speed. V	reached,	For average running speed on exit curve $\left V_a'\right $ (km/h)								
(km/h)	V_a (km/h)	0	20	28	35	42	51	63	70	
50	47	75	70	60	45	_		_		
60	55	95	90	80	65	55	_		_	
70	63	110	105	95	85	70	55		_	
80	70	130	125	115	100	90	80	55	_	
90	77	145	140	135	120	110	100	75	60	
100	85	170	165	155	145	135	120	100	85	
110	91	180	180	170	160	150	140	120	105	
120	98	200	195	185	175	170	155	140	120	

V = design speed of highway (km/h)

 V_a = average running speed on highway (km/h)

 $V_N = \text{design speed of exit curve (km/h)}$

 V'_a = average running speed on exit curve (km/h)

US Customary											
Deceleration length, L (ft) for design speed of exit curve, $V\!N$ (mph)											
		Stop condition	15	20	25	30	35	40	45	50	
Highway	Speed		For average running speed on exit curve, V_a^\prime (mph)								
design speed, V	reached, V_a										
(mph)	(mph)	0	14	18	22	26	30	36	40	44	
30	28	235	200	170	140		_		_		
35	32	280	250	210	185	150	_		_		
40	36	320	295	265	235	185	155	_		_	
45	40	385	350	325	295	250	220	_	_		
50	44	435	405	385	355	315	285	225	175	_	
55	48	480	455	440	410	380	350	285	235	_	
60	52	530	500	480	460	430	405	350	300	240	
65	55	570	540	520	500	470	440	390	340	280	
70	58	615	590	570	550	520	490	440	390	340	
75	61	660	635	620	600	575	535	490	440	390	

V = design speed of highway (mph)

 V_a = average running speed on highway (mph)

 V_N = design speed of exit curve (mph)

 $V'_{a} =$ average running speed on exit curve (mph)

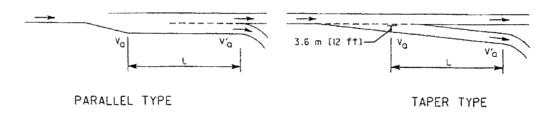


Exhibit 10-73. Minimum Deceleration Lengths for Exit Terminals with Flat Grades of Two Percent or Less