 4 11 0 3 10	
14 6 H202		10 S		30 3.000	22,000	3 8.000					7 4 7 0			2 6 V101		E 20		8 1.000								1 8 1	1
														0 6 V103		E 20		8 1.000								1 8 1	it the second se
44 4 P200		16		2 5,500	2 1.000)					8 7 8 7	252		2 6 V104		E 20		7 11.000	_							1 7 11	_
50 6 P201	SHAF T	16	X	2 6.000	3 1.000)					9292	688	3	0 6 V105	WING	E 20		7 11.000)						7 1	1 7 11	-
33 4 U200	BEAM	13 S	x	3 9.000	3 9.000	3 9.000	3 9.000	1			15 9 15 6	342	-													+	+
28 4 U201		13 S		2 6.000		2 6.000					13 3 13 0																+
8 4 U202	BEAM	10 S	х		3 9.000	3 9,000					11 3 11 1	59			END BENT 4												
28 9 V200	SHAFT	20		41 1.000							41 1 41 1	3911		1 6 F400	WINC	E 15	c .	14.000	3 8.000	14.000	12.750	5.875	12.750	5.875	6	0 5 10	
28 9 7200	SHAFT	20	$\left \right $	41 1.000							41 1 41 1	2911			DIAPHRAGM	E 23		3 5.625		14,000	12.150	5.015	2 7.875	2 2,750		5 8 4	4
													1			E 15		14.000		14.000	5.875	12.750	5.875	12.750		6 9 6	ŝ
	INT. BENT 3													5 6 F 403	DIAPHRAGM	E 21	S	6 10.125	5 3 5.625				5 2.875	4 4.750	10 ·	499	j
16 6 D300	KEY	20	x	2 6.000							2626	60	-	8 6 H400	BEAM & DIAPH	1 5 20		34 5.000							34	5 34 5	
18 8 0500	KE I	20	Ĥ	2 8.000							2 0 2 0	00	1		BEAM & DIAPH			34 5.000								5 34 5	5
10 8 H300			х	30 3.000							32 1 32 1	857			DIAPHRAGM	E 20		12 0.000								0 12 0	ر ر
10 8 H301			x	30 3.000							30 3 30 3	808			DIAPHRAGM	E 20		10 1.000	-							1 10 1	1
10 6 H302 14 6 H303		20 10 S	X	30 3.000	22 000	3 8.000					30 3 30 3 7 4 7 0	454) 147			DIAPHRAGM DIAPHRAGM	E 20 E 20		3 8.000			-				3	838 828	
	DE AM				22:000							/ 141	1	_		E 20		17 5.000								5 17 5	5
34 4 P300		16		2 5.500	2 1.000						8 7 8 7	195	4			E 20		16 5.000								5 16 5	; ·
66 6 P301	SHAFT	16	X	2 6.000	3 1.000						292	909		3 5 H408	STRAND TIE	E 23	S	15.000	2 0.000	15.000	9.625	11.500	9.625	11.500	4	6 4 5	ز
33 4 U300	BEAM	13 S	x	3 9.000	3 9.000	3 9.000	3 9.000	1			15 9 15 6	342		8 5 U400	BEAM	E 10	S		4 11.000	3 7.000					13	5 13 3	3
28 4 U301		13 S		2 6.000							13 3 13 0		1			E 13		3 7.000			2 7.500					2 12 11	1
8 4 U302	BEAM	10 S	х		3 9.000	3 9.000					11 3 11 1	59	4		DIAPHRAGM	E 19		2 11.000							8		5
28 9 V300	SHAFT	20		35 6.000							35 6 35 6	3380	2		DIAPHRAGM DIAPHRAGM	E 10 E 19		3 10.500	4 9.500 3 7.000	2 11,000					12	6 12 4	
28 9 900	SHAFT	20		55 8.000							35 6 55 6	5 5560			DIAPHRAGM	E 20		2 6.000	-						2		- 3
																										-	
	SUPERSTR.	\square	\square											6 5 V400		E 20		4 11.000								1 4 11	_
	END BENT 1													9 6 V401 2 6 V402	DIAPHRAGM	E 20 E 20		3 10.000	_							0 3 1C 1 8 1	-
														0 6 V402		E 20		8 0.000								0 8 0	5
11 6 F100		15 S		14.000		14.000	12.750	5.875			6 0 5 10			2 6 V404		E 20		8 2.000								282	_
		23 S		3 5.625					2 7.875		8 5 8 4		3	0 6 V405	WING	E 20		8 1.000)						8	1 8 1	
11 6 F102		15 S 21 S			7 2.000		5.875	12.750	5.875 5 2.875		9 6 9 6 10 4 9 9	-	_								-						
5 6 1 103		21 5		0 101125	5 5.025	,			5 2:015	4.130		15															
	BEAM & DIAPH E										34 5 34 5																
	BEAM & DIAPH E			34 5.000							34 5 34 5				DIAPH. AT	++-									<u> </u>	<u> </u>	+
		20 20		12 0.000							12 0 12 0 10 1 10 1		-		INT. BENTS	++										+	+
		20	\vdash	3 8.000		1					3 8 3 8		1	6 6 H5O	DIAPHRAGM	E 20		10 1.000							10	1 10 1	it –
	DIAPHRAGM E	20		2 8,000							2828	16	1	6 4 H51	DIAPHRAGM	E 20		12 0.000								0 12 0	_
16 8 H106		20		17 5.000							17 5 17 5	-			DIAPHRAGM	E 19		-	3 1.500							0 3 11	_
48 6 H107 3 5 H108		20 23 S			2 0.000	15.000	9.625	11.500	9.625	11.500	16 5 16 5 4 6 4 5	5 1184 5 14		_	STRAND TIE	E 23	S S	15.000	-		9.625	11.500	9.625 9.625			534 645	_
		25 5						1													3.025		3.023			+	+
													1	6 6 U5O	DIAPHRAGM	E 28	S		3 1.000	4 11.000	14.000					2 8 10	ر ر
6d FOR #4 AND	#5 , ၂୦																							_	B	-	

6d FOR #4 AND 12d FOR

			100K D 0 - 50 ·		0113	
~	BAR	D	90° HOOK	135°		Ħ
×	SIZE	(IN.)	HODK A OR G	HOOK A DR G	APPROX. H	σ
0,	#4	2″	4 1/2″	4 1/2"	3″	
/	#5	2 1/2"	6″	5 1/2"	3 3/4"	
	#6	4 1/2″	12″	8″	4 1/2"	
	NOTE; UN	LESS OTH	HERWISE	NOTED DI	AMETER	
		HE SAME			ND HOOKS	-

END	ноок	DIMENSIONS

				ALL GRADES	•
	BAR SIZE	D (IN.)	180*	HOOKS	90° HOOKS
	SIZE	(10.7	A OR G	J	A OR G
•	#3	2 1/4"	5″	3″	6″
	#4	3"	6″	4″	8″
1	#5	3 3/4"	7″	5″	10″
•	#6	4 1/2"	8″	6″	12″
5	#7	5 1/4"	10″	7"	14″
_	#8	6″	11″	8″	16″
_	#9	9 1/2"	15″	11 3/4"	19″
	#10	10 3/4"	17″	13 1/4"	22″
	#11	12″	19″	14 3/4"	2'-0"
	#14	18 1/4″	2'-3"	21 3/4"	2′-7″

NOTE:	
ALL STANDARD HOOKS AND BENDS OTHER THAN 180 DEGREE ARE TO BE BENT WITH SAME	
PROCEDURE AS FOR 90 DEGREE STANDARD HOOKS.	
HOOKS AND BENDS SHALL BE IN ACCORDANCE WITH THE PROCEDURES AS SHOWN ON THIS SHEE	Τ.

- к

<u>∿ –</u>

SHAPE 33

HOUGED HE AS TOK SO LEVELE IN ACCORDANCE WITH THE PROCEDURES AS SHOWN ON THIS SHEET. E = EPOXY COATED REINFORCEMENT. S = STIRUP. X = BAR IS INCLUDED IN SUBSTRUCTURE QUANTITIES. Y = BAR JIMENSIONS VARY IN EQUAL INCREMENTS BETWEEN DIMENSIONS SHOWN ON THIS LINE AND THE FOLLOWING LINE. NO. EA. = NUMBER OF BARS OF EACH LENGTH. NOMINAL LENGTHS ARE MASSUE ON QUIT TO QUI DIMENSIONS SHOWN IN BENDING DIAGRAMS AND ARE LISTED FOR FABRICATORS USE. (NEAREST INCH) ACTUAL LENGTHS ARE MASSUED ALDING CENTERLINE BAR TO THE NEAREST INCH. PAYWEIGHTS ARE BASED ON CUILLENGTHS. FOUR ANGLE OR CHANNEL SPACERS ARE REQUIRED FOR EACH COLUMN SPIRAL. SPACERS ARE TO BE FLACED ON INSIDE OF SPIRALS. LENGTH AND WEIGHT OF COLUMN SPIRALS DO NOT INCLUDE SFLICES OR SPACERS. REINFORCING STEEL (GRADE GO) FY = 60.000 PSI.

Detailed Aug. 2019 Checked Aug. 2019

barb	ill_i	Effectiv	/e: /	Aug.	20	008 S	upercede	s: Feb.	2006																						
						BILL	OF R	EINFC	DRCIN	G STE	EL										BILL	OF	REINF	ORC	INC	G STE	EL				
0,D.	MARK NO.		(E) 40.	(S) (X)	СН (1		DIMENSION	IS			NOMINAL	ACTUAL	WEIGH		MARK NO+		(E) 40.	с (<u>x</u>)				DIMEN	ISION	s	1	-1	NOMINAL LENGTH	ACTUAL	2 WF
RE	S I ZE MARK	LOCATION	EPOXY (E) SHAPE NO.	STR.	RIES D. EA	В	C	D	E	F	Н	К	NOM F	ACT			S I ZE MARK	LOCATION	JXY HAPE N	STIRRUP (S) SUBSTR. (X) VARIES (V) NO. EACH	В	C	D		E	F	Н	K	LEN LEN	ACT	
N	S I M				AF N	FT. IN.	FT. IN.	FT. IN	.FT. IN	.FT. IN	.FT. IN.	FT. IN	FT.IN	I.FT.IN.		ġ	S I MZ			S UB	FT. IN	1. FT. 1	N.FT.	[N. FT.	IN.	FT. IN	FT. IN	.FT. I	N.FT.IN.	.FT.IN	1. I
56	4 U51	DIAPHRAGM	E 28	s			2 9,000	4 11.000	0 12.000	2			8	8 8 6	31	י_ ⊢	7 8		E			_							_	<u> </u>	+
16	5 V50	DIAPHRAGM	E 20			5 0.000	1						5	0 5 0	8	3	8		E												
-		SLAB		+										-		┨┝──	9	TOTAL						_							_
																		TOTAL	E												
82	6 S1		E 20	+	V 2	2 2 1.000							-	1 2 1	170	.	_													<u> </u>	_
-		INCREMENT = 7.125 INCH	+	+		25 11.000		-					25 1	1 25 11	172			Slab on										-	<u> </u>	+	+
386	6 S2		E 20			26 5.000							26	5 26 5	1531			Girder											+	+	+
	6 S3		E 20			56 5.000								5 56 5	779																
	7 54		E 20			50 9.000								9 50 9	414		4		E												
	7 \$5		E 20			36 3.000							-	3 36 3	296		5		E										<u> </u>	<u> </u>	+
	6 S6 5 S7		E 20 E 20	_		55 10.000 3 8.000		+			+			0 55 10 8 3 8			6		E	+++									+	+	+
		02.10				0 01000											8		E										+	-	+
																		TOTAL													
		BARRIER CURB																										_		<u> </u>	
146	5 K1	BARRIER CURB	F 19	_		2 5,000	5,125						2 1	0 2 9	41			Reinforcing												+	+
	5 K2	BARRIER CURB		_		5,125	11,125		0		2.000	17.875	-	0 2 9				Steel											+	+	+
94	5 K 3	BARRIER CURB	E 27	s		3 0.000	5.125	12.000	0 2 2.125	5	9.875	6.875	6	765				(Bridges)											-	1	
	5 K 4	BARRIER CURB	_	_		3 0.000	6.000						-	262			4														
	5 K5	BARRIER CURB	_	_		2 6.500	6.750				5.500	4.000		6 3 5	1		6													<u> </u>	
	5 K6 5 K7	BARRIER CURB BARRIER CURB	_	_		2 5.500 2 4.125	7.875				6.500 7.875	4.500	-	635 635	1		8												+	+	+
	5 K8	BARRIER CURB		_		2 2.750	11.250				9.250	6,500		6 3 6				TOTAL											+	-	+
48	5 K 9	BARRIER CURB				5 7,000							_	757	28																
	4 K10					15 1.000							-	1 15 1	22													_		<u> </u>	_
	5 K11 5 K12	BARRIER CURB BARRIER CURB	_	_		2 2.125	5.125	12.000	0 7.125	5 12.000	2 2.000 9.875	2.375	-	4 4 4 5 4 2	1		-	Safety Barrier												+	+
	4 K13		_	_		16 3.000	5.125	12.000	1.12	12.000	5 5.015	0.015		3 16 3				Curb											+	+	+
																	4		E										-	1	-
_	5 R1	BARRIER CURB	_			2 6.000	4.250		5		2 6.000	3.000	5				5		E												
	5 R3	BARRIER CURB	_	_		17.000	6.000						-	3 0 22				TOTAL										_	<u> </u>	──	_
	5 R4 5 R5	BARRIER CURB BARRIER CURB	_			9 9.000	6,000	11.250	0 7.000	12.000	9,250	6.375	_	0 2 10 9 9 9																	-
	5 R6	BARRIER CURB	-	+		47 1.000							_	9 9 9 9 1 47 1	68		1	Slip Form	$\left \right $										+	+	+
	5 R7	BARRIER CURB				37 10.000							_	0 37 10				Option													1
14	5 R8	BARRIER CURB	E 20			46 0.000							46	0 46 0	67	2	5		E											I	T
—				+														TOTAL	\parallel	+++				_					——	<u> </u>	+
<u> </u>		SLIP FORM	+	+							+			+		┨┣──			$\left \right $	+++				_						+	+
		BARRIER CURB	+	+				1					1	1		1┣──			H	+++		+							+	+	+
	5 C1		E 20			10 0.000								0 10 0																	
8	5 C2	SLIP FORM	E 20	++		15 2.000							15	2 15 2	12	4															+
			+	+				+			+		+	+					$\left \right $										+	+	+
			+	+										1		1			$\left \right $										+	+	+
		TOTALS	\square	Ц															$\downarrow\downarrow\downarrow$											<u> </u>	\perp
<u> </u>			+	+						-					4 7 7					+++								-	<u> </u>	+	+
	4		E	+				-						+	173 114		-		$\left \right $	+++		-		_						+	+
	5		E	+			1						1	1	1354				$\left \right $										+	+	+
	6														291																T
	6		E												3487	4															

6d FOR #4 AND #5, 12d FOR #6

ျပ

_									
			STI	RRUP H	100K D	IMENSI	ONS	DET	AILING
			(GRADES 4	0 - 50 -	- 60 KSI			
` /	×	、	BAR SIZE	D (IN.)	90° HOOK HODK A OR G	135° HOOK A OR G	HOOK APPROX .	The second secon	90°
	्०		#4	2″	4 1/2"	4 1/2"	3″		
)	Ŷ		#5	2 1/2"	6″	5 1/2"	3 3/4"	DE T	ALLING
Ì			#6	4 1/2″	12″	8″	4 1/2″		
			NOTE: UN "D" IS T DN A BAR	HE SAME	HERWISE FOR ALL	NOTED D BENDS	IAMETER AND HOOKS	₹ 180	
								100	

END	HOOK	DIMENSIONS

		ALL GRADES			
BAR SIZE	D (IN.)	180° HOOKS		90° HOOKS	
SIZE	(10.7	A OR G	J	A OR G	
#3	2 1/4"	5″	3″	6″	
#4	3"	6″	4″	8″	
#5	3 3/4"	7″	5″	10″	
#6	4 1/2"	8″	6″	12″	
#7	5 1/4"	10″	7″	14″	
#8	6″	11″	8″	16″	
#9	9 1/2"	15″	11 3/4"	19″	
#10	10 3/4"	17″	13 1/4"	22″	
#11	12″	19″	14 3/4"	2'-0"	
#14	18 1/4"	2'-3"	21 3/4"	2'-7"	

_	NOTE:
	ALL STANDARD HOOKS AND BENDS OTHER THAN 180 DEGREE ARE TO BE BENT WITH SAME
	PROCEDURE AS FOR 90 DEGREE STANDARD HOOKS.
┥	HOOKS AND BENDS SHALL BE IN ACCORDANCE WITH THE PROCEDURES AS SHOWN ON THIS SHEET.

В

N ⊔

SHAPE 33

HODŘŠ AND BĚNDŠ SHÁLL BE IN ACCORDÁNCE WÍTH THE PROCEDURES AS SHOWN ON THIS SHEET. = = POXY COATED REINFORCEMENT. S = STIRUP. X = BAR IS INCLUDED IN SUBSTRUCTURE QUANTITIES. V = BAR DIMENSIONS VARY IN EQUAL INCREMENTS BETWEEN DIMENSIONS SHOWN ON THIS LINE AND THE FOLLOWING LINE. NO. EA. = NUMBER OF BARS OF EACH LENGTH. NOMINAL LENGTHS ARE BASED OF OLO UT TO DUT DIMENSIONS SHOWN IN BENDING DIAGRAMS AND ARE LISTED FOR FABRICATORS USE. (NEAREST INCH) ACTUAL LENGTHS ARE MEASURED ALDNG CENTERLINE BAR TO THE NEAREST INCH. "AYWEIGHTS ARE BASED ON ACTUAL LENGTHS. "AUWEIGHTS ARE BASED ON ACTUAL LENGTHS. "BUR ANGLE OR CHANNEL SPACERS ARE REQUIRED FOR EACH COLUMN SPIRAL. SPACERS ARE TO BE PLACED ON INSIDE OF SPIRALS. LENGTH AND WEIGHT OF COLUMN SPIRALS DO NOT INCLUDE SPLICES OR SPACERS. REINFORCING STEEL (GRADE 60) FY = 60.000 PSI.

Detailed Aug. 2019 Checked Aug. 2019

Note: This drawing is not to scale. Follow dimensions.

Sheet No. 28 of 30

Modify tables as needed

		ļ	As-Built Pile Data
Pile No.	Length in Place (ft)	Computed Nominal Axial Compressive Resistance (kips)	Remarks
			End Bent No. 1
1			
2			
3			
4			
			Intermediate Bent No. 3
5			
6			
7			
8			
9			
			End Bent No. 4
10			
11			
12			
13			

	As-Built Drilled Shaft Data				
Shaft No.	Top of Sound Rock (Elev.)	Tip of Casing (Elev.)	Bottom of Rock Socket (Elev.)	Remarks	
				Intermediate Bent No. 2	
1					
2					

Note: Indicate in remarks column: A. Pile type and grade B. Batter C. Driven to practical refusal

This sheet to be completed by MoDOT construction personnel.

Detailed Checked

AS-BUILT PILE AND DRILLED SHAFT DATA

Note: This drawing is not to scale, Follow dimensions. Sheet No. of

Missouri Department of Transportation			PROJECT NAME <u>Bridge F</u> PROJECT LOCATION <u>Ov</u> CLIENT			USCS Low Plasticity Clay USCS Poorly-graded Sand		
			PROJECT NUMBER J3PC	568-A7640				
	90 80	70	<u>60 50</u>	40	30 20	<u> 10 </u>		
0	<u>Bent 1</u>					Be		
	V-20-42 (101) 480+12.0 20.0 L					V-20-4		
0	ELEV.732.80					481+08.0 ELEV.		
0	N _{to} or PP [RQD] (tsf)					N ₆₀ or [RQD]		
0	6 0.75					6		
0	0.0							
	3 0.25					4		
o	3 0.25							
	5 0.5					3		
o	5 0.5							
	34					101		
o	10 2.0							
	9 0.75					16		
0	8 0.5							
	20 3.0					15		
0	15 1.5							
	51 5.0					56		
0	61 5.0					27		
0	30							
	25 3.0					20		
0	22 3.0							
	22 2.25							
0	20 2.0							
0	90 80	70	<u> </u>	: 40	<u> </u>	10 0		

Standard sheet found in ProjectWise under Bridge/A_BR_Std_Dwgs/Boring Template BOR/ BOR_01.dgn for two portrait-oriented sheets, BOR_02.dgn for one landscape-oriented sheet. The magenta box is for ease of placement only and may be ignored and deleted.

BORING DATA

See EPG 751.5.8.4 for a link to Instructions for Attaching Boring Log PDFs to Final Plans

Detailed Aug. 2019 Checked Aug. 2019

Note: For locations of borings, see Sheet No. 1. Note: This drawing is not to scale. Follow dimensions. Sheet No. 30 of 30 Showing only one boring sheet in this example, but there may be several.

