

CADD Std: B3.1 Estimated Quantities, Bridges (Detailing Notes)

Estimated Quantities												
I t em		Substr.	Superstr.	Total								
Class 1 Excavation	cu. yard	80		80								
Removal of Bridges (X-186)	lump sum			1								
Drilled Shafts (3 ft. 6 in. Dia.)	linear foot	94		94 i								
Rock Sockets (3 ft. 0 in. Dia.)	linear foot	32		32								
Video Camera Inspection	each	4		4								
Foundation Inspection Holes	linear foot	1 72		72 I								
Sonic Logging Testing	each	4		4								
Galvanized Structural Steel Piles (12 in.)	linear foot	196		196								
Pile Point Reinforcement	each	1 8		8 1								
Class B Concrete (Substructure)	cu. yard	70.4		70.4								
Slab on Concrete I-Girder	sq. yard		635	635								
Type D Barrier	linear foot		491	491 I								
Type 6 (54 in.), Prestressed Concrete I-Girder	linear foot		632	632								
Reinforcing Steel (Bridges)	pound	15,270		15,270								
Steel Intermediate Diaphragm for P/S Concrete Girders	each	I	6	6 I								
Slab Drain	each		36	36								
Vertical Drain at End Bents	each			2								
Plain Neoprene Bearing Pad	each	I	6	6 I								
Laminated Neoprene Bearing Pad	each		12	12								
			& checker o									
Pay items & units from EPG 751.6	Pay items & units from EPG 751.6											

All concrete above the construction joint in the end bents is included in the Estimated Quantities for Slab on Concrete I-Girder

All reinforcement in the end bents is included in the Estimated Quantities for Slab on Concrete I-Girder.

All reinforcement in the intermediate bent concrete diaphragms except reinforcement embedded in the beam cap is included in the Estimated Quantities for Slab on Concrete I-Girder

All concrete above the intermediate beam cap is included in the Estimated Quantities for Slab on Concrete I-Girder.

Notes from EPG 751.50. Section B

	Founda	ıt i	on Data			
-	Davis Dala			Bent	Number	
Туре	Design Data		1	2	3	4
	Pile Type and Size		HP 12x53			HP 12x53
	Numb e r	e a	4			4
	Approximate Length Per Each	ft	30			30
Load Bearing Pile	Pile Point Reinforcement	еa	AII			AII
	Min. Galvanized Penetration (Elev.)	ft	Full length			Full lengt
	Pile Driving Verification Method		DF			DF
	Resistance Factor		0.4			0.4
	Minimum Nominal Axial Compressive Resistance	kip	505			505
	Numb e r	еa		2	2	
	⊶ Foundation Material			Rock	Rock	
	⊾ Elevation Range	ft		838-835	844-839	
Rock	Minimum Nominal Axial Compressive Resistance (Side Resistance)	ksf		28.6	28.6	
Socket	N Foundation Material			Rock	Rock	
	⊆ Elevation Range	ft		835-821	839-830	
	Minimum Nominal Axial Compressive Resistance (Side Resistance)	ksf		28.6	28.6	
	Minimum Nominal Axial Compressive Resistance (Tip Resistance)	ksf		12.0	12.0	

DF = FHWA-modified Gates Dynamic Formula

Minimum Nominal Axial Compressive Resistance = <u>Maximum Factored Loads</u> Resistance Factor

Notes from EPG 751.50.

Minimum Nominal Axial Compressive Resistance = <u>Maximum Factored Loads</u> (Side Resistance + Tip Resistance) Resistance Factor

Manufactured pile point reinforcement shall be used on all piles in this structure.

Sonic logging testing shall be performed on all drilled shafts and rock sockets.

CADD Std: Second Sheet Text (General Annotation) Detailed Aug. 2019 -----

Note: This drawing is not to scale. Follow dimensions.

General Notes: Notes from EPG 751.50, Section A Design Specifications:

2020 AASHTO LRFD Bridge Design Specifications (9th Ed.) Seismic Performance Category A If not specified, use "A"

Design Loading: Vehicular = HL -93 From Bridge Memo
Future Wearing Surface = 35 lb/sf (Min.) Earth = 120 lb/cf

Equivalent Fluid Pressure = 45 lb/cf Superstructure: Simply-Supported, Non-Composite for dead load. Continuous Composite for live load.

Design Unit Stresses:

Class B Concrete (Substructure) f'c = 3,000 psiClass B-2 Concrete (Drilled Shafts & Rock Sockets) f'c = 4,000 psif'c = 4,000 psiClass B-1 Concrete (Barrier) Class B-2 Concrete (Superstructure, except Prestressed Girders and Barrier) f'c = 4,000 psify = 60,000 psiReinforcing Steel (Grade 60) Steel Pile (ASTM A709 Grade 50) fy = 50,000 psiFor precast prestressed panel stresses, see Sheet No. 18. For prestressed girder stresses, see Sheets No. 14 & 15.

Neoprene Pads:

Neoprene bearing pads shall be 60 durometer and shall be in accordance with Sec 716.

Joint Filler:

All joint filler shall be in accordance with Sec 1057 for preformed sponge rubber expansion and partition joint filler, except as noted.

Reinforcing Steel:

Minimum clearance to reinforcing steel shall be 1 1/2", unless otherwise shown.

Traffic Handling:

Structure to be closed during construction. Traffic to be maintained on other routes. See roadway plans for traffic control.

Reinforcing Steel (Epoxy Coated)

Sheet_No. 2 of

MoDOT Construction personnel will indicate type of joint filler the type of joint filler option used under the precast panels for this structure:

Constant Joint Filler ☐ Variable Joint Filler

CADD Std: E2.1 Foundation Data (Detailing Notes) Design Layout

Existing Structure X-186 (To be removed)-Proposed Structure Creek Ë Structure Beg. Sta. 652+93.72-CADD Std North Arrow (Front Sheets

Detailing Notes.

LOCATION SKETCH

Estimated Ouantities for Slab on Concrete I-Girder Total Class B-2 Concrete 204 🚄 cu. yard

See EPG 751.5.2.1.5.1

From Bridge Memo (Note A3.8)

| |Cell in Tasks: Bridge Detailing Notes |(B3.21 "Estimated Quantities For) Round to nearest 1 cubic yard

CADD Std: Hydrologic Data with Freeboard

Design Flood Frequency = 50 years Design Flood Discharge = 5,700 cfs

Base Flood Elevation = 354.8

Estimated Backwater = 0.77 ft

Base Flood Discharge = 6,700 cfs

Design Flood (D.F.) Elevation = 354.4Base Flood (100-year)

Average Velocity thru Opening = 5.7 ft/s

Freeboard (50-year)

Roadway Overtopping

Overtopping Flood Discharge = 3,700 cfs

Overtopping Flood Frequency = 10 years

See EPG 751.50 for General Notes and Estimated Quantities notes. Notes marked with [MS Cell] in EPG are available as cells in CADD Std:

"Notice and Disclaimer Regarding Boring Log Data" may be placed on this sheet if it would not fit on the front sheet. Add "For locations of borings, see Sheet No. 1"

Overtopping Flood Elevation = 354.1

Drainage Area = 18 mi²

Freeboard = 1.7 ft

(Front Sheets)
See EPG 751.5.2.1.5.3
Info from Bridge Memo for stream crossing only.

Hydrologic Data

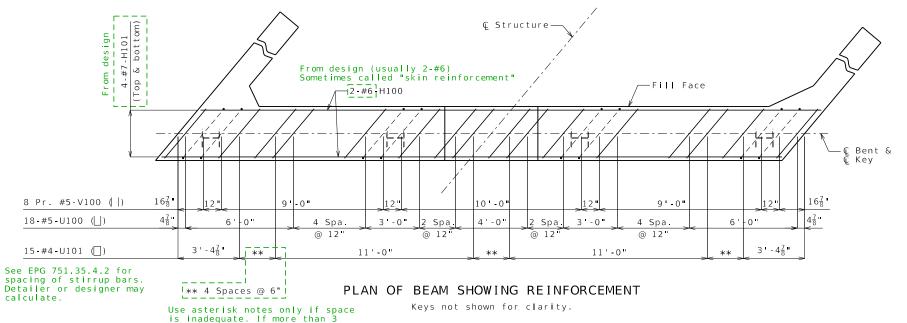
(see EPG 751.50, notes after B3.21)

Notes in EPG 751.50 Section B3c The table of Estimated Quantities for represents the quantities used by the State in preparing the cost estimate for concrete slabs. The area of the concrete slab will be measured to the nearest square yard longitudinally from end of slab to end of slab and transversely from out to out of bridge slab (or with the horizontal dimensions as shown on the plan of slab). Payment for prestressed panels, conventional forms, all concrete and epoxy coated reinforcing steel will be considered completely covered by the contract unit price for the slab. Variations may be encountered in the estimated quantities but the variations cannot be used for an adjustment in the contract unit price.

pound 49,540

Method of forming the slab shall be as shown on the plans and in accordance with Sec 703. All hardware for forming the slab to be left in place as a permanent part of the structure shall be coated in accordance with ASTM A123 or ASTM B633 with a thickness class SC 4 and a finish type I, II or III.

The Estimated Quantities for Slab on Concrete I-Girder are based on skewed precast prestressed end panels.


The prestressed panel quantities are not included in the table of Estimated Quantities for Slab on Concrete I Girder

Class B-2 Concrete quantity is based on minimum top flange thickness and minimum joint material thickness.

Example_plans_002_2023_Qty.dgn 12:44:57 PM 12/28/2023

12/28/2023 ROUTE MO SHEET NO 2 BR COUNT LOB NO CONTRACT ID PROJECT NO. EXAMPLE

See EPG 751.35 Concrete Pile Cap Integral End Bents. End Bent No. 1 is shown looking back-station (if standing on the bridge, looking back toward the beginning station). All other bents are shown looking ahead-station (looking ahead from beginning station). CADD Std: Section thru Key for Integral Bent (End Bents) 12/28/2023 Half of roadway width Match thickness of bearing pad. If bearing pad is tapered, omit thickness here.-MO SHEET NO Girder spacing from design 3 BR Symm. abt. © Bent except as shown — See EPG 751.35.3.2-40000000 LOB NO. Ç Girder⊸ - C Girder From design CADD Std: Hatching CONTRACT ID. 19" x 22 1/2" x 1/2" Plain ↓ !Neoprene Bearing Pad (Typ.)↓ or Crosshatching (Area Patterns) C Roadway Adjust scale as needed-¦1 7등 ''' PROJECT NO. -Fill area under girder with 1/2" jt. filler (Typ.) SECTION THRU KEY 151 © Bent & © Key Const. Jt. BRIDGE NO — Fill Face Key" (Typ.) EXAMPLE Butt Splice (Top of lower section to be cut square) Pile spacing from design CADD Std: Pile Section Ç Bearing & Ç Pile− - € Pile -Ç Pile (Piles) Use appropriate size, rotate as needed. $2 - 0\frac{3}{8}$ $5 - 1\frac{1}{2}$ 10 - 3 " 10 - 3 4 - 4 1 " -----+3--05 ---------13--0⁵------- 41 " 6<u>1</u> " 3 ' - 4³ " 3 - 4³/₈" $6\frac{1}{2}$ " 23 2'-7" 9'-0" 2'-7" | 2'-7" 8 - 4 $14 - 9\frac{7}{8}$ 5 | 2" $14' - 9\frac{7}{8}"$ STEEL PILE SPLICE 17'-47" 17'-47" (If required) $34 - 9\frac{3}{4}$ * Galvanizing material shall be omitted or removed one inch clear of weld locations in PLAN OF BEAM accordance with Sec 702. CADD Std: Pile Splice Detail (Piles) General Notes: EPG 751.50

Note: This drawing is not to scale. Follow dimensions.

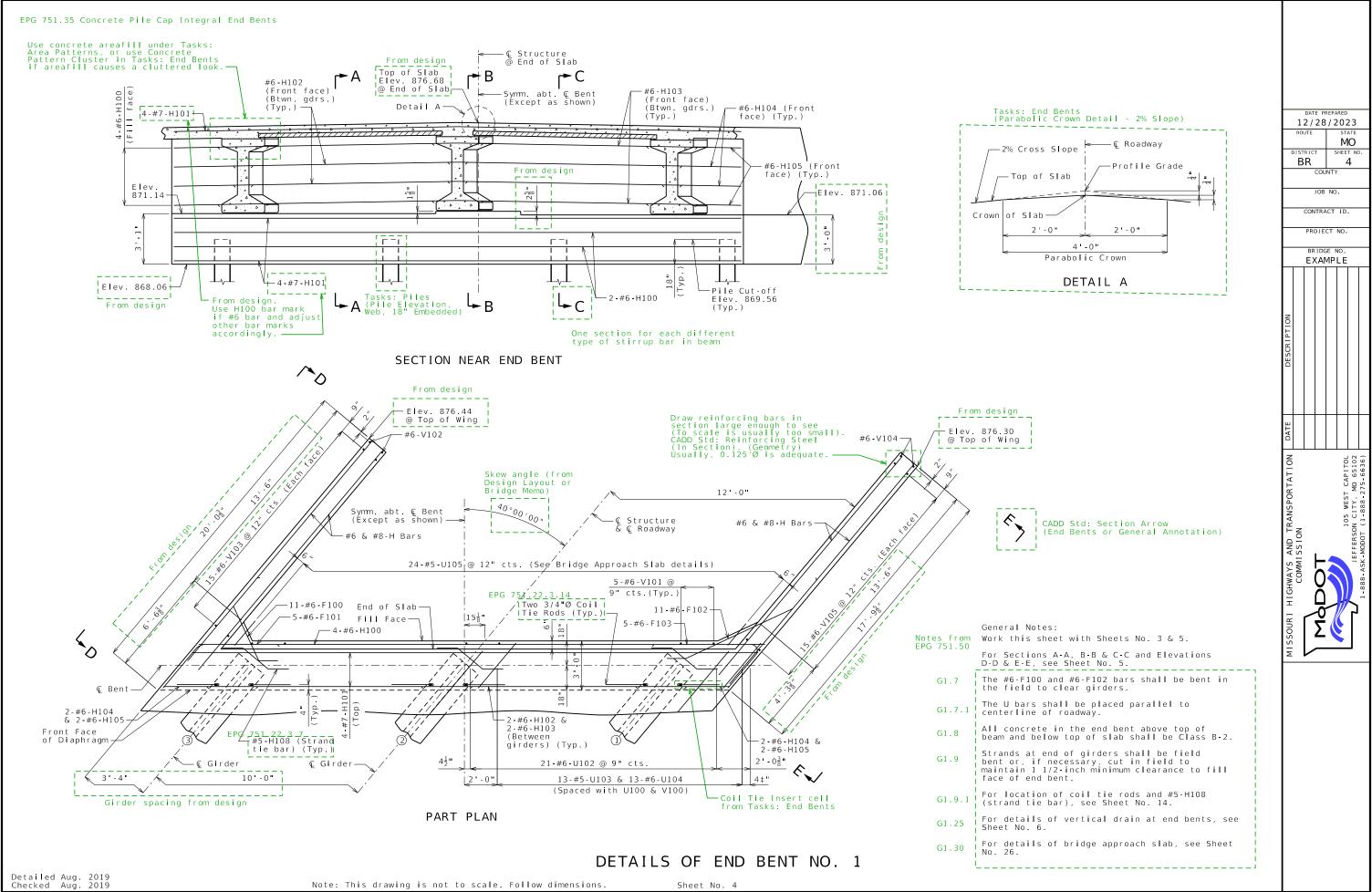
asterisks are needed, use numbers in parentheses instead

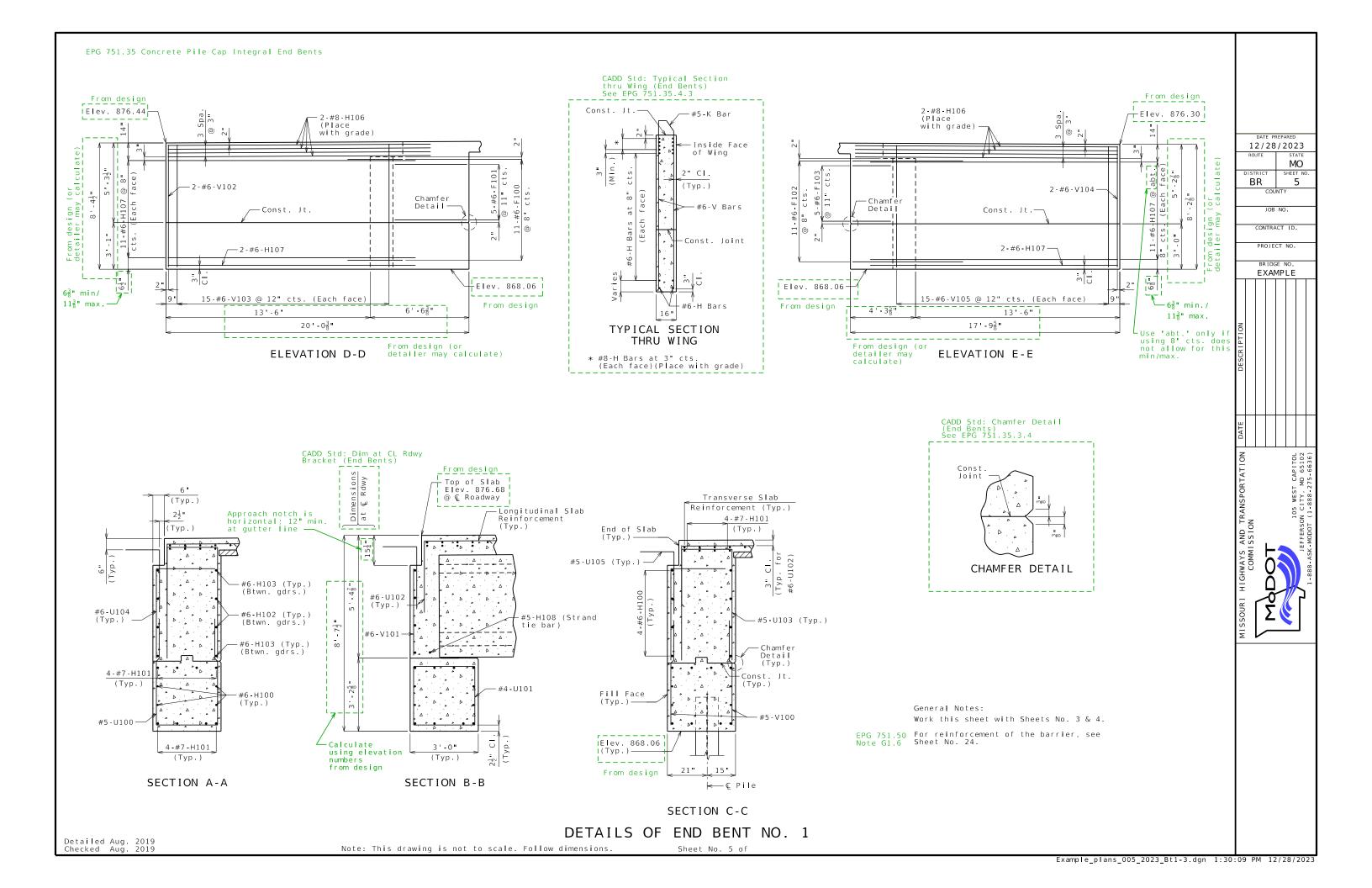
(e.g. (1), (2), etc.)

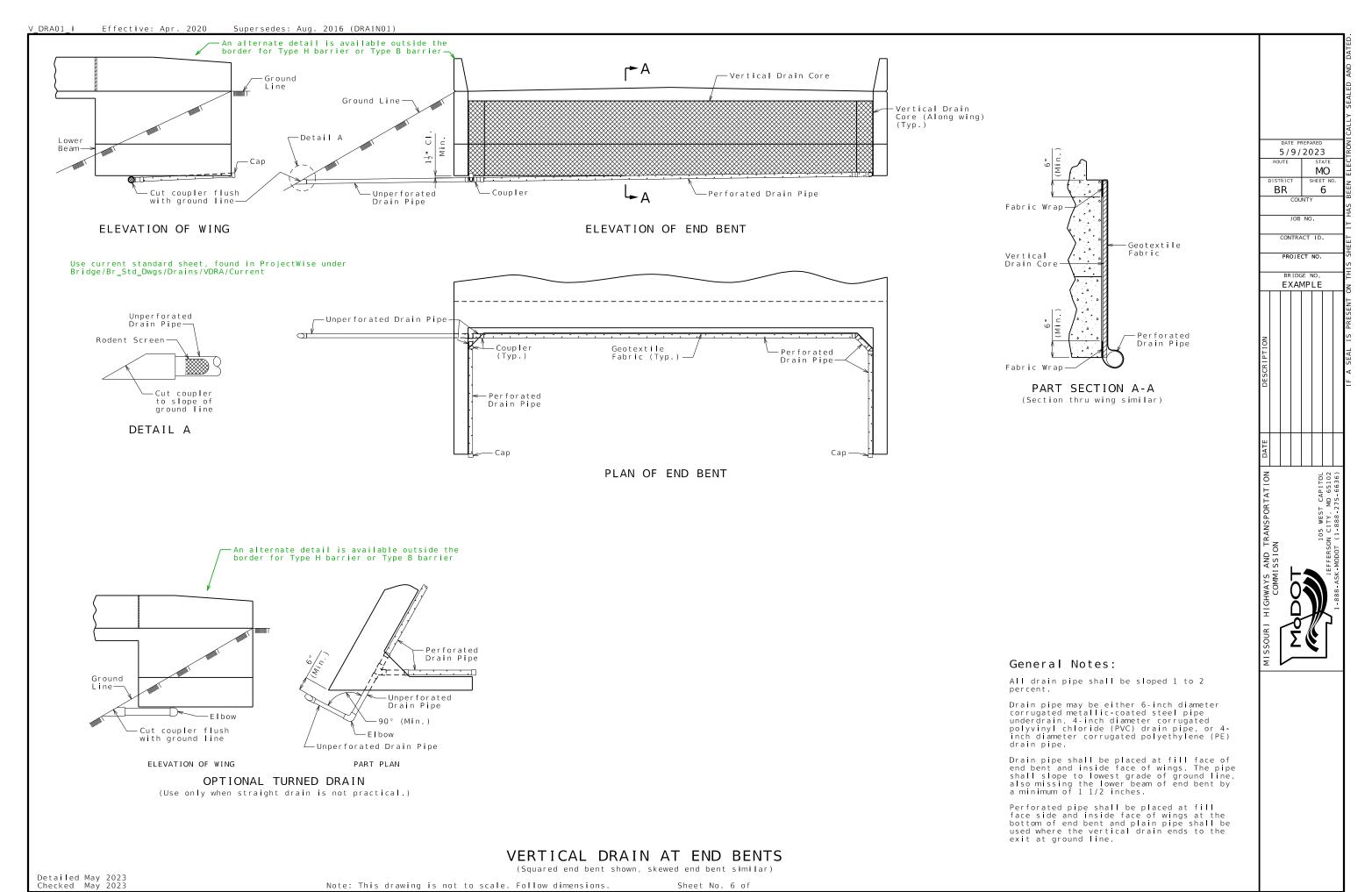
Detailed Aug. 2019 Checked Aug. 2019

Work this sheet with Sheets No. 4 & 5. . I All U bars and pairs of V bars shall be placed G1.7.1 parallel to centerline of roadway. Reinforcing steel shall be shifted to clear piles. U bars shall clear piles by at least 1 1/2 inches. G1.20

CADD Std: G4.1, Substructure Quantity (Bridge Detailing Notes)

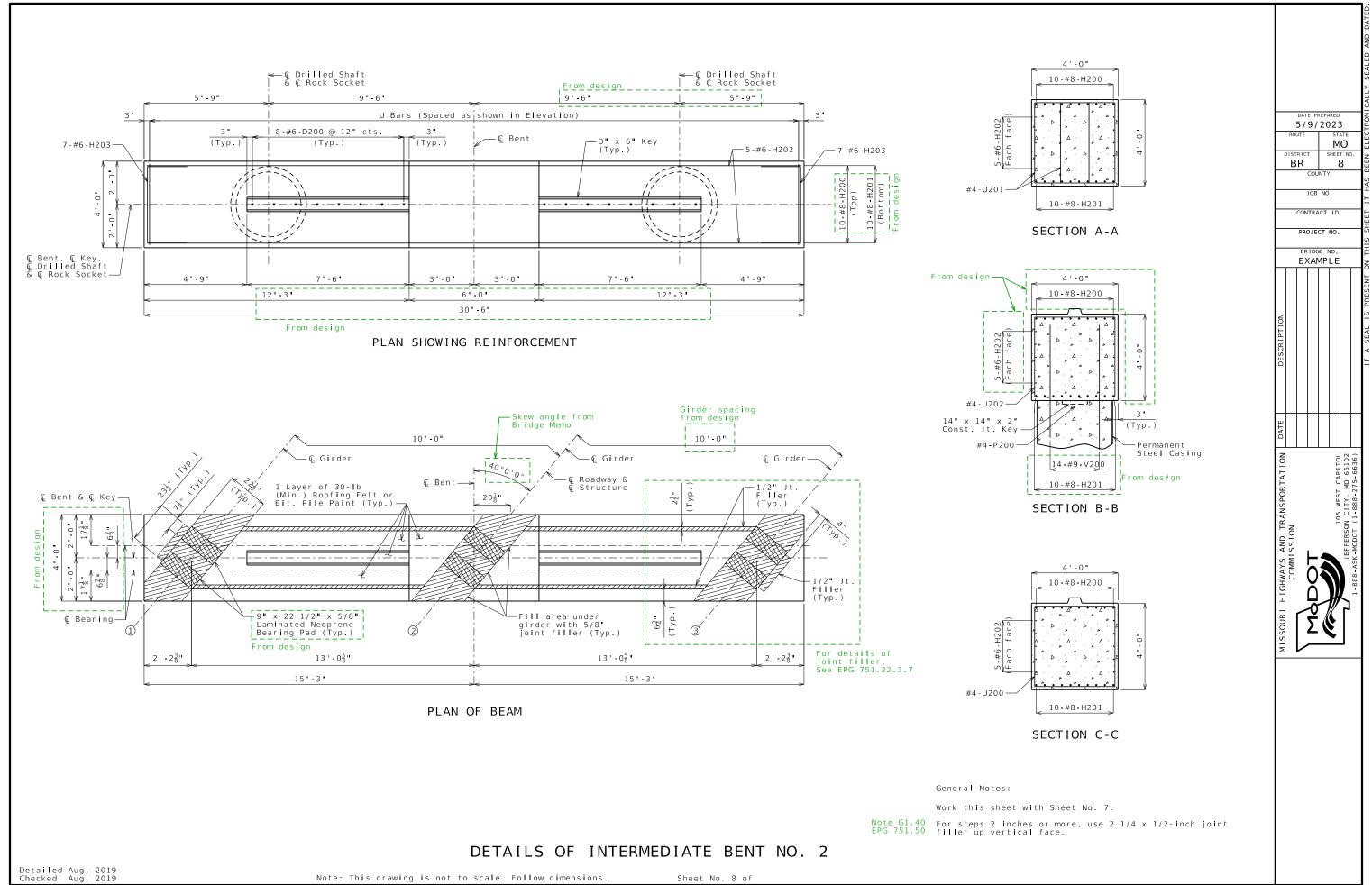

Substructure Quantity Table	for Bent N	o. 1
I t em		Quantity
Class 1 Excavation	cu. yard	40
Galvanized Structural Steel Piles (12 in.)	linear foot	120
Pile Point Reinforcement	each	4
Class B Concrete (Substructure)	cu. yard	16.7

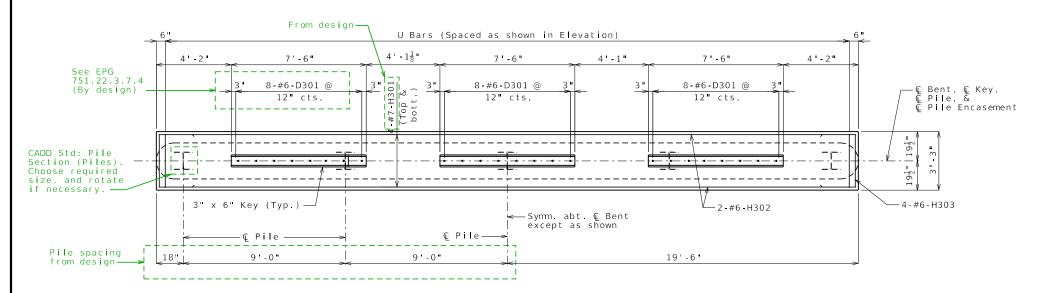

These quantities are included in the estimated quantities table on Sheet No. $\begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix}$ Note G4.2, EPG 751.50


DETAILS OF END BENT NO. 1 | CADD Std: Large Text (Sheet Titles) (General Annotation)

Sheet No. 3 of

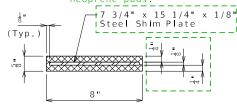

Example_plans_003_2023_Bt1-1.dgn 1:19:19 PM 12/28/2023




Example_plans_006_2023_vertdra.dgn 11:24:34 AM 5/9/2023

Example plans for Int. Bent No. 3 were taken from a different structure than the rest of the example plans. Therefore, some details may not match information shown on other sheets.

EPG 751.32.3 Concrete Pile Cap Intermediate


PLAN SHOWING REINFORCEMENT

CADD Std: Section thru Key for Intermediate Bent (Intermediate Bents)

SECTION THRU KEY

Bearing dimensions from design.
See EPG 751.11.2.1 (Taper)
Detailer draws this detail.
Detail not required for "plain"
neoprene pads.

SECTION THRU LAMINATED NEOPRENE BEARING PAD

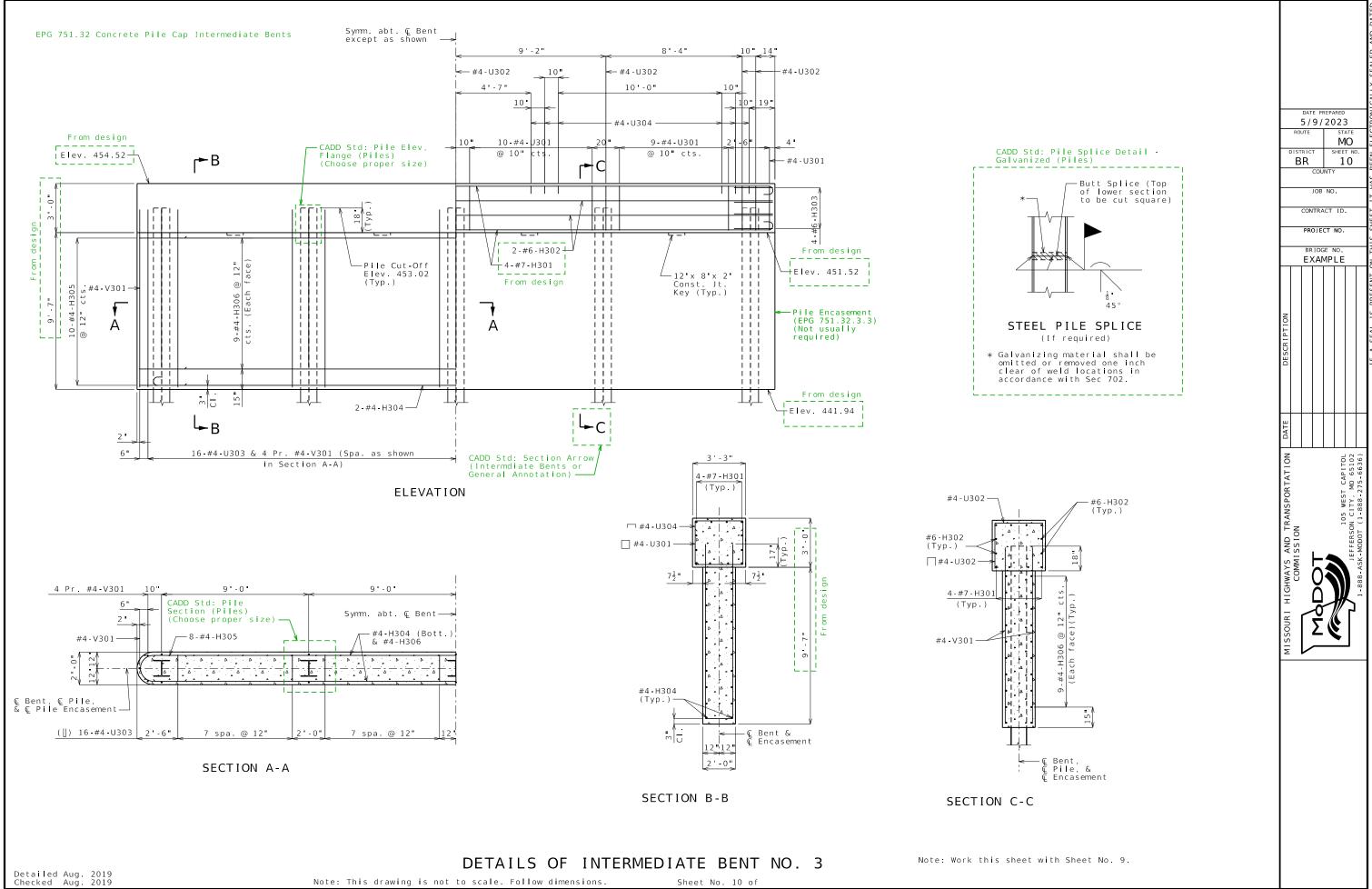
CADD Std: G4.1 Substructure Quantities (Detailing Notes)

Substructure Quantity Table	for Bent N	
I t em		Quantity
Galvanized Structural Steel Piles (12 in.)	linear foot	×
Class B Concrete (Substructure)	cu. yard	×
Reinforcing Steel (Bridges)	pound	×

Note G4.2, EPG 751.50 These quantities are included in the estimated quantities table on Sheet No. 2.

Note: Work this sheet with Sheet No. 10.

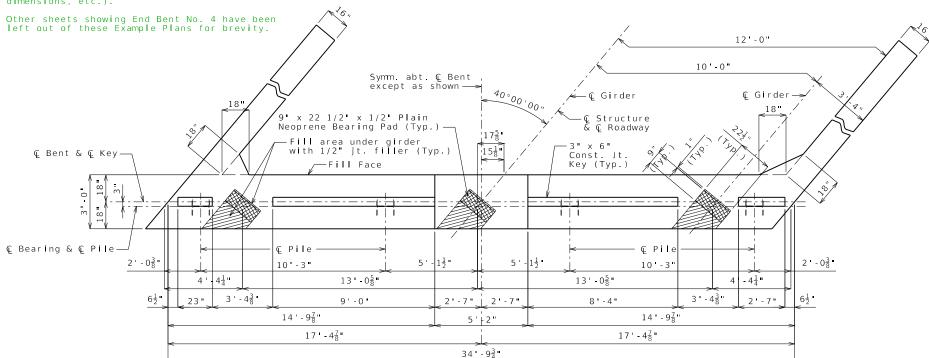
DETAILS OF INTERMEDIATE BENT NO. 3

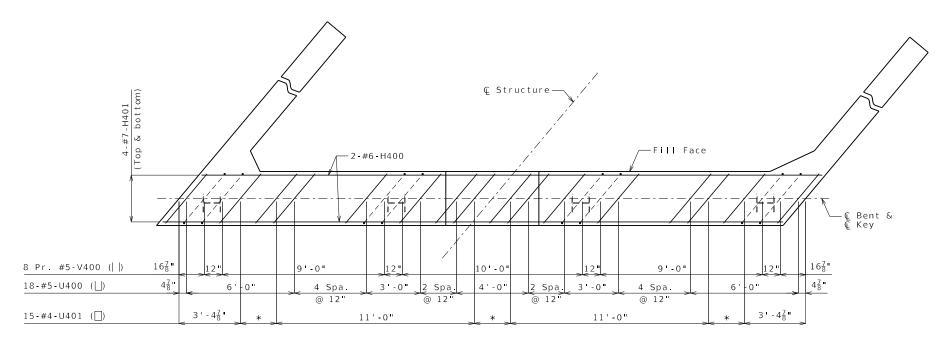

Detailed Aug. 2019 Checked Aug. 2019

Note: This drawing is not to scale. Follow dimensions.

Sheet No. 9 of

Example_plans_009_2023_Bt3-1.dgn 2:45:05 PM 5/9/2023

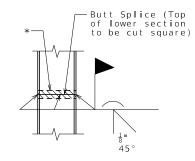

5/9/2023 MO SHEET NO 9 BR COUNT LOB NO CONTRACT ID. PROJECT NO. BRIDGE NO EXAMPLE


See notations for End Bent No. 1.

The second end bent may not be the same as End Bent No. 1, especially if the bridge is curved. See design.

If both end bents are the same, they may be combined (showing "End Bents No. 1 & 4"), with a separate substructure quantities box for each bent, and some double dimensions if necessary (e.g. top of wing elevations, vertical wing dimensions

PLAN OF BEAM



PLAN OF BEAM SHOWING REINFORCEMENT

* 4 Spaces @ 6"

Keys not shown for clarity.

Ç Key & ℂ Bent SECTION THRU KEY

STEEL PILE SPLICE (If required)

* Galvanizing material shall be omitted or removed one inch clear of weld locations in accordance with Sec 702.

Notes:

Work this sheet with Sheets No. 12 & 13.

All U bars and pairs of V bars shall be placed parallel to centerline of roadway.

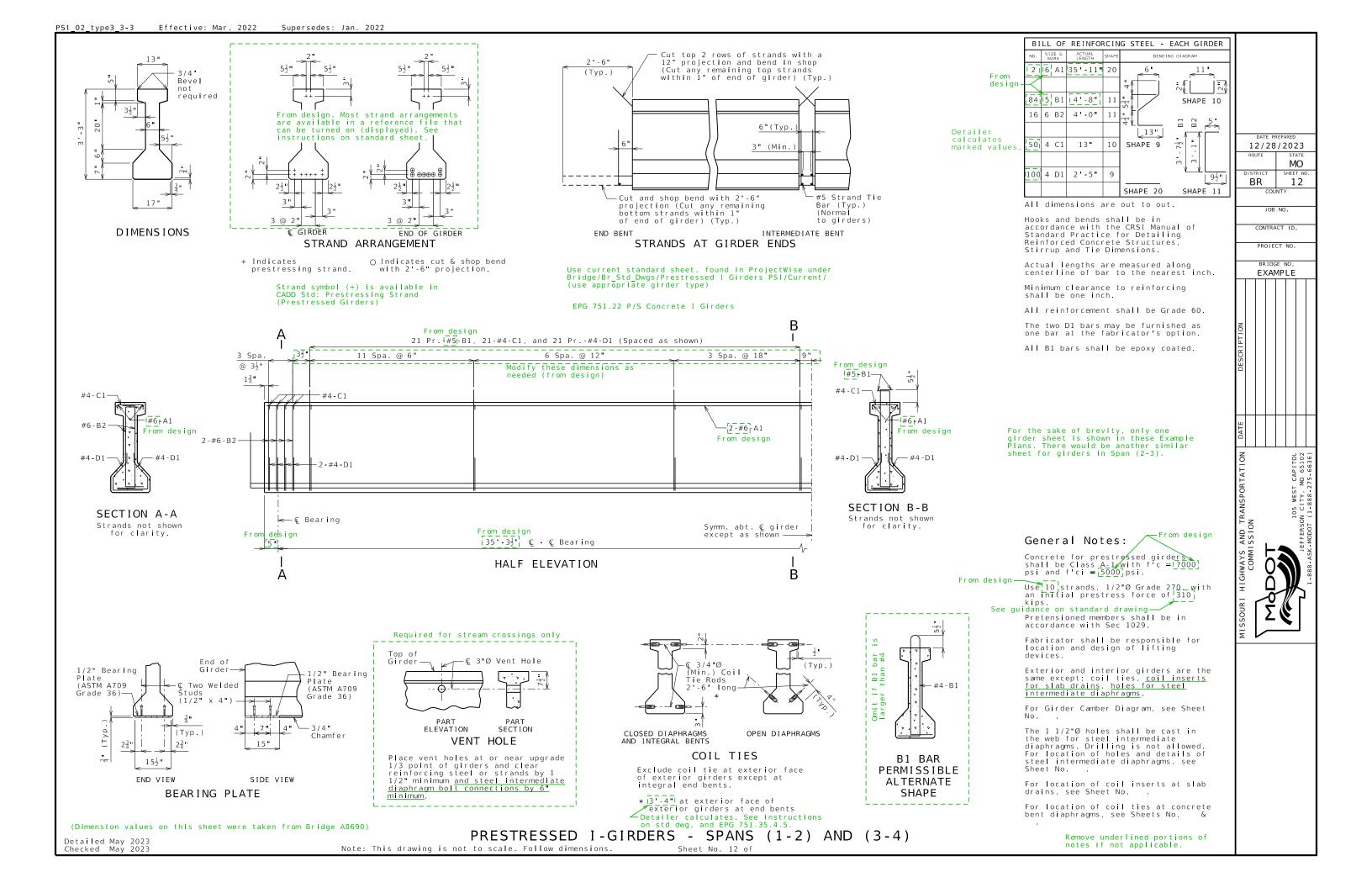
Reinforcing steel shall be shifted to clear piles. U bars shall clear piles by at least 1 1/2 inches.

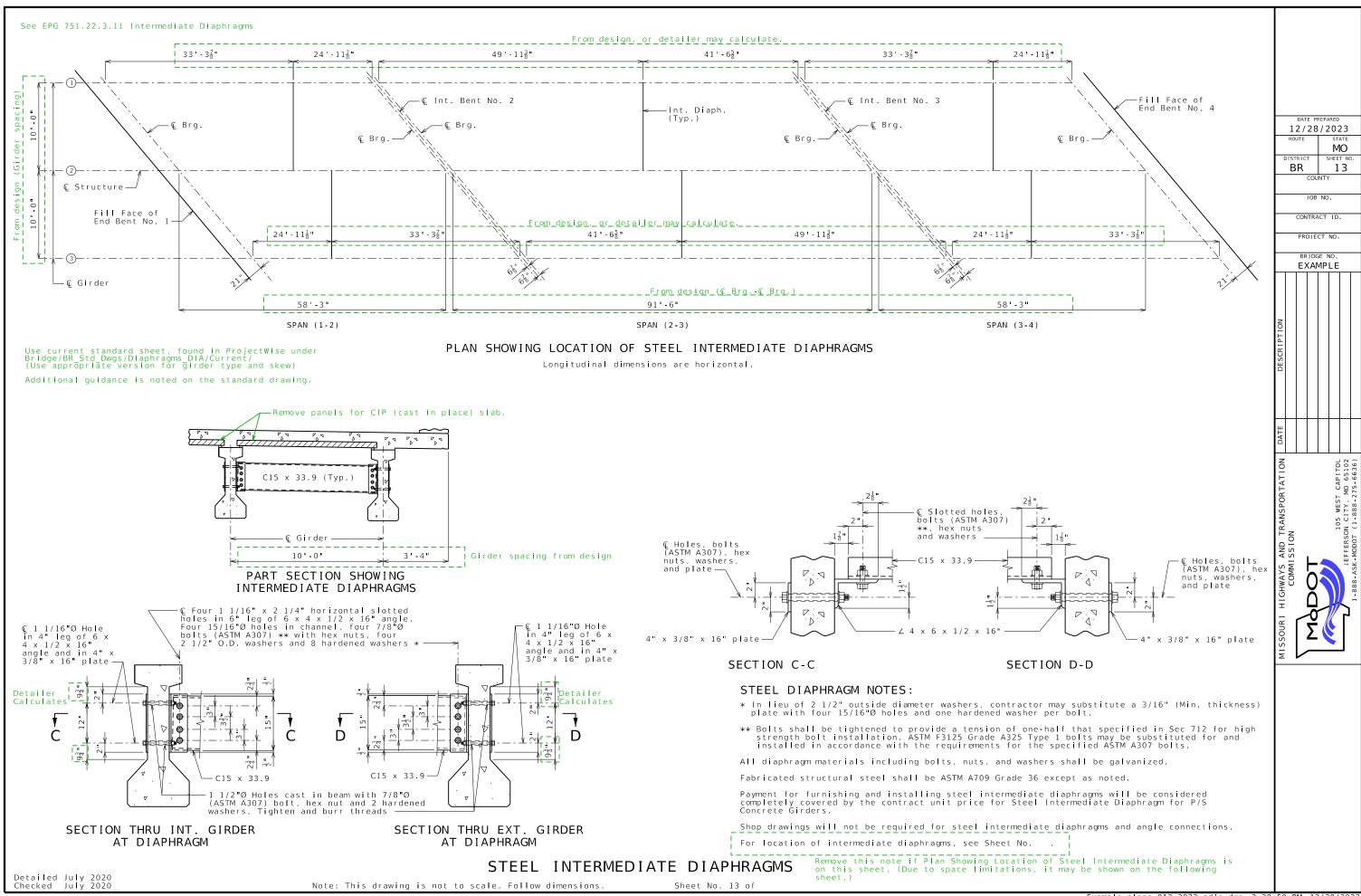
Substructure Quantity Table	for Bent N	o. 4
I t em		Quantity
Class 1 Excavation	cu. yard	40
Galvanized Structural Steel Piles (12 in.)	linear foot	120
Pile Point Reinforcement	each	4
Class B Concrete (Substructure)	cu. yard	16.7

These quantities are included in the estimated quantities table on Sheet No. 2.

DETAILS OF END BENT NO. 4

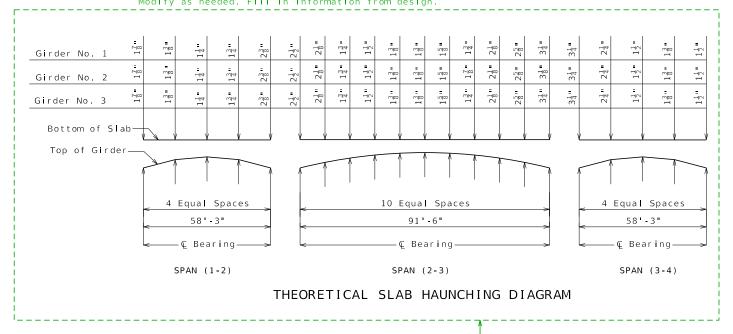
Detailed Aug. 2019 Checked Aug. 2019


Note: This drawing is not to scale. Follow dimensions.


Sheet No. 11 of

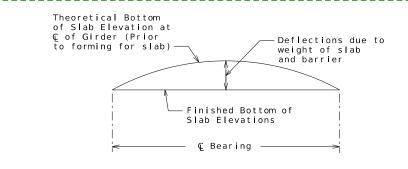

BR 11 IOB NO. CONTRACT ID. PROJECT NO. BRIDGE NO EXAMPLE

12/28/2023


MO

CADD Std: P/S Girder Haunching Diagram - Quarter Pts or P/S Girder Haunching Diagram - Tenth Pts (Slab Sheet Details) Modify as needed. Fill in information from design.

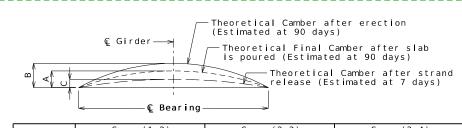
Use quarter points for spans less than 75'. Use tenth points for spans 75' or more.


CADD Std: Girder Bottom of Slab Elevations - Quarter Pts or Girder Bottom of Slab Elevations - Tenth Pts (Slab Sheet Details)
Modify as needed. Fill in information from design.

Theoretical	Bottom of Slab	Elevations at Centerline of Girder
		slab) (Estimated at 90 days)

	(Prio	r to 1	tormin	g for	slab)	(Est	ma t e d	at 90) days)	
Girder	Span	(1-2) (5	58'-3" Ç	Brg - Q	Brg.)						
Number	€ Brg.	. 25	.50	.75	© Brg.						
1	875.75	875.84	875.92	875.99	876.05]					
2	875.98 876.06 876.14 876.21 876.27										
3	875.84	875.92	876.00	876.07	876.13						
				Span (2	2-3) (91'	-6" € Br	g - C_B	rg.)			
	€ Brg.	. 10	.20	.30	. 40	. 50	. 60	.70	.80	.90	© Brg.
1	876.05	876.13	876.21	876.28	876.34	876.39	876.43	876.46	876.48	876.50	876.51
2	876.28	876.36	876.44	876.52	876.58	876.63	876.67	876.70	876.72	876.73	876.73
3	876.14	876.22	876.29	876.36	876.42	876.47	876.51	876.55	876.57	876.58	876.59
	Span	(3-4) (5	58'-3" Ç	Brg Q	Brg.)						
	€ Brg.	. 25	.50	.75	© Brg.						
1	876.52	876.60	876.68	876.75	876.81]					
2	876.74	74 876.83 876.91 876.97 877.03									
3	876.60 876.69 876.77 876.83 876.89		1								

Elevations are based on a constant slab thickness of 8 1/2" and include allowance for theoretical dead load deflections due to weight of slab (including precast panel and barrier).


CADD Std: Girder Bottom of Slab Elevations Diagram (Slab Sheet Details) See EPG 751.22.3.6

TYPICAL SLAB ELEVATIONS DIAGRAM

CADD Std: P/S Girder Camber Diagram (C < A) or P/S Girder Camber Diagram (A < C) (Slab Sheet Details) Fill in information from design.

Girder	S	pan (1-2	2)	S	pan (2-:	3)	Span (3-4)			
Girder	Α	В	С	Α	В	С	Α	В	С	
Exterior	<u>7</u> ■	7 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		1 ½ "	27"	1 ½ •	<u>7</u> " 8	1 ½ "	3 11	
Interior	<u>3</u> ■	-8	4	1 ³ / ₈ "	-8	- 4	3 u	-8	4	

GIRDER CAMBER DIAGRAM

Conversion Factors for Girder Camber (Estimated at 90 days):

0.1 pt. = 0.314 x 0.5 pt. 0.2 pt. = 0.593 x 0.5 pt. 0.3 pt. = 0.813 x 0.5 pt. 0.4 pt. = 0.952 x 0.5 pt.	Use with spans 75' and greater in length.
0.25 pt. = 0.7125 x 0.5 pt.	Use with spans less than 75' in length.

If girder camber is different from that shown in the camber diagram, in order to maintain minimum slab thickness, an adjustment of the slab haunches, an increase in slab thickness or a raise in grade uniformly throughout the structure may be necessary. The haunch shall be limited to ensure the projecting girder reinforcement is embedded into the slab at least 2 inches. No payment will be made for additional labor or materials required for variation in haunching, slab thickness or grade adjustment.

Note H2c6.11 Concrete in the slab haunches is included in the Estimated Quantities for Slab on Concrete I-Girder.

MISSOURI HIGHWAYS AND IKANSPORTATIO

COMMISSION

1.088.AC.MODOT

1.088.AC.MODOT

1.188.AC.MODOT

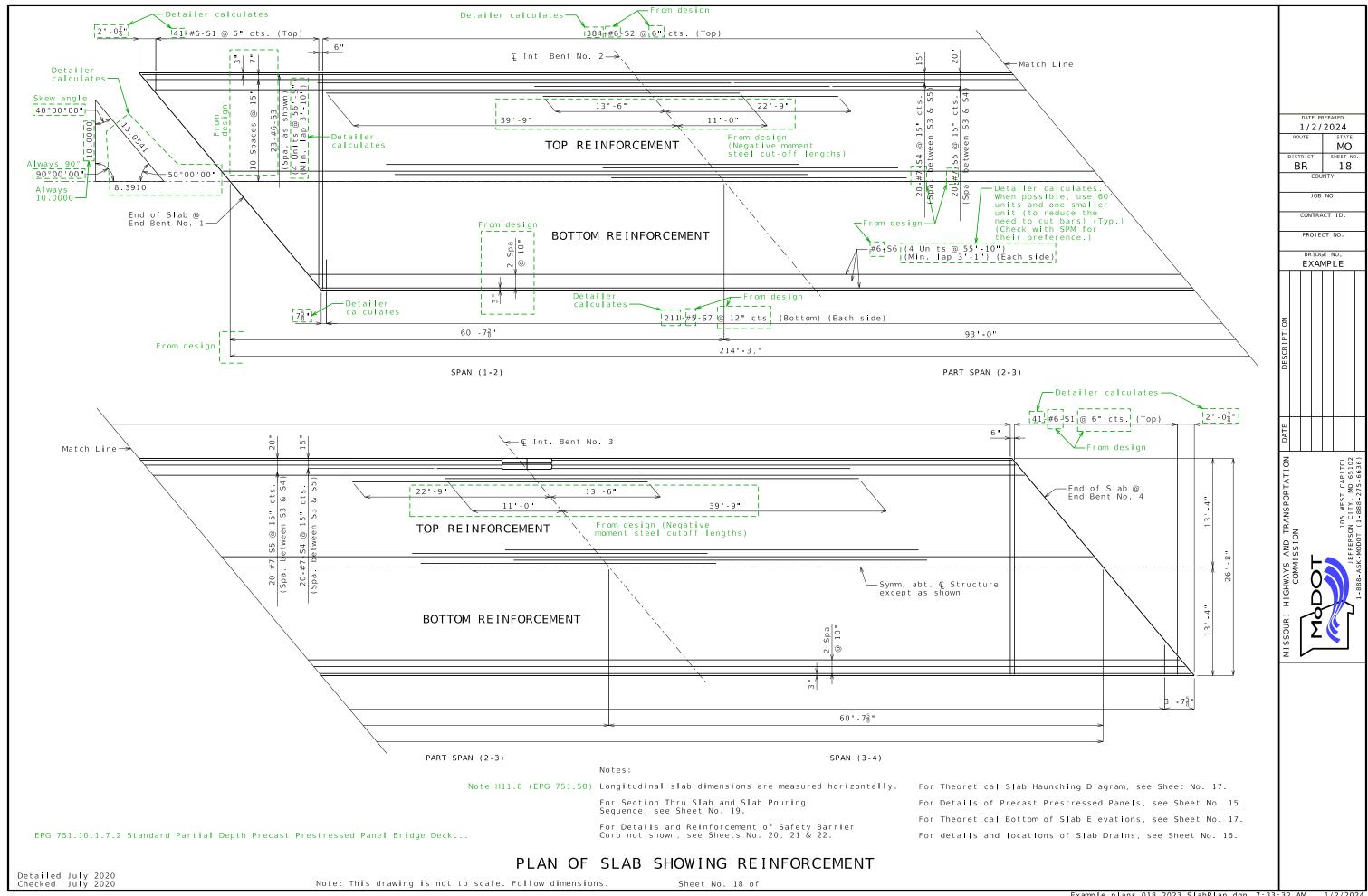
1.188.AC.MODO

12/28/2023

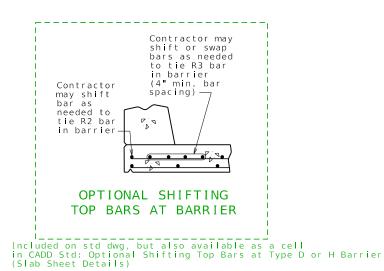
IOB NO.

CONTRACT ID.

PROJECT NO.


BRIDGE NO. EXAMPLE

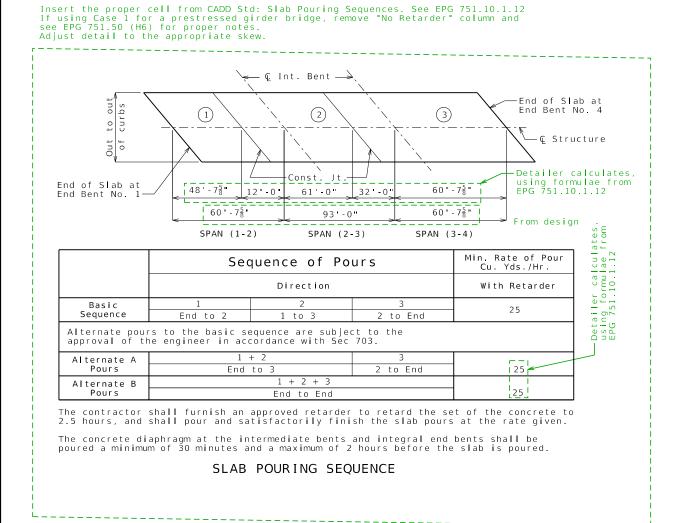
BR

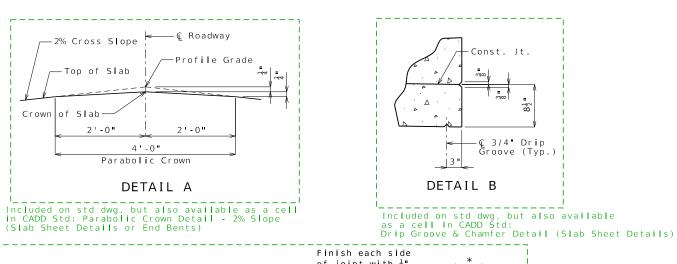

MO

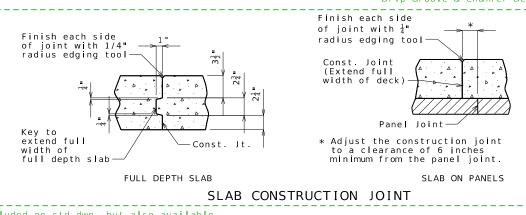
17

Detailed Nov. 2014 Checked Nov. 2014

Use current standard sheet found in ProjectWise Bridge/Br_Std_Dwgs/Slab Sections SLAB/Current (Use appropriate version for roadway width)




24'-0" Roadway 12'-0" 12'-0" See guidance outside border. -Symm. about ℚ Structure Detail A-Crown of Slab #_-S_ #6 S_ -#6FS_ 2% Slope and the second of the second o 1" CI (Min.) U −i#5 - S Detail 3 - 1 6'-10" Dimensions may be different. See design. HALF SECTION NEAR MIDSPAN HALF SECTION NEAR INTERMEDIATE BENT


SECTION THRU SLAB

* Alternate bar shape available, see barrier sheet.

Slab sections for other types of girders are available outside the border of the standard drawing.

Included on std dwg, but also available as a cell in CADD Std:
Const. Joint Detail - P/C P/S Panel Deck
(Slab Pouring Sequences)

Notes:

For details of precast prestressed panels, see Sheet No. 15.

For reinforcement of barrier not shown, see Sheet No.

For Theoretical Bottom of Slab Elevations, Girder Camber Diagram and Theoretical Slab Haunching Diagram, see Sheet No. 17.

For Plan of Slab Showing Reinforcement, see Sheet No. 18.

SLAB DETAILS

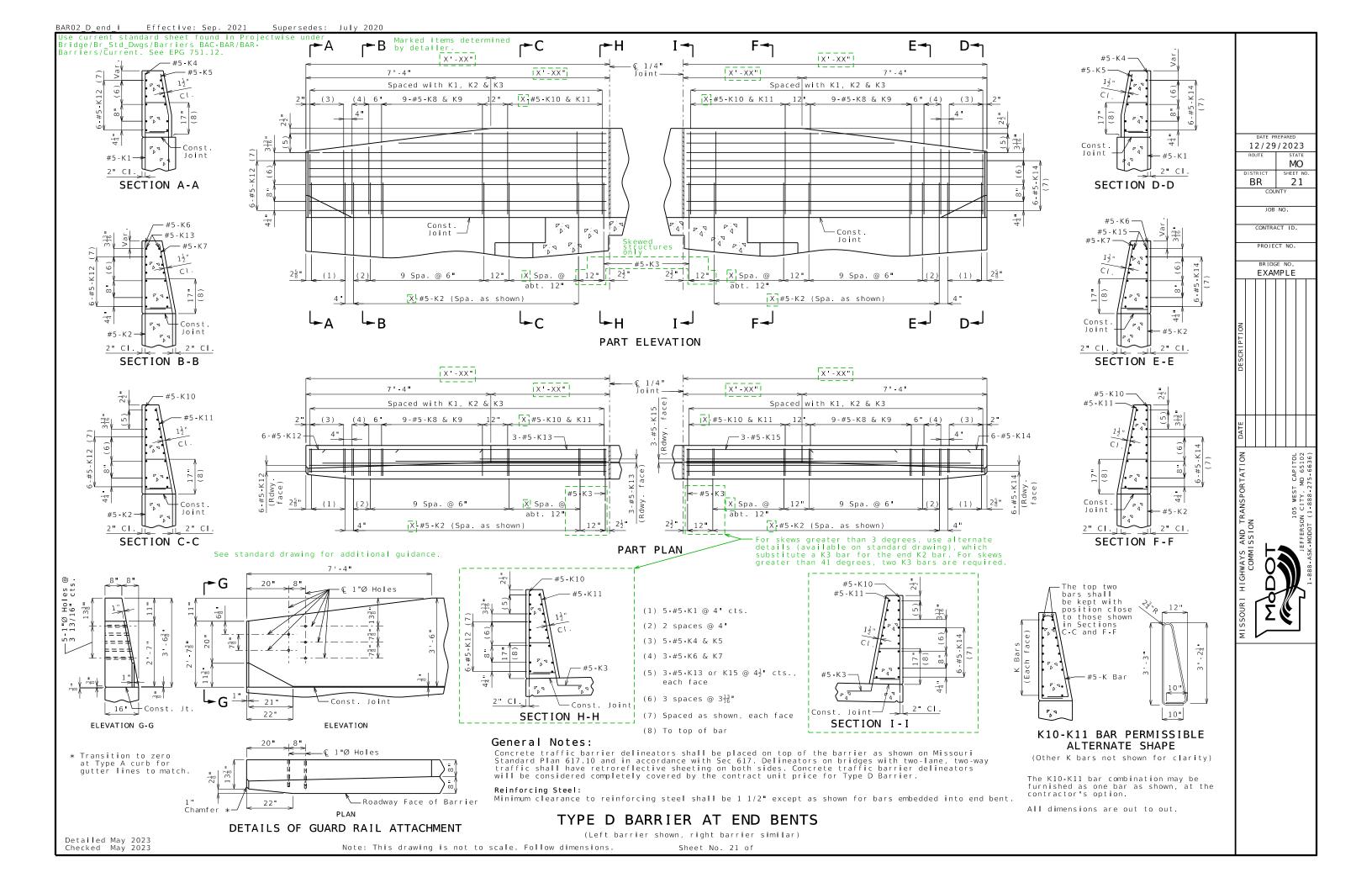
Detailed July 2020 Checked July 2020

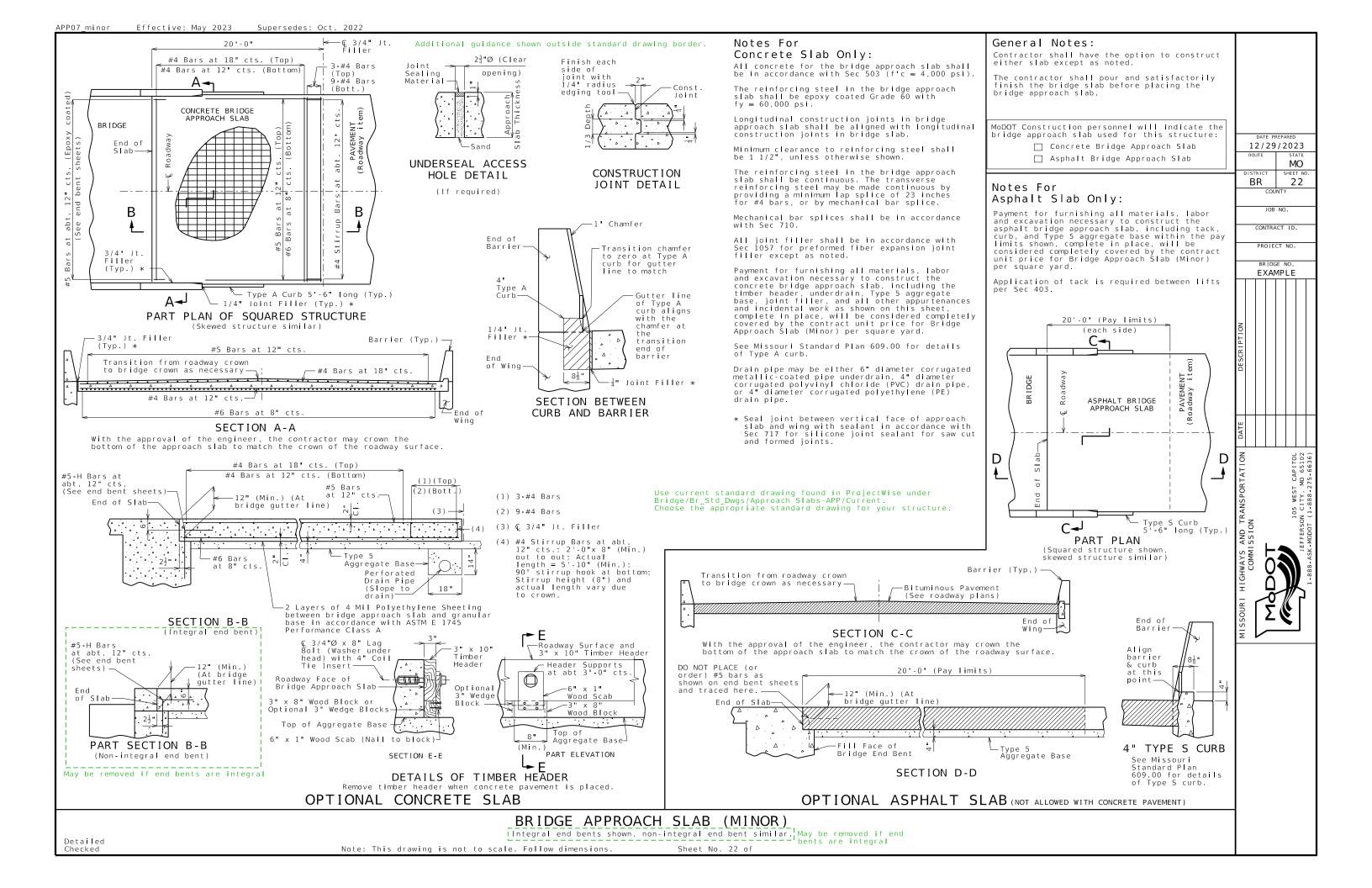
Note: This drawing is not to scale. Follow dimensions. Shee

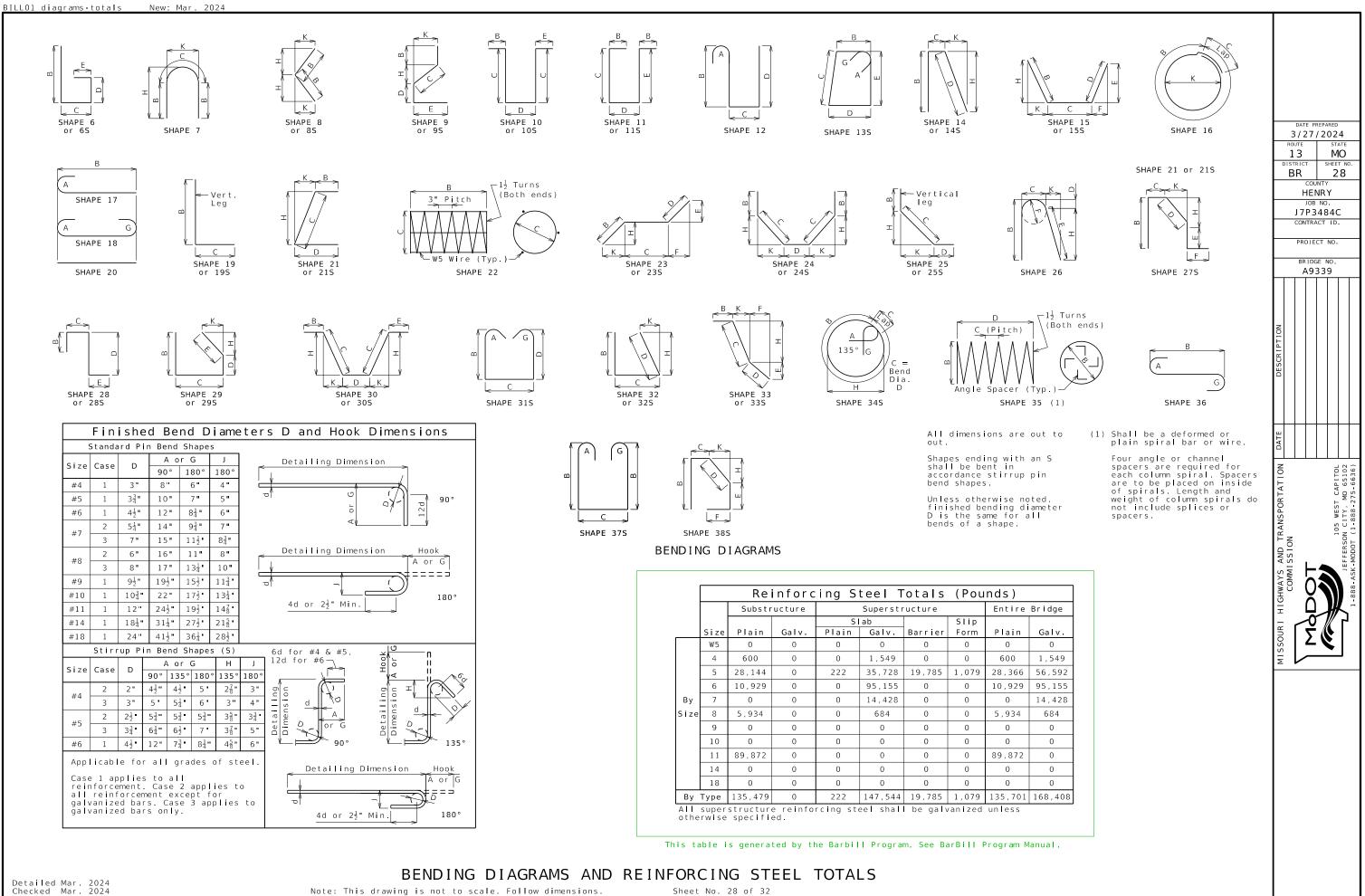
Sheet No. 19 of

5/10/2023

CONTRACT ID


PROJECT NO


EXAMPLE


BR

MO

19

BILLO2 tables New: Mar. 2024

	Bill of Reinforcing Steel								Bill of Reinforcing Steel											
					Dimensions		Nom.	Actual								Dimensions		_	ual	
No. Req.	Size/ Mark	Location	Codes		C D E ft in. ft in. 1	F H K	Length ft in		Weight Ib	No. Req.	Size/ Mark	Location	Codes		C ft in	D E F		Length Len	gth Weight in. Ib	
I Req.	Mark	Location	511 (V 1 C 1111.	10 111. 10 111. 10 111. 1	10 111. 10 111. 10 111.	1 (111		10	9	6 H103	DIAPHRAGM	G 20	10 3 00	1 (111.	10 111. 10 111. 10 1	11. 11. 11. 11. 11.		3 143	
		Substructure									6 H104	DIAPHRAGM		7 10.00				7 10 7	10 36	
		Int Bent 2								6	6 H105 5 H107	DIAPHRAGM STRAND TIE		2 8.00 5 9.00				5 9 5	8 25 9 24	
42	6 D200	BEAM	20	4 2.00			4 2	4 2	263	8	8 H108	WING	G 19	14 7.00				15 11 15	8 342	
1 20	8 H200	BEAM	20	38 5.00			38 5	38 5	2,051	18	6 H109	WING	G 195	13 8.00	12.00			14 8 14	6 403	DATE PREPARED 3 / 27 / 2024
	6 H201	BEAM	20	38 5.00			38 5	38 5		22	5 U100	BEAM	G 315	5 1.00	2 9.00	5 1.00		14 13	9 326	ROUTE STATE
	11 H202	BEAM	18	38 5.00			41 7	41 7			4 U101	BEAM	G 13S	2 9.00	2 8.00	2 9.00 2 8.00			4 134	13 MO
	6 H203 6 H204	BEAM BEAM	10S 20	4 5.00	12.00 5 7.50		7 8 4 5	7 4			4 U102 4 U103	BEAM BEAM	G 13S	2 9.00		2 9.00 3 0.00		12 4 12 8 1 7	67 10 27	BR 29
	0 11204	BEAM	20	7 3.00			7 3	7 3	133		5 U104	DIAPHRAGM		3 4.00				10 9		COUNTY
	5 P200	DRILLED SHAFT	35	_	6.00 59 10.25		1928 5	1908 5	_		6 U105	DIAPHRAGM		2 2.00				4 11 4	9 183	HENRY JOB NO.
	5 P201 5 P202	DRILLED SHAFT COLUMN		5 0.00	6.00 59 3.00 3.00 14 9.75		1909 6 977 11	1889 7 967 9			6 U106 5 U107	DIAPHRAGM DIAPHRAGM		3 4.00				7 11 7	9 611 126	J7P3484C
80	5 P203	BEAM	345	15 8.50	2.50	5 0.00	16 10	16 8	1,391											CONTRACT ID.
2	5 P204	COLUMN	35	5 0.00	3.00 14 8.25		970 1	960	2,003		5 V100 6 V101	BEAM DIAPHRAGM		5 1.00				5 8 5	8 37	PROJECT NO.
56	6 U200	BEAM	135	5 9.00	5 9.00 5 9.00 5 9.00		24 4	23 10	2,005		6 V101	WING		6 5.00				6 5 6		
	6 U201	BEAM	135	_	6 1.00 5 9.00 6 1.00		25	24 6												BRIDGE NO. A9339
	6 U202 6 U203	BEAM BEAM	10S 10S		5 9.00 5 9.00 6 1.00 5 9.00		17 3 17 11	16 11	1 356 158	8	6 F600	End Bent 6 WING BRACE	G 235	2 2.75	5 2 00	14.25 10.00 10	.00 19.00 19.00	0 8 7 8	6 105	
	4 U204	BEAM	105		6.00 5 9.00		6 9	6 7			6 F601	DIAPHRAGM		5 0.00			15.00	9 1 8		
40	11 1/200	DRILLED CUAST	30	22 0 00			27	22	0 161	13	7 11600	DM C DIAD	6 30	40 5 00				10 5 10	5 1 010	
	11 V200 11 V201	DRILLED SHAFT DRILLED SHAFT	20	32 0.00			32	32	8,161 7,651		7 H600 6 H601	BM & DIAP BM & DIAPH		40 5.00					5 1,016 5 500	
24	11 V202	COLUMN	20	12 8.00			12 8	12 8	1,615		6 H602	BEAM	G 20	4 5.00					5 27	0
	11 V203 11 V204	COLUMN COLUMN	20	10 8.00			10 8 12 6	10 8			6 H603 6 H604	DIAPHRAGM DIAPHRAGM		7 10.00					3 143 10 36	S I P
	11 V204	COLUMN	20	10 6.00			10 6	10 6	1,339		6 H605	DIAPHRAGM		2 8.00				2 8 2		ESCI
	11 V206	DRILLED SHAFT	20	37 6.00			37 6	37 6	9,563		5 H607	STRAND TIE		5 9.00	46.00			5 9 5	9 24	
48	11 V207	DRILLED SHAFT	20	36 11.00			36 11	36 11	9,415		8 H608 6 H609	W I NG W I NG		14 7.00 13 8.00	16.00 12.00			15 11 15 14 8 14	8 342 6 403	
		Int Bent 3								10	0 11003		0 133	13 0.00	12.00			11 0 11	0 103	
42	6 D300	BEAM	20	4 2.00			4 2	4 2	263		5 U600 4 U601	BEAM BEAM				5 1.00 2 9.00 2 8.00			9 326 4 134	
20	8 H300	BEAM	20	38 5.00			38 5	38 5	2,051		4 U601	BEAM	G 13S			2 9.00 3 0.00		12 4 12		
	6 H301	BEAM	20	38 5.00			38 5	38 5	1,616		4 U603	BEAM	G 10S		2 8.00	2 9.00			10 27	DA
	11 H302 6 H303	BEAM BEAM	18 105	38 5.00	12.00 5 7.50		41 7 7 8	41 7 7 4			5 U604 6 U605	DIAPHRAGM DIAPHRAGM	G 31S G 19S	2 2.00		3 4.00		10 9	9 263 9 183	Z
		BEAM	20	4 5.00	12.00 3 7.30		4 5	4 5			6 U606	DIAPHRAGM		3 4.00				7 11 7	9 611	RTATION CAPITOL
	8 H305	TIE BEAM	18	22 8.00			24 6	24 6		38	5 U607	DIAPHRAGM	G 19S	2 0.00	15.00			3 3 3	1 126	TAT
28	6 H306	TIE BEAM	20	22 0.00			22	22	925	6	5 V600	BEAM	G 17	5 1.00				5 8 5	8 37	OR ST
	5 P300	DRILLED SHAFT	35	5 0.00	6.00 46 3.00		1500 10	1485 3		20	6 V601	DIAPHRAGM		2 2.00					2 67	NSF NSF
2 2	5 P301 5 P302	DRILLED SHAFT COLUMN	35	5 0.00	6.00 47 3.00 3.00 26 10.25		1532 3 1734 8	1516 4 1716 7		26	6 V602	WING	G 20	6 5.00				6 5 6	5 258	105 105
80	5 P303	BEAM	345	15 8.50	2.50	5 0.00	16 10					Int Diaphragms								S I ON
2	5 P304	COLUMN	35	5 0.00	3.00 26 9.75		1732	1714	3,575			DIAPHRAGM							6 351	ANA
56	6 U300	BEAM	135	5 9.00	5 9.00 5 9.00 5 9.00		24 4	23 10	2,005		6 H701 6 H702	DIAPHRAGM DIAPHRAGM		7 10.00					3 380 10 290	Y S MIM I
2	6 U301	BEAM	135	5 9.00	6 1.00 5 9.00 6 1.00		25	24 6	74	16	5 H703	STRAND TIE	20	5 9.00				5 9 5	9 96	
	6 U302 6 U303	BEAM BEAM	105	_	5 9.00 5 9.00 6 1.00 5 9.00		17 3 17 11	16 11 17 7		16	5 H704	STRAND TIE	20	4 8.00				4 8 4	8 78	
	4 U304	BEAM	10S 10S		6.00 5 9.00		6 9		141	168	4 U700	DIAPHRAGM	G 285		23.00	3 2.00 18.00		6 7 6	4 742	
	4 U305	TIE BEAM		2 6.00	5 9.00 2 6.00 5 9.00		17 3		318	48	6 U701	DIAPHRAGM	G 28S		2 2.00	3 2.00 2 2.00		7 6 7	2 531	
2/1	11 V300	DRILLED SHAFT	20	53 11.00			53 11	53 11	1 6,875		6 U702 5 U703	DIAPHRAGM DIAPHRAGM	G 285 G 65	4 6.00		2 6.00 2 2.00		6 10 6 7 6	6 803 9 350	Ssour Z
	11 V300 11 V301	DRILLED SHAFT	20	55 11.00			55 11				5 U704	DIAPHRAGM		4 6 00					6 95	MIS MIS
	11 V302	COLUMN	20	24 8.00			24 8	24 8			E 1/700	D.I.A.DI.ID.A.CAA	10 30	2 2 2 2					2 112	
	11 V303 11 V304	COLUMN DRILLED SHAFT	20	22 8.00 54 11.00			22 8 54 11	22 8		32	5 V700	DIAPHRAGM	16 20	3 3.00				3 3 3	3 112	
24	11 V305	DRILLED SHAFT	20	56 11.00			56 11	56 11	1 7,258			Slab								<u> </u>
	11 V306	COLUMN	20	24 8.00			24 8	24 8			6 S1	SLAB		54 4.00					4 44,071	Bar am but
24	11 V307	COLUMN	20	22 8.00			22 8	22 8	2,890		5 S2 6 S3	SLAB SLAB		40 5.00					5 33,667 5 44,148	gr.
		Superstructure								64	7 S4	SLAB	G 20	26 0.00				26 26	3,484	th Pro Tip
		End Bent 1	+					1	1		7 S5 7 S6	SLAB SLAB		16 0.00 33 6.00				16 16 33 6 33		P & P A
8	6 F100	WING BRACE	G 235	2 2.75	5 2.00 14.25 10.00	10.00 19.00 19.00	8 7	8 6	105		7 S6	SLAB		17 0 00				17 17		ed bil ns
	6 F101	DIAPHRAGM		5 0.00			9 1													rat Bar tio a n
12	7 H100	BM & DIAPH	G 20	40 5.00			40 5	40 5	1,016			Barrier	+++					+		ne e uc at
8	6 H101	BM & DIAPH	G 20	40 5.00			40 5	40 5	500			Type D								s ge te th nstr of d
	6 H102	BEAM		4 5.00			4 5	4 5	27	10	5 K1	BARRIER		3 8.00				<u> </u>	11 85	7 - 0 - 1
Nomi	nal lend	iths are based on	out to	o out dime	ensions shown in bending o	liagrams and are			•			·		Codes: C	= Regui	red coatings, where E	= Epoxy Coated and	G = Galvani	zed.	_ e _ c

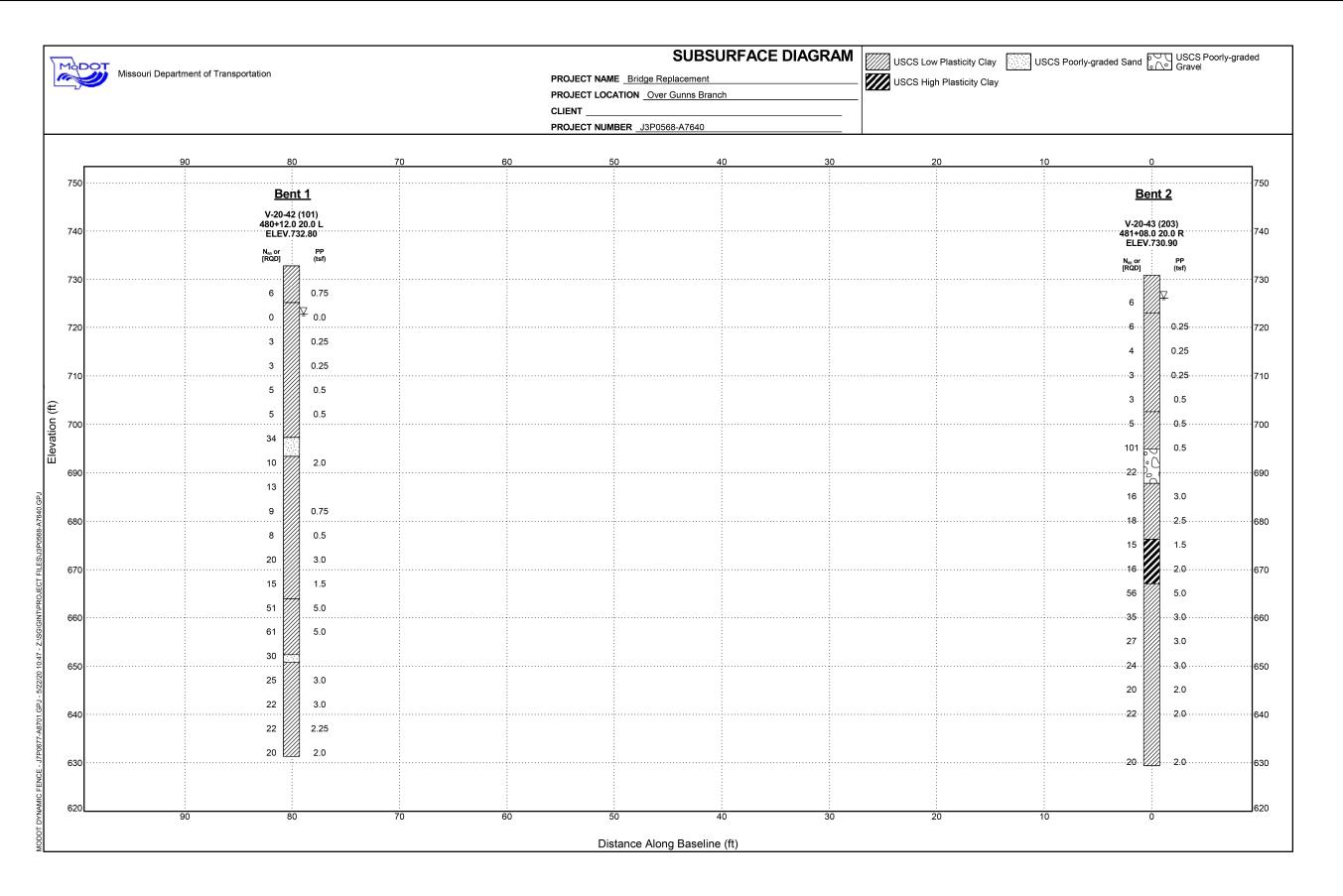
Nominal lengths are based on out to out dimensions shown in bending diagrams and are listed to the nearest inch for fabricator's use. Actual lengths are measured along centerline bar to the nearest inch. Weights are based on actual lengths.

All bars shall be Grade 60.

SH = Required shape, see bending diagrams.

V = Sets of varied bars and number of bars of each length. Bar dimensions vary in equal increments between dimensions shown on this line and the following line and the actual length dimension shown on this line and the following line vary by the specified increment.

Codes: C = Required coatings, where E = Epoxy Coated and <math>G = Galvanized.


For bending diagrams and steel reinforcing totals, see Sheet No. 28.

BILL OF REINFORCING STEEL

Detailed Mar. 2024 Checked Mar. 2024 Note: This drawing is not to scale. Follow dimensions.

Sheet No. 29 of 32

AS-BUILT PILE AND DRILLED SHAFT DATA

Standard sheet found in ProjectWise under Bridge/Br_Std_Dwgs/Boring Template BOR/Current.

Instructions for Attaching Boring Log PDFs to Final Plans is available inDevelopment Section Sharepoint, Instructions & Tips. 5/19/2023

CONTRACT ID.

PROJECT NO.

EXAMPLE

BR

MO SHEET NO 26

Geotechnical ("boring") data for this example is from Br. No. A7640 Showing only one boring sheet in this example, but there may be several.

BORING DATA

Note: For locations of borings, see Sheet No. 1.