751.40 LFD Widening and Repair (CONTINUED): Difference between revisions

From Engineering Policy Guide
Jump to navigation Jump to search
No edit summary
→‎751.40.8.15.4.3 Counterfort Walls: updated old math symbols
 
(5 intermediate revisions by the same user not shown)
Line 1: Line 1:
<div style="float: right; margin-top: 5px; margin-left: 15px; margin-bottom: 15px;">__TOC__</div>
<div style="float: right; margin-top: 5px; margin-left: 15px; margin-bottom: 15px;">__TOC__</div>


===751.40.8.11 Open Concrete Intermediate Bents and Piers===
===751.40.8.12 Concrete Pile Cap Intermediate Bents===


====751.40.8.11.1 Design====
====751.40.8.12.1 Design====


=====751.40.8.11.1.1 General and Unit Stresses=====
=====751.40.8.12.1.1 Unit Stresses=====


'''GENERAL'''


Use Load Factor design method, except for footing pressure and pile capacity where the Service Load design method shall be used.
{|border="0"


In some cases, Service Load design method may be permitted on widening projects, see Structural Project Manager.
|(1)||Reinforced Concrete
 
The terms, Intermediate Bents and Piers, are to be considered interchangeable for EPG 751.40.8.11 Open Concrete Intermediate Bents and Piers.
 
'''DESIGN UNIT STRESSES'''
 
(1) Reinforced Concrete
:{|
|-
|-
|Class B Concrete (Substructure)||width="100"|<math>\, f_c</math> = 1,200 psi||width="100"|<math>\, f'_c</math> = 3,000 psi
|&nbsp;||Class B Concrete (Substructure)||<math>\, f_c</math> = 1,200 psi||<math>\, f'_c</math> = 3,000 psi
|-
|-
|Reinforcing Steel (Grade 60)||<math>\, f_s</math> = 24,000 psi||<math>\, f_y</math> = 60,000 psi
|&nbsp;||Reinforcing Steel (Grade 60||<math>\, f_s</math> = 24,000 psi||<math>\, f_y</math> = 60,000 psi
|-
|-
|n = 10||&nbsp;
|&nbsp;||<math>\, n</math> = 10
|-
|-
|<math>\, E_c = W_1.5 \times 33 \sqrt{f'_c}</math>|| (AASHTO Article 8.7.1) (*)
|&nbsp;||colspan="3"|<math>\, E_c = 3,122 ksi (Ec = W^{1.5} \times 33 \sqrt{f'_c}, Ec = 57,000 \sqrt{f'c}</math>
|-
|-
|}
|&nbsp;
 
|-
(2) Reinforced Concrete (**)
|(2)||Structural Steel
:{|
|-
|-
|Class B-1 Concrete (Substructure)||width="100"|<math>\, f_c</math> = 1,600 psi||width="100"|<math>\, f'_c</math> = 4,000 psi
|&nbsp;||Structural Carbon Steel (ASTM A709 Grade 36)||<math>\, f_s</math> = 20,000 psi||<math>\, f_y</math> = 36,000 psi
|-
|-
|Reinforcing Steel (Grade 60)||<math>\, f_s</math> = 24,000 psi||<math>\, f_y</math> = 60,000 psi
|&nbsp;
|-
|-
|<math>\, n</math> = 8||&nbsp;
|(3)||Piling
|-
|-
|<math>\, E_c = W_1.5 \times 33 \sqrt{f'c}</math>|| (AASHTO Article 8.7.1) (*)
|&nbsp;
|-
|-
|(4)||Overstress
|-
|&nbsp;||colspan="3"|The allowable overstresses as specified in AASHTO Article 3.22 shall be used where applicable for service loads.
|}
|}


(3) Structural Steel
=====751.40.8.12.1.2 Loads=====


:Structural Carbon Steel  (ASTM A709 Grade 36)
:::::::::<math>\, f_s</math> = 20,000 psi, &nbsp;  <math>\, f_y</math> = 36,000 psi


(4) Overstress
{|border="0"


:The allowable overstresses as specified in AASHTO Article 3.22 shall be used where applicable for Service Load design method.
|(1)||Dead Loads
|-
|&nbsp;
|-
|(2)||Live Load
|-
|&nbsp;||As specified on Bridge Memorandum.
|-
|&nbsp;||Impact of 30% is to be used for design of the beam. No impact is to be used for design of any other portion of bent including the piles.
|-
|&nbsp;
|-
|(3)||Temperature, Wind and Frictional Loads
|}


(*) Use <math>\, W = 150 \ pcf, \ E_c = 60,625  \sqrt{f'_c}</math>
=====751.40.8.12.1.3 Distribution of Loads=====
(**) May be used for special cases, see Structural Project Manager.


=====751.40.8.11.1.2 Loads=====
{|border="0"


(1) Dead Loads
|(1)||Dead Loads
 
|-
(2) Live Loads
|&nbsp;||Loads from stringers, girders, etc. shall be concentrated loads applied at the intersection of centerline of stringer and centerline of bearing.  Loads from concrete slab spans shall be applied as uniformly, distributed loads along the centerline of bearing.
|-
|&nbsp;
|-
|(2)||Live Load
|-
|&nbsp;||Loads from stringers, girders, etc. shall be applied as concentrated loads at the intersection of centerline of stringer and centerline of bearing.  For concrete slab spans distribute two wheel lines over 10'-0" (normal to centerline of roadway) of substructure beam.  This distribution shall be positioned on the beam on the same basis as used for wheel lines in Traffic Lanes for Substructure Design.
|-
|&nbsp;
|-
|(3)||Temperature, Wind and Frictional Loads
|}


:As specified on the Bridge Memorandum.
=====751.40.8.12.1.4 Design Assumptions=====
:Impact of 30% is to be used for the design of beam, web supporting beam and top of columns. No impact is to be used for bottom of column, tie beam or footing design.


(3) Wind and Frictional Forces
'''LOADINGS'''


(4) Temperature and Shrinkage
{|border="0"


:The effect of normal and parallel components to the bent shall be considered. When bearings with high friction coefficients are used or for long bridge lengths, the columns and footings are to be analyzed for moments normal to the bent due to the horizontal deflection of the top of the bent.
|(1)||colspan="2"|Beam
|-
(5) Buoyancy
|&nbsp;||colspan="2"|The beam shall be assumed continuous over supports at centerline of piles.
|-
|&nbsp;||colspan="2"|Intermediate bent beam caps shall be designed so that service dead load moments do not exceed the cracking moment of the beam cap (AASHTO Article 8.13.3, Eq. 8-2).
|-
|&nbsp;
|-
|(2)||colspan="2"|Piles
|-
|&nbsp;||(a)||Bending
|-
|colspan="2"|&nbsp;||Stresses in the piles due to bending need not be considered in design calculations for Seismic Performance Category A.
|-
|&nbsp;||(b)||Dead Loads, etc.
|-
|colspan="2"|&nbsp;||Dead load of superstructure and substructure will be distributed equally to all piles which are under the main portion of the bent.
|}


:If specified by the Structural Project Manager, or by the Bridge Memorandum.  
====751.40.8.12.2 Reinforcement====
=====751.40.8.12.2.1 General=====
(6) Earth Pressure


:Bents are to be analyzed for moments due to equivalent fluid pressure on columns and web where the ground line at time of construction, or potential changes in the ground line, indicate.
'''PRESTRESS DOUBLE-TEE STRUCTURES'''
(7) Earthquake


:See Structural Project Manager or Liaison.
(8) Special Stability Situations


:When indicated by the Bridge Memorandum or by the Structural Project Manager, piers must be analyzed for special loadings as directed (i.e., differential settlement).
<center>[[Image:751.40_Conc_Pile_Cap_Int_Bents_PS_Dbl_Tee_(Bents_with_3_thru_6_in_crown).gif]]</center>
(9) Collision


:Where the possibility of collision exists from railroad traffic, the appropriate protection system, for example Collision Wall, shall be provided (See the Bridge Memorandum).
<center>'''BENTS WITH 3" THRU 6" CROWN'''</center>
(10) Collision Walls


:Collision walls are to be designed for the unequal horizontal forces from the earth pressure, if the condition exists (See the Bridge Memorandum).  The vertical force on the collision wall is the dead load weight of the wall (*).  If a bent has three or more columns, design the steel in the top of the wall for negative moment.


(*) For footing design, the eccentricity dead load moment due to an unsymmetrical collision wall shall be considered.
{|border="0" align="center" style="text-align:center"


=====751.40.8.11.1.3 Distribution of Loads=====
|[[Image:751.40_Conc_Pile_Cap_Int_Bents_PS_Dbl_Tee_(Section_AA).gif]]
|[[Image:751.40_Conc_Pile_Cap_Int_Bents_PS_Dbl_Tee_(Section_BB).gif]]
|-
|'''SECTION A-A'''||'''SECTION B-B'''
|}


(1) Dead Loads


:Loads from stringers, girders, etc. shall be concentrated loads applied at the centerline of bearing.  Loads from superstructure, such as concrete slab spans, shall be applied as uniformly distributed loads.
{|border="0"


(2) Live Loads
|(*)||Channel shear connectors are to be used in Seismic Performance Categories B, C & D.  For details not shown, see [[751.9_Bridge_Seismic_Design|EPG 751.9 Bridge Seismic Design]].
|-
|valign="top"|(**)||2'-6" Min. for Seismic Performance Category A.<br/>2'-9" Min. for Seismic Performance Categories, B, C & D.
|-
|colspan="2"|Note:  Use square ends on Prestress Double-Tee Structures.
|}


:Loads from stringers, girders, etc., shall be applied as concentrated loads at the intersection of centerline of stringer and centerline of bent.


(3) Wind and Frictional Forces
<center>[[Image:751.40_Conc_Pile_Cap_Int_Bents_PS_Dbl_Tee_(Bents_with_crown_over_6_in).gif]]</center>


(4) Temperature
<center>'''BENTS WITH CROWN OVER 6"'''</center>


:Apply at the top of the substructure beam.


(5) Earth Loads


:(a) Vertical
{|border="0" align="center" style="text-align:center"
::Vertical earth loads on tie beams shall be applied as uniform loads for a column of earth equal to 3 times the width of the beam.  The weight of earth for footing design shall be that directly above the footing, excluding that occupied by the column.


::The earth above the seal courses shall be considered in computing pile loads.  Refer to the Design and Dimension of the Pile Footings portion of [[#751.40.8.13 Concrete Pile Cap Non-Integral End Bents|EPG 751.40.8.13 Concrete Pile Cap Non-Integral End Bents]] or [[751.36 Driven Piles|EPG 751.36 Driven Piles]].
|[[Image:751.40_Conc_Pile_Cap_Int_Bents_PS_Dbl_Tee_(Bents_with_crown_over_6_in)_(Section_AA).gif]]||[[Image:751.40_Conc_Pile_Cap_Int_Bents_PS_Dbl_Tee_(Bents_with_crown_over_6_in)_(Section_BB).gif]]
|-
|'''SECTION A-A'''||'''SECTION B-B'''
|}


:(b) Horizontal
[[Image:751.40 Open Concrete Int Bents and Piers- Distribution Loads.gif|center]]


(*) A factor of 2.0 is applied to the moment to allow for the possibility of the column esisting earth pressure caused by the earth behind the column twice the column width.
{|border="0"


(6) Earthquake Loads
|(*)||Channel shear connectors are to be used in Seismic Performance Categories B, C & D.
|-
|valign="top"|(**)||2'-6" Min. for Seismic Performance Category A.<br/>2'-9" Min. for Seismic Performance Categories, B, C & D.
|-
|colspan="2"|Note:  Use square ends on Prestress Double-Tee Structures.
|}


:See Structural Project Manager or Liaison.
=====751.40.8.12.2.2 Anchorage of Piles for Seismic Performance Categories B, C & D=====


(7) Seal Course


:The weight of the seal course shall not be considered as contributing to the pile loads, except for unusual cases.
'''STEEL PILE'''


=====751.40.8.11.1.4 Types of Design=====


'''TYPES OF DESIGN'''
{|border="0" align="center" style="text-align:center"


Rigid frame design is to be used for the design of Intermediate Bents and Piers.
|[[Image:751.40_Conc_Pile_Cap_Int_Bents_Reinf_Steel_Pile_(Part_Elevation).gif]]
 
|[[Image:751.40_Conc_Pile_Cap_Int_Bents_Reinf_Steel_Pile_(Sec_thru_beam).gif]]
The joint between the beam and column, and web or tie beam and column, is assumed to be integral for all phases of design and must be analyzed for reinforcement requirements as a "Rigid Frame".
|-
|'''PART ELEVATION'''||'''SECTION THRU BEAM'''
|-
|[[Image:751.40_Conc_Pile_Cap_Int_Bents_Reinf_Steel_Pile_(Part_Plan).gif]]
|-
|'''PART PLAN'''
|}


The joint between the column and footing is assumed to be "fixed", unless foundation fexibility needs to be considered (consult Structural Project Manager for this assessment).


If the distance from the ground line to the footing is large (*), consideration shall be given to assuming the column to be "fixed" at a point below the ground line.


(*) When the distance from the ground line to the top of footing is 10' or more, the unsupported height and the fixed point may be measured from the bottom of the beam to the ground line plus 1/2 of the distance from the ground line to the top of the footing.
'''CAST-IN-PLACE PILE'''


'''UNSUPPORTED HEIGHT'''


Unsupported height is the distance from the bottom of the beam to the top of the footing.
{|border="0" align="center" style="text-align:center"


'''SINGLE COLUMN'''
|[[Image:751.40_Conc_Pile_Cap_Int_Bents_Reinf_CIP_Pile_(Part_Elevation).gif]]
|width="300"|[[Image:751.40_Conc_Pile_Cap_Int_Bents_Reinf_CIP_Pile_(Sec_thru_beam).gif]]
|-
|'''PART ELEVATION'''||'''SECTION THRU BEAM'''
|-
|[[Image:751.40_Conc_Pile_Cap_Int_Bents_Reinf_CIP_Pile_(Part_Plan).gif]]
|-
|'''PART PLAN'''
|}


Use rigid frame design with the column considered "fixed" at the bottom for all of the conditions.
=====751.40.8.12.2.3 Beam Reinforcement Special Cases=====


'''COLUMN DIAMETER CHANGE'''


Use a change in column diameter as required by the Bridge Memorandum or column design.
'''SPECIAL CASE I'''


'''COLUMN SPACING (TRIAL)'''


(Except Web Supporting Beam type)
If centerline bearing is 12" or less on either side of centerline piles, for all piles (as shown above), use 4-#6 top and bottom and #4 at 12" cts. (stirrups), regardless of pile size.


Estimate centerline-centerline column spacing for a two column bent as 72% of the distance from the centerline of the outside girder to the centerline of the outside girder.


A three column bent spacing estimation is 44% of the centerline-centerline outside girder spacing.
<center>[[Image:751.40_Conc_Pile_Cap_Int_Bents_Beam_Reinf_(Special_Case_I).gif]]</center>


====751.40.8.11.2 Reinforcement====


=====751.40.8.11.2.1 Hammer Head Type=====


<center>
'''SPECIAL CASE II'''
{|
|-
|[[Image:751.40 Open Concrete Int Bents and Piers- Hammer Head Type- Part Plan.gif]]||[[Image:751.40 Open Concrete Int Bents and Piers- Hammer Head Type- Section A-A.gif]]
|-
|PART PLAN||SECTION A-A
|-
|rowspan="2"|[[Image:751.40 Open Concrete Int Bents and Piers- Hammer Head Type- Part Elev.gif]]||style="text-align:left"|Note:<br>When an expansion device in the slab is used at an intermediate bent, all reinforcement located entirely within the beam shall be epoxy coated.  See details of protective coating and sloping top of beam to drain.
|-
|[[Image:751.40 Open Concrete Int Bents and Piers- Hammer Head Type- Part Section B-B.gif]]
|-
|PART ELEVATION||PART SECTION B-B
|-
|}
</center>


(*) Add hooked reinforcement as required by design.


(**) See AASHTO Article 8.18.2.3.4 for tie requirements.
When beam reinforcement is to be designed assuming piles to take equal force, design for negative moment in the beam over the interior piles.




[[Image:751.40 circled 1.gif]] All stirrups in beam to be the same size bar. (Use a min. spacing of 5" (6" for double stirrups), minimum stirrups are #4 at 12" cts., and maximum
[[Image:751.40_Conc_Pile_Cap_Int_Bents_Beam_Reinf_(Special_Case_II).gif]]
stirrups are #6 at 6" cts.)


Locate #4 bars (┌─┐) under bearings if required.  (Not required for P/S Double-Tee Girders.)


(*) Dimensions shown are for illustration purposes only.


[[Image:751.40 circled 2.gif]] See development length (Other than top bars) or standard hooks in
====751.40.8.12.3 Details====
tension, Ldh.
=====751.40.8.12.3.1 Sway Bracing=====


Refer to [[751.32 Concrete Pile Cap Intermediate Bents#751.32.3.2.1 Sway Bracing|EPG 751.32.3.2.1 Sway Bracing]].


[[Image:751.40 circled 3.gif]] See lap splice class C.
=====751.40.8.12.3.2 Miscellaneous Details for Prestressed Girder=====


====751.40.8.11.3 Pile Footings====
'''PRESTRESSED GIRDERS (INTEGRAL INT. BENT)'''
=====751.40.8.11.3.1 Design and Dimensions=====


'''GENERAL '''


:Number, size and spacing of piling shall be determined by computing the pile loads and applying the proper allowable overstresses.
<center>[[Image:751.40_Conc_Pile_Cap_Int_Bents_Misc_Details_PS_Girders_(Integral_Int_Bent)_Jt_Filler_Detail.gif]]</center>
:Cases of Loading:  (AASHTO Article 3.22)
:Group I and Group II maximum vertical loads (refer to distribution of loads, this Section).
:Group III thru VI wind and/or temperature moments with applicable vertical loads.


:Internal stresses including the position of the shear line shall then be computed.


:Long narrow footings are not desirable and care should be taken to avoid the use of an extremely long footing 6~0" wide when a shorter footing 8'-3" or 9'-0" wide could be used.
<center>'''DETAIL OF JOINT FILLER AT INT. BENTS<br/>(Continuous Spans - No Longitudinal Beam Steps)'''</center>
:Footings are to be designed for the greater of the minimum moment requirements at the bottom of the column, or the moments at the bottom of the footing.
:When using the load factor design method for footings, design the number of piles needed based on the working stress design method.
 


'''PILE LOADS'''


<math>\, P = N/n \pm M/S</math>
{|border="0"
:{|
 
|<math>\, P</math>|| - Pile Loads
|(*)||¼ Joint Filler for a P/S Double Tee Structure
|-
|-
|<math>\, N</math>|| - Vertical Loads
|&nbsp;||½ Joint Filler for a P/S I-Girder Structure
|-
|<math>\, n</math>|| - Number of Piles
|-
|<math>\, M</math>|| - Overturning Moment
|-
|&nbsp;||If minimum eccentricity controls the moment in both directions,
|-
|&nbsp;||It is necessary to use the moment in one direction (direction with
|-
|&nbsp;||less section modulus of pile group) only for the footing check.
|-
|<math>\, S</math>|| - Section Modulus of Pile Group
|}
|}




:'''(A) AASHTO Group I thru VI Loads as applicable'''
'''PRESTRESSED GIRDERS (NON-INTEGRAL INT. BENT)'''


:Maximum <math>\, P</math> = Pile Capacity
:Minimum <math>\, P = 0</math> (zero)
:Tension on a pile will not be allowed for any combination of forces.
:Pile design force shall be calculated with consideration of AASHTO percentage overstress factors.


<center>[[Image:751.40_Conc_Pile_Cap_Int_Bents_Misc_Details_PS_Girders_(Non_Integral_Int_Bent)_Jt_Filler_Detail.gif]]</center>




:'''(B) Earthquake Loads'''
<center>'''DETAIL OF JOINT FILLER AT INT. BENTS<br/>Longitudinal Beam Step and Shear Blocks shown)'''</center>


See Structural Project Manager or Liaison before using the following seismic information.


:<u>Point Bearing Pile</u>
'''DETAILS OF CONST. JOINT KEY'''
 
::    Maximum <math>\, P = Pile\ capacity\ \times 2</math>  (**)
{|border="0" align="center" style="text-align:center"
::    (i.e., for HP 10 X 42 piles, Max. <math>\, P = 56\ \times 2 = 112</math> tons/pile)
::    Minimum <math>\, P</math> = Allowable uplift force specified for piles in this
::    Section under Seal Course Design.
::    (**) Two "2" is our normal factor of safety. Under earthquake loadings only the point bearing pile and rock capacities are their ultimate capacities.
:<u>Friction Piles</u>
::    Maximum <math>\, P</math> = Pile Capacity
::    Minimum <math>\, P</math> = Allowable uplift force specified for piles in this
::    Section under Seal Course Design.
::    See combined axial & bending stresses in Cast-In-Place friction piles in liquefaction areas.


|[[Image:751.40_Conc_Pile_Cap_Int_Bents_Misc_Details_Const_Jt_Key_(Part_Elevation).gif]]
|[[Image:751.40_Conc_Pile_Cap_Int_Bents_Misc_Details_Const_Jt_Key_(Part_Section_PS_I_Girders).gif]]
|[[Image:751.40_Conc_Pile_Cap_Int_Bents_Misc_Details_Const_Jt_Key_(Part_Section_Dbl_Tee_Girders).gif]]
|-
|'''PART ELEVATION'''||'''PART SECTION THRU KEYS<BR/>(P/S I-GIRDERS)'''||'''PART SECTION THRU KEYS<BR/>(P/S DOUBLE TEE GIRDERS)'''
|}




'''(1) Shear Line'''
===751.40.8.13 Concrete Pile Cap Non-Integral End Bents===


{|
====751.40.8.13.1 Design====
|-
|width="400"|If the shear line is within the column projected, the footing may be considered satisfactory for all conditions and standard #6 hairpin bars shall be used.


=====751.40.8.13.1.1 Unit Stresses=====


If the shear line is outside of the column projected, the footing must be analyzed and reinforced for bending and checked for shear stress (see [[#(4) Shear|(4) Shear]], below).
{|border="0"


|(1)||Reinforced Concrete
Footing depths may be increased, in lieu of reinforcement, if an increase would be more economical.  (6'-0" Maximum depth, with 3" increments.)
||[[Image:751.40 Open Concrete Int Bents and Piers- Pile Footings- Internal Stresses.gif]]
|-
|-
|}
|&nbsp;||Class B Concrete (Substructure)||<math>\, f_c</math> = 1,200 psi||<math>\, f'_c</math> = 3,000 psi
|-
|&nbsp;||Reinforcing Steel (Grade 60)||<math>\, f_s</math> = 24,000 psi||<math>\, f_y</math> = 60,000 psi
'''(2) Bending'''
|-
|&nbsp;||<math>\, n</math> = 10
The critical section for bending shall be taken at the face of the columns (concentric square of equivalent area for round columns).
|-
|&nbsp;||colspan="3"|<math>\, E_c = W^{1.5} \times 33 \sqrt{f'_c}</math> AASHTO Article 8.7.1) (*)
The reinforcement shall be as indicated for reinforced footings, except that the standard #6 hairpin bars may be used for small footings if they provide sufficient steel area.
|-
|&nbsp;
'''(3) Distribution of Reinforcement'''
<u>Reinforcement in Bottom of Footing</u>
<center>
[[Image:751.40 Open Concrete Int Bents and Piers- Pile Footings- Distribution of Reinforcement.gif]]
</center>
 
Reinforcement shall be distributed uniformly across the entire width of footing in the long direction. In the short direction, the portion of the total reinforcement given by AASHTO Equation 4.4.11.2.2-1 shall be distributed uniformly over a band width equal to the length of the short side of the footing, <math>\, B</math>.
 
:Band Width Reinforcement = <math>2(total\ reinforcement\ in\ short\ direction)/(\beta + 1)</math>
 
:where <math> \beta = the\ ratio\ of\ fooring\ lenth\ to\ width = L/B</math>
 
The remainder of the reinforcement required in the short direction shall be distributed uniformly outside the center band width of footing.
 
 
<u>Reinforcement in Top of Footing</u>
 
Reinforcement in the top of the footing shall be provided based on a seismic analysis for Seismic Performance Categories B, C and D. This reinforcement shall be at least the equivalent area as the bottom steel in both directions. The top steel shall be placed uniformly outside the column.
 
 
<div id="(4) Shear"></div>
'''(4) Shear'''
 
(AASHTO Article 8.15.5 or 8.16.6)
 
The shear capacity of footing in the vicinity of concentrated loads shall be governed by the more severe of the following two conditions.
 
 
(i) Beam shear
 
Critical Section at "d" distance from face of column.
 
{|
|-
|-
|width="250"|b = Footing Width Service Load||rowspan="6"|[[Image:751.40 Open Concrete Int Bents and Piers- Pile Footings- Internal Stresses- Part Plan of Footing- Beam Shear.gif]]
|(2)||Structural Steel
|-
|-
|Service Load
|&nbsp;||Structural Carbon Steel (ASTM A709 Grade 36)||<math>\, f_s</math> = 20,000 psi||<math>\, f_y</math> = 36,000 psi
|-
|-
|<math>\, v = V / \left(b d \right)</math>||
|&nbsp;
|-
|-
|<math>\,  v_c = 0.95 \sqrt{f'_c}</math>||
|(3)||Piling
|-
|-
|Load Factor||
|&nbsp;
|-
|-
|<math>\, V_u / \left(\omega b d \right)</math>||
|(4)||Overstress
|-
|-
|<math>\, v_c = 2.0 \sqrt{f'_c}</math>
|&nbsp;||colspan="3"|The allowable overstresses as specified in AASHTO Article 3.22 shall be used where applicable for Service Loads design method.
!style="text-align:center"|PART PLAN OF FOOTING
|-
|-
|(*)||colspan="3"| <math>\, E_c = 57,000 \sqrt{f'c} W</math> = 145 pcf., <math>\, Ec = 60,625 \sqrt{f'c}</math> for <math>\, W</math> = 150 pcf.
|}
|}


=====751.40.8.13.1.2 Loads=====




(ii)Peripheral Shear
{|border="0"


 
|(1)||Dead Loads
Critical Section at "d/2" distance from face of column.
 
<math>\, b_o = 4(d + Equiv.\ square\ column\ width)</math>
 
{|
|-
|-
|width="250"|Service Load||rowspan="5"|[[Image:751.40 Open Concrete Int Bents and Piers- Pile Footings- Internal Stresses- Part Plan of Footing- Peripheral Shear.gif]]
|&nbsp;
|-
|-
|<math>\, v = V / \left(b_o d \right)</math>||
|(2)||Live Load
|-
|-
|<math>\,  v = 1.8 \sqrt{f'_c}</math>||
|&nbsp;||As specified on the Bridge Memorandum
|-
|-
|Load Factor||
|&nbsp;||Impact of 30% is to be used for design of the beam.  No impact is to be used for design of any other portion of bent including the piles.
|-
|-
|<math>\, V_u / \left(\omega b_o d \right)</math>||
|&nbsp;
|-
|-
|<math>\, v_c = 4.0 \sqrt{f'c}</math>
|(3)||Temperature, Wind and Frictional Loads
!align="center"|PART PLAN OF FOOTING
|-
|&nbsp;||Wind and temperature forces can be calculated based on longitudinal force distribution.
|}
|}


=====751.40.8.13.1.3 Distribution of Loads=====


If shear stress is excessive, increase footing depth.


{|
{|border="0"
|valign="top"|[[Image:751.40 circled 1.gif]]||Piles to be considered for shear.  (Center of piles are at or outside the critical section.)
|}


 
|(1)||Dead Loads
{|style="text-align:center"
|-
|-
|[[Image:751.40 Open Concrete Int Bents and Piers- Pile Footings- Design and Dims- Side Elev.gif]]||[[Image:751.40 Open Concrete Int Bents and Piers- Pile Footings- Design and Dims- Front Elev.gif]]
|&nbsp;||Loads from stringers, girders, etc. shall be concentrated loads applied at the intersection of centerline of stringer and centerline of bearing.
|-
|-
!SIDE ELEVATION||FRONT ELEVATION
|&nbsp;
|}
 
 
{|
|valign="top"|[[Image:751.40 circled 1.gif]]||Min. = 1/8 x (Distance from top of beam to bottom of footing.)
|-
|-
|valign="top"|[[Image:751.40 circled 2.gif]]||3'-0" (Min.) & 6'-0" (Max.) for steel HP piles, 14" CIP piles. AASHTO Article 4.5.6.4 shall be considered if piles are situated in cohesive soils.
|(2)||Live Load
|-
|-
|valign="top"|&nbsp;||3D (Min.) and 6D (Max.) for 20" and 24" CIP piles. (D = pile diameter)
|&nbsp;||Loads from stringers, girders, etc. shall be applied as concentrated loads at the intersection of centerline of stringer and centerline of earing.
|-
|-
|valign="top"|[[Image:751.40 circled 3.gif]]||Indicates column diameter, or column length or width on a hammer head pier.
|&nbsp;
|-
|-
|valign="top"|[[Image:751.40 circled 4.gif]]||Min. = 2'-6" or column diameter (*) (Or width) for friction piles for SPC A.
|(3)||Temperature
|-
|-
|valign="top"|&nbsp;||Min. = 3'-0" or column diameter (*) (Or width) for steel piles for SPC A.
|&nbsp;||The force due to expansion or contraction applied at bearing pads are not used for stability or pile bearing computations.  However, the movement due to temperature should be considered in the bearing pad design and expansion device design.
|-
|-
|valign="top"|&nbsp;||Min. = 3'-0" or column diameter (*) (Or width) for friction piles for SPC B,C,& D.
|&nbsp;
|-
|-
|valign="top"|&nbsp;||Min. = 3'-6" or column diameter (*) (Or width) for steel piles for SPC B, C & D.
|(4)||Wing with Detached Wing Wall
|-
|valign="top"|[[Image:751.40 circled 5.gif]]||12" for seismic performance category A and 18" for SPC B, C, & D.
|-
|valign="top" align="left"|(*)||For column diameters 4'-0" and greater use a 4'-0" min. footing thickness.
|-
|valign="top" align="left"|(**)||Use 18" for steel HP piles, 14" CIP piles, prescase and prestress piles.
|}
|}


<center>
<center>[[Image:751.40_Detached_Wing_Wall_Section_AA.gif]]</center>


[[Image:751.40 Open Concrete Int Bents and Piers- Pile Footings- Design and Dims- Typ Plan of 3 Pile Footing.gif]]
<center>'''SECTION A-A'''</center>


'''TYPICAL PLAN OF<br>3 PILE FOOTINGS'''<br>(minimum pile spacings)
</center>


NOTES:
<center>[[Image:751.40_Detached_Wing_Wall_Detail_B.gif]]</center>


Use 3- piles on exterior foorings only.
<center>'''DETAIL B'''</center>


Use only HP 10 x 42 or friction piles on three pile footings.


<center>
{|border="0"


[[Image:751.40 Open Concrete Int Bents and Piers- Pile Footings- Design and Dims- Typ Plan of Staggered Pile.gif]]
|(*)||Detached wing wall shown is for illustration purpose only. Design detached wing wall as a retaining wall.
 
|-
'''TYPICAL PLAN<br>STAGGERED PILE'''
|(**)||See retaining wall design.
 
(7 Pile footings shall not be used.)
</center>
 
{|
|valign="top"|[[Image:751.40 circled 1.gif]]||If horizontal thrust requires pile batter- consult the Structural Project Manager.
|}
|}


(*) The maximum pile spacing is 4'-0".
=====751.40.8.13.1.4 Design Assumptions - Loadings=====


=====751.40.8.11.3.2 Reinforcement=====


'''Unreinforced Footing - Use only in Seismic Performance Category A'''
{|border="0"


{|border="0" cellpadding="1" cellspacing="0" align="center" style="text-align:center"
|'''1)'''||colspan="3"|'''Piles'''
|-
|-
|[[Image:751.40 Open Concrete Int Bents and Piers- Pile Footing- Reinforcement- Elev 3 Pile Footing.gif]]
|&nbsp;||valign="top"|a.||colspan="2"|Stresses in the piles due to bending need not be considered in design calculations except for seismic design in categories B, C and D.
|[[Image:751.40 Open Concrete Int Bents and Piers- Pile Footing- Reinforcement- Elev 4 Pile Footing.gif]]
|-
|-
!Elevation<br/>(3 Pile Footing)||Elevation<br/>(4 Pile Footing
|&nbsp;||b.||colspan="2"|The following four loading cases should be considered.
|-
|-
|colspan="2"| &nbsp;
|&nbsp;||&nbsp;||colspan="2"|
|-
{|border="1" style="text-align:center" cellpadding="5" cellspacing="0"
|[[Image:751.40 Open Concrete Int Bents and Piers- Pile Footing- Reinforcement- Plan 3 Pile Footing.gif]]
|[[Image:751.40 Open Concrete Int Bents and Piers- Pile Footing- Reinforcement- Plan 4 Pile Footing.gif]]
|-
!Plan<br/>(3 Pile Footing)||Plan<br/>(4 Pile Footing
|}


{|border="0" cellpadding="5" cellspacing="1" align="center" style="text-align:center"
|Case||Vertical Loads||Horizontal Loads||Special Consideration
|-
|-
|valign="top" align="right"|(*)||align="left" width="400pt" |See lap splice class C (Other than top bars).
|I||DL + E + SUR||EP + SUR||-
|-
|-
|valign="top" align="right"|Notes:||align="left" width="400pt" |Reiforcement not required by design.  Hairpins are sufficient for renforcing requirements.
|II||DL + LL + E + SUR||EP + SUR||-
|-
|-
|valign="top" align="right"|&nbsp;||align="left" width="400pt" |The minimum percentage of reinforcement, "P" , is not required to be met, unless scour is anticipated.
|III||DL + LL + E||EP||-
|-
|-
|valign="top" align="right"|&nbsp;||align="left" width="400pt" |Use for all types of piling, except timber.
|IV||DL + LL + E||None||Allow 25% Overstress
|}
|}
'''Reinforced Footing - Seismic Performance Category A'''
{|border="0" cellpadding="1" cellspacing="0" align="center" style="text-align:center"
|-
|-
|[[Image:751.40 seismic performance category a footing reinforcement front elevation.gif]]
|&nbsp;||&nbsp;||colspan="2"|Where,
|[[Image:751.40 seismic performance category a footing reinforcement side elevation.gif]]
|-
|-
!Front Elevation||Side Elevation
|&nbsp;||&nbsp;||LL||= live load
|-
|-
|colspan="2"| &nbsp;
|&nbsp;||&nbsp;||DL||= dead load of superstructure, substructure and one half of the apporach slab
|-
|-
| &nbsp;
|&nbsp;||&nbsp;||SUR||= two feet of live load surcharge
|[[Image:751.40 Open Concrete Int Bents and Piers-reinforcement-seismic performance category a footing reinforcement plan.gif]]
|-
|-
!&nbsp;||Plan
|&nbsp;||&nbsp;||E||= dead load of earth fill
|}
 
{|border="0" cellpadding="5" cellspacing="1" align="center" style="text-align:center"
|-
|-
|valign="top" align="right"|(*)||align="left" width="400pt" |See lap splice class C (Other than top bars).
|&nbsp;||&nbsp;||EP||= equivalent fluid pressure of earth
|-
|-
|valign="top" align="right"|Note:||align="left" width="400pt" |The maximum size of stress steel allowed is #8 bars.
|&nbsp;||&nbsp;||colspan="2"|Maximum pile pressure = pile capacity
|}
 
 
'''Reinforced Footing - Seismic Performance Categorys B, C & D'''
 
See Structural Project Manager or Liaison before using the following seismic details.
 
 
{|border="0" cellpadding="1" cellspacing="0" align="center" style="text-align:center"
|-
|-
|[[Image:751.40 seismic performance category b c & d footing reinforcement front elevation.gif]]
|&nbsp;||&nbsp;||colspan="2"|Minimum pile pressure = 0 (tension on a pile will not be allowed for any combination of forces exept as noted)
|[[Image:751.40 seismic performance category b c & d footing reinforcement side elevation.gif]]
|-
|-
!Front Elevation||Side Elevation
|&nbsp;
|-
|-
|colspan="2"| &nbsp;
|'''2)'''||colspan="3"|'''Analysis Procedure'''
|-
|-
|valign="bottom"|[[Image:751.40 Open Concrete Int Bents and Piers- Pile Footings- typical detail pile channel shear connector.gif]]
|&nbsp;||a.||colspan="2"|''Find the lateral stiffness of a pile, <math>\, K_\delta</math>'':
|rowspan="2"|[[Image:751.40 seismic performance category b c & d footing reinforcement plan of top reinforcement.gif]]
|-
|-
!Typical Detail<br/>Pile Channel<br/>Shear Connector
|&nbsp;||&nbsp;||colspan="2"|With fixed pile-head (i.e., only translation movement is allowed but no rotation allowed): The lateral stiffness of a pile can be estimated using Figures 1 and 3 or 2 and 3 for pile in cohesionless or cohesive soil, respectively.  The method of using Figures 1, 2, and 3 to find lateral stiffness is called Linear Subgrade Modulus Method.  Usually the significant soil-pile interaction zone for pile subjected to lateral movement is confined to a depth at the upper 5 to 10 pile diameters.  Therefore, simplified single layer stiffness chart shown in Figure 3 is appropriate for lateral loading.  The coefficient <math>\, f</math> in Figures 1 and 2 is used to define the subgrade modulus <math>\, E_s</math> at depth “z” representing the soil stiffness per unit pile length.  For the purpose of selecting an appropriate <math>\, f</math> value, the soil condition at the upper 5 pile diameters should be used.  Since soil property, friction angle <math>\, \phi</math>, or cohesion c, is needed when Figure 1 or 2 is used, determine soil properties based on available soil boring data.  If soil boring data is not available, one can conservatively use <math>\, f</math> value of 0.1 in Figure 3.  Designer may also use soil properties to convert SPT N value to friction angle <math>\, \phi</math>, or cohesion c, for granular or cohesive soil, respectively.  Figures 1 and 2 were based on test data for smaller-diameter (12 inches) piles, but can be used for piles up to about 24 inches in diameter.  In Figure 2, the solid line (by Lam et al. 1991) shall be used in design.
|-
|-
! &nbsp;||Plan Showing Top Reinforcement
|&nbsp;||b.||colspan="2"|''Find the axial stiffness of a pile, <math>\, K_a</math>'':
|-
|-
|colspan="2"| &nbsp;
|&nbsp;||&nbsp;||colspan="2"|For friction pile, <math>\, K_a</math> may be determined based on a secant stiffness approach as described in [[751.9_Bridge_Seismic_Design|EPG 751.9 Bridge Seismic Design]] or by the in-house computer program “SPREAD” where <math>\, K_a</math> is calculated as:
|-
|-
| &nbsp;
|&nbsp;||&nbsp;||colspan="2"|<math>\, \frac{1}{K_a} = \frac{1}{AE / L'} + \frac{1}{K_{Q_f}} + \frac{1}{K_{Q_b}}</math> &nbsp;  Equation (1)
|[[Image:751.40 seismic performance category b c & d footing reinforcement plan of bottom reinforcement.gif]]
|-
|-
! &nbsp;||Plan Showing Bottom reinforcement
|&nbsp;||&nbsp;||colspan="2"|Where:
|}
 
{|border="0" cellpadding="5" cellspacing="1" align="center" style="text-align:center"
|-
|-
|valign="top" align="right"|(*)||align="left" width="400pt" |For reinforcement in top of the footing, see lap splice class C (Top bars).
|&nbsp;||&nbsp;||<math>\, A</math>||= cross sectional area of pile
|-
|-
|valign="top" align="right"|(**)||align="left" width="400pt" |Place the top reinforcement uniformly outside the column.
|&nbsp;||&nbsp;||<math>\, E</math>||= elastic modulus of pile
|-
|-
|valign="top" align="right"|(***)||align="left" width="400pt" |Use same area of steel in the top of the footing as is required for the bottom.
|&nbsp;||&nbsp;||<math>\, L'</math>||= total length of pile
|-
|-
|valign="top" align="right"|Notes:||align="left" width="400pt" |For reinforcement in bottom of the footing, see lap splice Class C (Other than top bars).
|&nbsp;||&nbsp;||<math>\, K_{Q_f}</math>||= secant stiffness due to ultimate friction capacity of the pile as described in [[751.9 LFD Seismic#751.9.2.6.3 Pile Axial Stiffness|EPG 751.9.2.6.3 Pile Axial Stiffness]]
|-
|-
| &nbsp;||align="left" width="400pt" |The maximum size of stress steel allowed is #8 bars.
|&nbsp;||&nbsp;||<math>\, K_{Q_f}</math> ||= secant stiffness due to ultimate bearing capacity of the pile as described in [[751.9 LFD Seismic#751.9.2.6.3 Pile Axial Stiffness|EPG 751.9.2.6.3 Pile Axial Stiffness]]
|-
|-
| &nbsp;||align="left" width="400pt" |Unreinforced footings shall not be used in seismic performance categories B, C & D.
|&nbsp;||colspan="3"|For HP bearing pile on rock <math>\, K_a</math> shall be calculated as:
|}
 
====751.40.8.11.4 Spread Footings====
=====751.40.8.11.4.1 Design and Dimensions=====
 
 
{|border="0" cellpadding="1" cellspacing="0" align="center" style="text-align:center"
|-
|-
|width="250pt"|[[Image:751.40 Open Concrete Int Bents and Piers- spread footings-design and dimensions-side elevation.gif]]
|&nbsp;||&nbsp;||colspan="2"|<math>\, \frac{1}{K_a} = \frac{1}{AE / L'} + \frac{1}{K_{Q_f}}</math> &nbsp;  Equation (2)
|width="250pt"|[[Image:751.40 Open Concrete Int Bents and Piers- spread footings-design and dimensions-front elevation.gif]]
|-
|-
!Side Elevation||Front Elevation
|&nbsp;||&nbsp;||colspan="2"|Or Conservatively, <math>\, K_a</math> may be determined as:
|}
 
{|align="center"
|-
|-
|d||= column diameter
|&nbsp;||&nbsp;||colspan="2"|<math>\, K_a = \frac{AE}{L'}</math> &nbsp;  Equation (3)
|-
|-
|L||= footing length
|&nbsp;
|-
|-
|b||= footing depth
|align="center" colspan="4"|[[Image:751.40_Subgrade_Modulus_with_Depth_for_Sand.gif]]
|-
|-
|B||= footing width
|&nbsp;
|-
|-
|A||= edge distance from column
|align="center" colspan="4"|'''Recommended Coefficient <math>f</math> of Variation in Subgrade Modulus with Depth for Sand'''
|}
|-
 
|&nbsp;
 
The calculated bearing pressure shall be less than the ultimate capacity of the foundation soil.  The ultimate capacity of the foundation soil can be conservatively estimated as 2.0 times the allowable bearing pressure given on the Bridge Memorandum.  The analysis method of calculating bearing pressures is outlined in the following information.
 
 
'''Dimensional Requirements'''
 
{|
|valign="top"|'''L''' -||Minimum of 1/6 x distance from top of beam to bottom of footing (3" increments);
|-
|-
|valign="top"|'''B''' -||Minimum footing width is column diameter + 2A, (3" increments);
|align="center" colspan="4"|[[Image:751.40_Subgrade_Modulus_with_Depth_for_Clay.gif]]
|-
|-
|valign="top"|'''A''' -||Minimum of 12";
|&nbsp;
|-
|-
|valign="top"|'''b''' -||Minimum of 30" or column diameter, Maximum of 72" at 3" increments; (for column diameters 48" and greater use a 48" minimum footing depth.)
|align="center" colspan="4"|'''Recommended Coefficient <math>\, f</math> of Variation in Subgrade Modulus with Depth for Clay'''
|}
 
 
'''Size'''
 
The size of footing shall be determined by computing the location of the resultant force and by calculating the bearing pressure.
 
Long, narrow footings are to be avoided, especially on foundation material of low capacity.  In general, the length to width ratio should not exceed 2.0, except on structures where the ratio of the longitudinal to transverse loads or some other consideration makes the use of such a ratio limit impractical.
 
 
'''Location of Resultant Force'''
 
 
The location of the resultant force shall be determined by the following equations.
 
The Middle 1/3 is defined as: <math>\, \frac{e_L}{L} + \frac{e_B}{B} \le \frac{1}{6}</math>
 
The Middle 1/2 is defined as: <math>\, \frac{e_L}{L} \le \frac{1}{4}</math> and <math>\, \frac{e_B}{B} \le \frac{1}{4}</math>
 
The Middle 2/3 is defined as: <math>\, \frac{e_L}{L} \le \frac{1}{3}</math> and <math>\, \frac{e_B}{B} \le \frac{1}{3}</math>
 
The following table specifies requirements for the location of the resultant force.
 
 
{|border="1" style="text-align:center;" cellpadding="5" align="center"
|-
|-
!width="150pt"|Soil Type||width="150pt"|Resultant Location Group I - VI||width="150pt"|Resultant Location Earthquake Loads Categories B, C and D
|&nbsp;
|-
|-
|align="left" width="150pt"|Clay, clay and boulders, cemented gravel, soft shale with allowable bearing values less than 6 tons, etc.
|align="center" colspan="4"|[[Image:751.40_Lateral_Embedded_Pile-Head_Stiffness.gif]]
|middle 1/3
|middle 1/2
|-
|-
|align="left" width="150pt"|Rock, hard shale with allowable bearing values of 6 tons or more.
|align="center" colspan="4"|
|middle 1/2
{|border="0" align="center" style="text-align:center" cellpadding="5"
|middle 2/3
 
|'''PILE HEAD AT<br/>GRADE LEVEL'''||&nbsp;||'''EMBEDDED PILE HEAD'''
|}
|}
'''Bearing Pressure'''
The bearing pressure for Group I thru VI loads shall be calculated using service loads and the allowable overstress reduction factors as specified in AASHTO Table 3.21.1A. The calculated bearing pressure shall be less than the allowable pressure given on the Bridge Memorandum.
The bearing pressure for Earthquake Loads in Categories B, C, and D shall be  calculated from loads specified in AASHTO Division I-A Seismic Design, Sections 6.2.2, 7.2.1, and 7.2.2.  The seismic design moment shall be the elastic seismic moment (EQ) divided by the modified response modification factor R'.  The modified seismic moment shall then be combined independently with moments from other loads:
Group Load = <math>\, 1.0(D + B + SF + E + EQ/R')</math>
Where:
{|
|<math>\, D</math>||= dead load
|-
|-
|<math>\, B</math>||= buoyancy
|&nbsp;
|-
|-
|<math>\, SF</math>||= stream flow pressure
|align="center" colspan="4"|'''Lateral Embedded Pile-Head Stiffness'''
|-
|-
|<math>\, EQ</math>||= elastic seismic moment
|&nbsp;
|-
|-
|<math>\, E</math>||= earth pressure
|&nbsp;||c.||colspan="2"|''Find the equivalent cantilever pile length, <math>\, L</math>''
|-
|-
|<math>\, R'</math>||= R/2 for category B
|&nbsp;||&nbsp;||colspan="2"|For the structural model used in the structural analyses of loading cases I through IV.  As shown in figure below, length L can be calculated as:
|-
|-
|&nbsp;||= 1 for categories C and D
|&nbsp;||&nbsp;||colspan="2"|<math>\, L = \Bigg(\frac{12EI}{K_\delta}\Bigg)^{1/3}</math> &nbsp;  Equation (4)
|-
|-
|colspan="2"|&nbsp;
|&nbsp;
|-
|-
|<math>\, R</math>||= Response Modification Factor
|colspan="4" align="center"|[[Image:751.40_Structural_Model.gif]]
|-
|-
|&nbsp;||= 5 for multi-column bent
|&nbsp;
|-
|-
|&nbsp;||= 3 for single-column bent
|colspan="4" align="center|'''Structural Model'''
|}
 
 
The calculated bearing pressure shall be less than the ultimate capacity of the foundation soil.  The ultimate capacity of the foundation soil can be conservatively estimated as 2.0 times the allowable bearing pressure given on the Bridge Memorandum.  The analysis method of calculating bearing pressures is outlined in the following information.
 
 
<center>See AASHTO 4.4.2 for explanation of notations.</center>
 
 
<center>[[Image:751.40 sketch of dimensions for footings subjected to eccentric loading.gif]]</center>
 
<center>'''Sketch of Dimensions for Footings Subjected to Eccentric Loading'''</center>
 
 
{|border="0" cellpadding="1" cellspacing="0" align="center" style="text-align:center"
|-
|-
!For &nbsp; <math>\, e_L < L/6</math>
|&nbsp;
!For &nbsp; <math>\, L/6 < e_L < L/2</math>
|-
|-
|colspan="2"| &nbsp;
|&nbsp;||d.||colspan="2"|''Find the equivalent pile area, <math>\, A_e</math> :
|-
|-
|<math>\, q_{max} = \frac{Q (1 + \frac{6e_L}{L})}{BL}</math>
|&nbsp;||&nbsp;||colspan="2"|Once the equivalent cantilever pile length has been determined from step (c) above, the equivalent axial rigidity of the pile, <math>\, A_e \times E_e</math> , can be calculated as <math>\, A_e \times E = K_a L</math>.  Then, the equivalent pile area, <math>\, A_e</math> , is equal to
|<math>\, q_{max} = \frac{2Q}{3B (L/2 - e_L)}</math>
|-
|-
|colspan="2"| &nbsp;
|&nbsp;||&nbsp;||colspan="2"|<math>\, A_e = \frac{K_aL}{E}</math> &nbsp; Equation (5)
|-
|-
|<math>\, q_{min} = \frac{Q (1 - \frac{6e_L}{L})}{BL}</math>
|&nbsp;
|<math>\, q_{min} = L_1 = 3(L/2 - e_L)</math>
|-
|-
|colspan="2"| &nbsp;
|&nbsp;||e.||colspan="2"|''Perform structural analyses for loading cases I through IV.
|-
|-
|[[Image:751.40 Open Concrete Int Bents and Piers- spread footings-design and dimensions-plan view 1.gif]]
|&nbsp;||&nbsp;||colspan="2"|Use computer programs STRUCT3D, SAP2000 or any other program capable of running static analysis.
|[[Image:751.40 Open Concrete Int Bents and Piers- spread footings-design and dimensions-plan view 2.gif]]
|-
|-
!Plan View||Plan View
|&nbsp;
|-
|-
|colspan="2"| &nbsp;
|&nbsp;||f.||colspan="2"|''Check abutment movement at the top of backwall and at the bottom of beam cap''
|-
|-
|[[Image:751.40 Open Concrete Int Bents and Piers- spread footings-design and dimensions-bearing pressure 1.gif]]
|&nbsp;||&nbsp;||colspan="2"|Maximum movement away from the backfill shall not be greater than 1/8". Maximum movement toward the backfill shall not be greater than 1/4".
|[[Image:751.40 Open Concrete Int Bents and Piers- spread footings-design and dimensions-bearing pressure 2.gif]]
|-
|-
!Bearing Pressure||Bearing Pressure
|&nbsp;
|}
 
<center>'''Bearing Pressure for Footing Loaded Eccentrically About One Axis'''</center>
 
 
 
 
{|border="0" cellpadding="4" cellspacing="1" align="center" style="text-align:center"
|-
|-
!colspan="2"|CASE 1||CASE 2
|&nbsp;||g.||colspan="2"|''Check pile axial loads from the analysis with the allowable pile axial load capacity.
|-
|-
|colspan="2"|[[Image:751.40 Open Concrete Int Bents and Piers- spread footings-design and dimensions-bearing pressure case 1 plan view.gif]]
|&nbsp;
|[[Image:751.40 Open Concrete Int Bents and Piers- spread footings-design and dimensions-bearing pressure case 2 plan view.gif]]
|-
|-
|colspan="2"|&nbsp;||k, x and y from AASHTO chart
|&nbsp;||h.||colspan="2"|''Check overturning of bent''
|-
|-
|colspan="2"|<math>\, q_{max} = \frac{R}{BL} (1 + \frac{6e_L}{L} + \frac{6e_B}{B})</math>
|&nbsp;||&nbsp;||colspan="2"|Conservatively, use the same equivalent cantilever pile length, <math>\, L</math>.  Check overturning of bent at the bottom of toe pile for loading cases I and II(Figure of Structural model).
|<math>\, q_{max} = \frac{KR}{BL}</math>
|-
|-
!colspan="2"|CASE 1 Plan View||CASE 2 Plan View
|&nbsp;||&nbsp;||colspan="2"|
{|border="1" style="text-align:center" cellpadding="5" cellspacing="0"
 
|Case I||Point of<br/>Investigation||Vertical Loads||Horizontal Loads||Factor of Safety (**)
|-
|-
|colspan="3"|&nbsp;
|I||Toe Pile||DL + E||EP + SUR||1.2
|-
|-
!colspan="2"|CASE 3||CASE 4
|II||Toe Pile||DL + LL + E||EP + SUR||1.5
|}
|-
|-
|colspan="2"|[[Image:751.40 Open Concrete Int Bents and Piers- spread footings-design and dimensions-bearing pressure case 3 plan view.gif]]
|&nbsp;
|[[Image:751.40 Open Concrete Int Bents and Piers- spread footings-design and dimensions-bearing pressure case 4 plan view.gif]]
|-
|-
|<math>\, r = j/n</math>
|'''5)'''||colspan="3"|'''Deadman Anchorage System'''
|<math>\, s = 1 + r + r^2</math>
|-
|rowspan="3"|<math>\, q_{max} = \frac{3R}{8FG}</math>
|&nbsp;||colspan="3"|Deadman anchorage can be used when the abutment movement exceeds the allowable movement.
|-
|&nbsp;||colspan="3"|The size and location of deadman anchorage shall be designed appropriately to maintain the stability of the abutment.
|-
|-
|<math>\, g = \frac{n(1 + rs)}{4s}</math>
|&nbsp;||colspan="3"|The deadman forces may be used to resist overturning with the approval of the Structural Project Manager.
|<math>\, f = \frac{L(3s - r - 2)}{4s}</math>
|-
|-
|<math>\, q_{max} = \frac{6R}{Lns}</math>
|&nbsp;
|&nbsp;
|-
|-
!colspan="2"|CASE 3 Plan View||CASE 4 Plan View
|'''6)'''||colspan="3"|'''Passive Pressure Shear Key (if applicable)'''
|-
|&nbsp;||colspan="3"|Passive pressure shear key may be used when the abutment movement exceeds the allowable movement.
|-
|&nbsp;||colspan="3"|The passive resistance of soil to the lateral force at shear keys may be used with the approval of structural project manager.
|}
|}


<center>'''Bearing Pressure for Footing Loaded Eccentrically About Two Axes'''</center>
=====751.40.8.13.1.5 Deadman Anchors=====


'''Design Assumptions'''


'''Loading Cases'''


Loads for Groups I thru VI shall be calculated for all bridges.
<center>[[Image:751.40_Deadman_Anchor_Design_Assumption_Detail.gif]]</center>
 
Earthquake loads shall be calculated when the bridge is in Seismic Zones B, C, and D.
Loads for other group loadings shall be used on a case by case basis.




'''Reinforcement'''
{|border="0" cellpadding="3"


The footing is to be designed so that the shear strength of the concrete is adequate to handle the shear stress without the additional help of reinforcement. If the shear stress is too great, the footing depth should be increased.
|&nbsp;||Length of Deadman = <math>\, (F_E + F_S / (P_P - P_A)</math>
 
 
 
'''Shear'''
 
The shear capacity of the footings in the vicinity of concentrated loads shall be governed by the more severe of the following two conditions.
 
 
'''Critical section at "d" distance from face of column:'''
 
{|border="0" cellpadding="4" cellspacing="1" align="center" style="text-align:center"
|-
|-
|[[Image:751.40 critical section at d dist from face of column.gif]]
|&nbsp;||Number of tie rods required = <math>\, (F_E + F_S) / F_R</math>
|-
|-
!Load Factor
|&nbsp;||<math>\, P_A</math> = Active earth pressure on deadman, in lb./ft. = (120 pcf) <math>\, K_A hT</math>
|}
{|border="0" cellpadding="4" cellspacing="1" align="center" style="text-align:left"
|-
|-
|<math>\, V_n = V_u/(\phi bd)</math>
|(**)||<math>\, P_P</math> = Passive earth pressure on deadman, in lb./ft. = (120 pcf) <math>\, K_P hT</math>
|-
|-
|<math>\, V_c = 2 \sqrt{f'_c}</math>
|&nbsp;||<math>\, F_E</math> = Earth pressure on end bent, in lb. = 0.5(120 pcf)<math>\, K_A H^2</math> (length of beam)
|-
|-
|<math>\, b</math> = footing width
|&nbsp;||<math>\, F_S</math> = Surcharge on end bent, in lb. = <math>\, (120 pcf)(2')K_A H (length\ of\ beam)</math>
|}
 
 
'''Critical section at "d/2" distance from face of column:'''
 
{|border="0" cellpadding="4" cellspacing="1" align="center" style="text-align:center"
|-
|-
|[[Image:751.40 critical section at d divided by 2 dist from face of column.gif]]
|&nbsp;||<math>\, K_A = Tan^2 (45^\circ - \phi/2)</math>
|-
|-
!Load Factor
|&nbsp;||<math>\, K_P = Tan^2 (45^\circ - \phi/2)</math>
|}
{|border="0" cellpadding="4" cellspacing="1" align="center" style="text-align:left"
|-
|-
|<math>\, V_n = V_u/(\phi b_0d</math>
|valign="top"|(***)||<math>\, F_R</math> = 8.0 kips for 7/8" Ø tie rod and 10.50 kips for 1" Ø tie rods<br/>(Capacity of the tie rods based on a maximum skew of 30°.)
|-
|-
|<math>\, V_c = 4 \sqrt{f'_c}</math>
|&nbsp;
|-
|-
|<math>\, b_0 = 4(d + Equivalent\ square\ column\ width)</math>
|align="right"|*||If the number of 7/8" Ø tie rods causes too long of a deadman, then try 1" Ø tie rods.
|-
|-
|colspan="2"|If shear stress is excessive, increase footing depth.
|align="right"|**||For seismic loads only, use <math>\, P_P</math> = 4 kips/sq.ft. as the ultimate capacity of compacted fill.
|-
|align="right"|***||For seismic loads only, the allowable stress in the tie rod may be taken as the yield stress of the rod.
|}
|}




Notes:


'''Bending'''
No more than 20% of deadman may fall outside of the roadway shoulders.  To prevent more than 20% limit, using a deeper deadman to reduce its length.  If this is not possible, the total passive pressure resistance should be calculated by summing the resistance from the different fill depths.


If the shear line is within the projected equivalent square column, the footing may be considered satisfactory for all conditions. (minimum reinforcement required)
When deadman anchors are to be used, design the piles for a factor of safety of 1.0 for sliding and design deadman anchors to resist all horizontal earth forces with a factor of safety of 1.0.  This will result in a factor of safety for sliding of 2.0. For special cases, see the Structural Project Manager.


If the shear line is outside of the projected column, the footing must be analyzed and reinforced for bending and checked for shear stress.


<center>[[Image:751.40 Open Concrete Int Bents and Piers- spread footings-design and dimensions-shear line diagrams.gif]]</center>
'''Design Example'''


The critical section for bending shall be taken at the face of the equivalent square column. The equivalent square column is the theoretical square column which has a cross sectional area equal to the round section of the actual column and placed concentrically.   
{|border="0"


 
|colspan="2"|Assume:
'''Reinforcement in Bottom of Footing'''
|-
 
|width="25"|&nbsp;||Roadway width = 36', Out-Out slab width = 36' + 2 x 16" = 38.67'
The bearing pressure used to design bending reinforcement for Group I thru VI loads shall be calculated using Load Factor Loads.
|-
 
|width="25"|&nbsp;||Skew = <math>\, 15^\circ</math>, Length of Beam = <math>\, (38.67')/(Cos 15^\circ) = 40.03'</math>
The bearing pressure used to design bending reinforcement for Earthquake Loads in Categories B, C, and D shall be calculated from the same loads as specified in AASHTO Division 1-A Seismic Design for ultimate bearing pressure.  
|-
 
|width="25"|&nbsp;||Beam depth = <math>\, 3^\prime-0^{\prime\prime} </math>, <math>\, \phi = 27^\circ</math>, <math>\, H = 8.20'</math>
The bottom reinforcement shall be designed using ultimate strength design.  
|-
 
|&nbsp;
 
|-
'''Distribution of Reinforcement'''
|width="25"|&nbsp;||<math>\, \frac{H}{3} = \frac{8.20'}{3} = 2.73'</math>
 
{|border="0" cellpadding="4" cellspacing="1" align="center" style="text-align:center"
|-
|-
|[[Image:751.40 Open Concrete Int Bents and Piers- spread footings-design and dimensions-distribution of reinforcement.gif]]
|width="25"|&nbsp;||<math>\, 3^\prime - 2.73^\prime = 0.27^\prime < 9^{\prime\prime}</math>, use <math>\, 9^{\prime\prime}</math>
|-
|-
|L = Footing Length
|width="25"|&nbsp;||<math>\, h = H - (Beam\ depth) + 9^{\prime\prime} = 8.20^\prime - 3^\prime + 0.75 = 5.95^\prime</math>
|-
|-
|B = Footing Width
|width="25"|&nbsp;||Assume <math>\, T = 2^\prime-0^{\prime\prime} </math> (Deadman anchor depth)
|}
|}


Reinforcement shall be distributed uniformly across the entire width of footing in the long direction.  In the short direction, the portion of the total reinforcement given by AASHTO Equation 4.4.11.2.2-1 shall be distributed uniformly over a band width equal to the length of the short side of the footing, B.


:<math>\, Band\ Width\ Reinforcement = 2(total\ reinforcement\ in\ short\ direction)/(\beta + 1)</math>
{|border="0" cellpadding="5"
:<math>\, \beta = the\ ratio\ of\ footing\ length\ to\ width = L/B</math>


|colspan="4"|Determine Earth and Surcharge Forces
|-
|width="25"|&nbsp;||<math>\, K_A</math>||=||<math>\, Tan^2 (45^\circ - \varnothing/2) = Tan^2 (45^\circ - 27^\circ/2) = 0.3755</math>
|-
|width="25"|&nbsp;||<math>\, K_P</math>||=||<math>\, Tan^2 (45^\circ - \varnothing/2) = Tan^2 (45^\circ - 27^\circ/2) = 2.6629</math>
|-
|width="25"|&nbsp;||<math>\, F_e</math>||=||<math>\, \frac{1}{2} (120 K_AH^2)(Length\,of\,Beam)</math>
|-
|width="25" colspan="2"|&nbsp;||=||<math>\, (60 lb./cu.ft.)(0.3755)(8.20')^2(40.03')</math>
|-
|width="25" colspan="2"|&nbsp;||=||<math>\, 60,842 lbs.</math>
|-
|width="25"|&nbsp;||<math>\, F_s</math>||=||<math>\, (2')(120 K_AH)</math><math>(Length\,of\,Beam)</math>
|-
|width="25" colspan="2"|&nbsp;||=||<math>\, (240 lb./cu.ft.)(0.3755)(8.20')(40.03')</math>
|-
|width="25" colspan="2"|&nbsp;||=||<math>\, 297,582 lbs.</math>
|-
|width="25"|&nbsp;||<math>\, P_A</math>||=||<math>\, 120 K_Ah\;T</math>
|-
|width="25" colspan="2"|&nbsp;||=||<math>\, (120 lb./cu.ft.)(0.3755)(5.95')(2.0')</math>
|-
|width="25" colspan="2"|&nbsp;||=||<math>\, 536 lbs.\,per\,foot\,of\,Deadman</math>
|-
|width="25"|&nbsp;||<math>\, P_P</math>||=||<math>\, 120 K_Ph\;T</math>
|-
|width="25" colspan="2"|&nbsp;||=||<math>\, (120 lb./cu.ft.)(2.6629)(5.95')(2.0')</math>
|-
|width="25" colspan="2"|&nbsp;||=||<math>\, 3,803 lbs.\,per\,foot\,of\,Deadman</math>
|}


'''Reinforcement in Top of Footing'''


Reinforcement in the top of the footing shall be provided for Seismic Performance Categories B, C, and D.  This reinforcement shall be the equivalent area as the bottom steel in both directions.  The top steel shall be placed uniformly outside the column.
{|border="0"


 
|colspan="2"|Determine number of Tie Rods required
{|border="0" cellpadding="1" cellspacing="0" align="center" style="text-align:center"
|-
|+'''Reinforcement Details - Seismic Performance Category A'''
|width="25"|&nbsp;||Try 7/8"Ø Rods: <math>\, F_R = 8.0</math> kips
|[[Image:751.40 Open Concrete Int Bents and Piers- spread footings-SPC A reinforcement details-front elevation.gif]]
|-
|[[Image:751.40 Open Concrete Int Bents and Piers- spread footings-SPC A reinforcement details-side elevation.gif]]
|width="25"|&nbsp;||Number of Rods required = <math>\, (F_E + F_S)/F_R = (60,642 + 29,582)/8,000 = 11.29</math>
|-
|-
!Front Elevation||Side Elevation
|width="25"|&nbsp;||Use 12-7/8"Ø Rie Rods.
|}
|}


{|border="0"


{|border="0" cellpadding="1" cellspacing="0" align="center" style="text-align:center"
|colspan="2"|Determine length of Deadman
|+'''Reinforcement Details - Seismic Performance Categorys B, C & D'''
|[[Image:751.40 Open Concrete Int Bents and Piers- spread footings-SPC b c & d reinforcement details-front elevation.gif]]
|[[Image:751.40 Open Concrete Int Bents and Piers- spread footings-SPC b c & d reinforcement details-side elevation.gif]]
|-
|-
!Front Elevation||Side Elevation
|width="25"|&nbsp;||Length of Deadman required = <math>\, (F_E + F_S)/(P_P - P_A = {(60,642 + 29,582) lbs.}/{(3,803 - 536) lb/ft.} = 27.62'</math>
|}
|-
 
|width="25"|&nbsp;||Tie Rod spacing = <math>\, (27.62^\prime - 2.0^\prime )/11 = 2.33^\prime  say 2^\prime-4^{\prime\prime} > 12^{\prime\prime}</math> minimum, ok.
{|border="0" cellpadding="5" cellspacing="1" align="center" style="text-align:center"
|-
|-
|valign="top" align="right"|(*)||align="left" width="400pt" |Use same area of steel in the top of the footing as is required for the bottom.
|width="25"|&nbsp;||Length of Deadman provided = <math>\, (2'-4^{\prime\prime})(11) + 2.0^\prime = 27^\prime-8^{\prime\prime}</math>
|}
|}


====751.40.8.11.5 T- Joint Connections====


'''Principal Tension and Compression Stresses in Beam-Column Joints'''
<center>[[Image:751.40_Deadman_Anchor_Design_Example_Detail_1.gif]]</center>


The connections where columns and beams join, or where columns and footings join, should be based on the capacity design for shear and diagonal tension. For most locations, this is a “T”-shaped joint. For the analysis of “knee joints”, see Priestley and Seible, 1996.


[[image:751.9.3.1.7.1.jpg|center|750px|thumb|<center>'''Fig. 751.40.8.11.5.1 Joint Shear Stresses in a T-Joint'''</center>]]
<center><math>\, \phi = 27^\circ</math></center>


In the capacity design of connection joints, the column moment, M<sup>0</sup>, will be the moment that is known and which will correspond to flexural overstrength of the column plastic hinges, i.e. M<sup>0</sup> = 1.3M<sub>p</sub> of the column. If the columns are designed based on plastic hinging, the beam and footings shall be designed with capacities greater than or equal to 1.3M<sub>p</sub>.


At each joint, the principal tension and compression stresses are defined and checked as follows:
<center><math>\, 45^\circ - \frac{\phi}{2} = 31.5^\circ</math></center>


:<math>V_{jh} = \frac {M^o}{h_b} </math> (1)


:<math>V_{jh} = \frac {V_jh}{b_{je}h_c} </math> (2)
{|border="0" cellpadding="5"


:<math>b_{je} = \begin{cases}  
|1)||colspan="2"|Check tie rod skew angle at Fill Face of End Bent
\sqrt {2}D\\
|-
h_c + b_c
|&nbsp;|| <math>\, (5.5\ spacing)(30.5^{\prime\prime} - 28^{\prime\prime}) = 13.75^{\prime\prime}, tan</math> || <math>\, \phi = 13.75^{\prime\prime}/(24.33 \times 12^{\prime\prime}) = 0.471</math>
\end{cases} </math> (3)
|-
|colspan="2"|&nbsp;||<math>\, \phi = 2.70^\circ < 30^\circ</math>, tie capacity ok.
|-
|&nbsp;
|-
|colspan="3" align="center"|[[Image:751.40_Deadman_Anchor_Design_Example_Detail_2.gif]]
|-
|&nbsp;
|-
|2)||colspan="2"|Check criteria for Deadman Anchors extending into Fill Slope
|-
|&nbsp;
|-
|colspan="3" align="center"|[[Image:751.40_Deadman_Anchor_Design_Example_Detail_3.gif]]
|}


:<math>V_{jv} = \frac {V_{jh}h_b}{h_c} </math> (4)


:<math>V_{jv} = v_{jh} = \frac {v_{jv}}{b_{je}h_b} </math> (5)
:{|border="0"


:<math>f_v = \frac {P_c}{b_{je}(h_c + h_b)} </math> (6)
|A)||colspan="3"|Extension of Deadman into Fill Slope
 
|-
:<math>p_c = \frac {f_c + f_h}{2} + \sqrt{\Big( \frac {f_v - f_h}{2}\Big)^2 + v_{jh}^2} </math> (7)
|&nbsp;||colspan="3"|Length of Deadman extending into Fill Slope = <math>\, 1.08^\prime tan 15^\circ +</math>
 
|-
:<math>p_t = \frac {f_c + f_h}{2} - \sqrt{\Big( \frac {f_v - f_h}{2}\Big)^2 + v_{jh}^2} </math> (8)
|&nbsp;||width="10"|&nbsp;||colspan="2"| <math>\, (13.83^\prime - ((15.04^\prime + 3.87^\prime) - 24.33^\prime  tan 15^\circ)) = 1.73^\prime</math>
 
|-
:in which:
|colspan="2"|&nbsp;||colspan="2"|0.2 (Length of Deadman) = <math>\, 0.2 (27.67^\prime) = 5.53^\prime</math>
:V<sub>jh</sub> = Average horizontal shear force within a joint.
|-
:V<sub>jv</sub> = Average vertical shear force within a joint.
|colspan="2"|&nbsp;||width="60"|&nbsp;||<math>\, 1.73^\prime < 5.53^\prime</math>
:v<sub>jh</sub> = Average horizontal shear stress within a joint.
|-
:v<sub>jv</sub> = Average vertical shear stress within a joint.
|&nbsp;||colspan="3"|Length of Deadman extending into Fill Slope <math>\, < 0.2</math> (Length of Deadman), ok
:h<sub>b</sub> = Beam depth.
|-
:h<sub>c</sub> = Column diameter or rectangular column cross-section height.
|&nbsp;
:b<sub>je</sub> = The effective width of a joint, defined in Fig. 751.40.8.11.5.2.
|-
:D = Round column diameter.
|colspan="4"|Note: See below for Section A-A details.
:f<sub>v</sub> = Average vertical axial stress due to column axial force P<sub>c</sub>, including the seismic component.
|-
:P<sub>c</sub> = Column axial force.
|&nbsp;
:f<sub>h</sub> = Average horizontal axial stress at the center of the joint.
|-
:p<sub>c</sub> = Nominal principal compression stress in a joint. (positive)
|B)||colspan="3"|Cover of Deadman in Fill Slope
:p<sub>t</sub> = Nominal principal tensile stress in a joint. (negative)
|-
:b<sub>b</sub> = Beam width
|&nbsp;||colspan="3"|<math>\, 1.44^\prime \times (cos 15^\circ) = 1.39^\prime</math>
:b<sub>c</sub> = Column cross-section width
|}
 
[[image:751.9.3.1.7.2.jpg|center|750px|thumb|<center>'''Fig. 751.40.8.11.5.2 Effective Joint Width for Joint Shear Stress Calculations'''</center>]]
 
In Fig. 751.40.8.11.5.2(c), the effective width is taken at the center of the column section, allowing a 45° spread from boundaries of the column section into the beam cap. In the transverse direction, the effective width will be the smaller of the value given by eq. (3) and the beam cap width b<sub>b</sub>. Experimental evidence indicates that diagonal cracking is initiated in the joint region when <math> p_t \ge 3.5\sqrt{f'_c}</math> psi. The principle compression stress p<sub>c</sub> shall be limited to <math> p_c \le 0.3f'_c</math>.
 
'''Design of Reinforcement for Beam-Column Joints'''


When the principal tension stress, p<sub>t</sub>, exceeds <math> 3.5\sqrt{f'_c}</math> psi, joint cracking occurs and the following reinforcement shall be provided:


a) Vertical beam stirrup reinforcement shall be placed throughout the distance of h<sub>b</sub>/2 from the column face on each side of the column. The required amount of vertical beam stirrup reinforcement, A<sub>jv</sub>, is:
<center>[[Image:751.40_Deadman_Anchor_Design_Example_Detail_4.gif]]</center>


:<math>A_{jv} = 0.125A_{sc}\frac{f^\circ_{yc}}{f_{yv}}</math> (9)
<center>'''SECTION A-A<BR/>DETAIL AT FILL SLOPE'''</center>


:Where:


:A<Sub>sc</sub> = The total area of longitudinal steel
Note:


:f°<sub>yc</sub> = overstrength stress in the column reinforcement use
(*) Fill slope shown is for illustration purpose only, see roadway plans.
:::f°<sub>yc</sub> = 1.1f
:f<sub>yv</sub> = yield stress of vertical stirrup reinforcement.


b) Vertical beam stirrup reinforcement within the joint, A<sub>vi</sub>, is
====751.40.8.13.2 Reinforcement====
:<math>A_{vi} = 0.0625A_{sc}\frac{f^\circ_{yc}}{f_{yv}}</math> (10)
=====751.40.8.13.2.1 Wide Flange Beams, Plate Girders and Prestressed Girders=====


c) The additional beam bottom longitudinal reinforcement required is
:<math>A_{sb} = 0.0625A_{sc}\frac{f^\circ_{yc}}{f_{yb}}</math> (11)


:where f<sub>yb</sub> = the yield stress of the beam bottom longitudinal reinforcement. This additional reinforcement must be carried a sufficient distance to develop its yield strength a distance h<sub>b</sub>/2 from the column face.
'''END BENT WITH EXPANSION DEVICE'''


d) The horizontal hoop reinforcement within a joint requires
:<math> \rho_s = \frac{3.3}{Df_{gh}L_a}\Bigg(\frac{0.09A_{sc}f^\circ_{yc}D}{L_a}-F\Bigg)</math> (12)


which for F = 0 simplifies to
{|border="0" cellpadding="5" align="center" style="text-align:center"
:<math> \rho_s = \frac{0.3A_{sc}f^\circ_{yc}}{L^2_af_{yh}}</math> (13)
:Where
:F = The beam cap prestress force.
:f<sub>yh</sub> = The yield stress of the horizontal hoops.
:L<sub>a</sub> = The Anchorage length in the joint.


The minimum amount of horizontal hoop reinforcement shall be
|[[Image:751.40_Reinf_End_Bent_With_Exp_Device_Sec_AA.gif]]
:<math> \rho_s = \frac{3.5\sqrt{f'_c}}{f_{yh}}</math> (14)
|rowspan="4"|[[Image:751.40_Reinf_End_Bent_With_Exp_Device_Part_Elevation.gif]]
|-
|'''SECTION A-A'''
|-
|&nbsp;
|-
|&nbsp;
|-
|&nbsp;||'''PART ELEVATION'''
|}


The spacing of the horizontal hoop can be based on:
Notes:


<math>S=\frac{4A_s}{D'\rho_s}</math> (15)
(1) See details for reinforcement of end bent backwall.
:Where
:A<sub>s</sub> = The cross-sectional area of the hoop bar.
:D’ = The hoop diameter.
[[image:751.9.3.1.7.3.jpg|center|725px|thumb|<center>'''Fig. 751.40.8.11.5.3 Beam Cap Joint Reinforcement'''</center>]]


When the principal tension stress, p<sub>t</sub>, does not exceed <math>3.5\sqrt{f'_c}</math> psi, no joint cracking is expected. However, the following minimum reinforcement shall be provided:
(2) #6-H bars and #4-H bars in backwall of skewed bridges shall be bent in field if required.


:a) Vertical beam stirrup reinforcement within the joint based on eq. (10)
(3) Center #5 bars in backwall.
:b) Minimum horizontal hoop reinforcement based on eq. (14)


Note that the bending of any hooked reinforcement outward, away from the column core, shall not be used because it directs the anchorage force away from the joint. Inward bending of the column reinforcement is allowed. However, it is likely to cause a congestion problem. The use of straight column reinforcement embedded into the beam-column joint is recommended. The standard T-joint reinforcement details are shown in Figs. 751.40.8.11.5.4 - 751.40.8.11.5.6. If any reinforcement requirement based on eqs. (9) through (14) is greater than that shown in Figs. 751.40.8.11.5.4 - 751.40.8.11.5.6, the greater requirement shall be used.
Epoxy coat all reinforcing in end bents with expansion devices. See ______ for details of protective coating and sloping top of beam to drain.
<div id="Fig. 751.40.8.11.5.4"></div>


[[image:751.9.3.1.7.4 2019.jpg|center|600px|thumb|<center>'''Fig. 751.40.8.11.5.4 Int. Bent "T-Joint" Details'''</center>]]
::(1) Increase by 25% the development length (other than top bars) or the standard hook in tension “Ldh” of EPG 751.40.8.4.2.
::(2) The spiral bars or wire shall be continued for a distance equal to ½ the column diameter but not less than 15” from the face of the column connection into the footing.
::(3) Use the greatest length of the following: column diameter of 1/6 of the clear height of column. Lapping of spiral reinforcement in this region is not permitted.
::(4) Splices may be eliminated when the column height is 20’-0” or less or restrictions do not practically allow for lap splices.




[[image:751.9.3.1.7.5 2019.jpg|center|750px|thumb|<center>'''Fig. 751.40.8.11.5.5 Seismic Bar Details'''</center>]]
{|border="0" cellpadding="5" align="center" style="text-align:center"


[[image:751.9.3.1.7.6 2019.jpg|center|600px|thumb|<center>'''Fig. 751.40.8.11.5.6 Beam - Footing "T-Joint" Details'''</center>]]
|rowspan="2"|[[Image:751.40_Reinf_End_Bent_With_Exp_Device_Part_Plan_BB.gif]]
::See additional guidance in EPG 751.9.3.1.7, below, for footing reinforcement not shown.
|width="250"|[[Image:751.40_Reinf_End_Bent_With_Exp_Device_Detail_of_-5_Shape_19_Bar.gif]]
::(1) Increase by 25% the development length (other than top bars) or the standard hook minimum in tension “Ldh” of EPG 751.40.8.4.2.
|-
::(2) The spirals shall be continued for a distance equal to ½ the column diameter but not less than 15” from the face of the column connection into the footing.
|'''DETAIL OF #5 BARS<br/>SHAPE 19'''<!--cell 1 occupied by [[Image:751.40_Reinf_End_Bent_With_Exp_Device_Part_Plan_BB.gif]]-->
|-
|'''PART PLAN B-B'''
|}




'''END BENT WITHOUT EXPANSION DEVICE'''


'''Example 751.40.8.11.5.1:''' A column is subjected to an axial load (due to dead and seismic earthquake loads) of 520 kips. The column diameter is 36 in. with 20 #8 bars for longitudinal reinforcement. The beam cap dimensions are 3 ft. 9 in. wide by 3 ft. 7 in. deep with 5 #11 bars for the top reinforcement and 7 #10 bars for the bottom reinforcement as shown in Fig. 751.40.8.11.5.7. The column overstrength moment-axial load curve is shown in Fig. 751.40.8.11.5.8. Design the reinforcement details for the beam-column joint.


[[image:751.9.3.1.7.7.jpg|center|650px|thumb|<center>'''Fig. 751.40.8.11.5.7 Properties for Example Design'''</center>]]
{|border="0" cellpadding="5" align="center" style="text-align:center"


[[image:751.9.3.1.7.8.jpg|center|650px|thumb|<center>'''Fig. 751.40.8.11.5.8 Column Overstrength Interaction Diagram'''</center>]]
|[[Image:751.40_Reinf_End_Bent_Without_Exp_Device_Sec_AA.gif]]
|rowspan="4"|[[Image:751.40_Reinf_End_Bent_Without_Exp_Device_Part_Elevation.gif]]
|-
|'''SECTION A-A'''
|-
|&nbsp;
|-
|&nbsp;
|-
|&nbsp;||'''PART ELEVATION'''
|}


'''Solution:'''


The axial load for the column = 520 kips.
{|border="0" cellpadding="5" align="center" style="text-align:center"


From Fig. 751.40.8.11.5.8, M<sup>0</sup> = 1562.6 k-ft.
|[[Image:751.40_Reinf_End_Bent_Without_Exp_Device_Part_Plan_BB.gif]]
|valign="top"|
{|border="0" cellpadding="3" style="text-align:left"


From eq. (1): <math>V_{jh} = \frac{M^0}{h_b} = \frac{1562.6 \times 12}{43} </math> = 436.07 kips
|valign="top"|(1)||#5 Dowel bars are 2'-6" long and placed parallel to centerline roadway.
|-
|valign="top"|(2)||#6-H bars and #4-H bars in backwall of skewed bridges shall be bent in field.
|-
|valign="top"|(3)||For skewed bridges with no expansion device place a #4 bar along skew.
|-
|valign="top"|(4)||See details of end bent backwall for reinforcement.
|-
|valign="top"|(5)||Seal joint with joint sealant.  See special provisions.
|-
|colspan="2"|Note:  See Structural Project Manager before using this detail.
|}
|-
|'''PART PLAN B-B
|}


From eq. (3): <math>b_{je} = \sqrt{2}D = 50.9\ in. > b_b = 45\ in.;\ Use\ b_{je} = b_b </math>= 45 in.


From eq. (2): <math>v_{jh} = \frac{V_{jh}}{b_{je}h_c} = \frac{436.07}{45(36)} </math> = 269.18 psi.
'''END BENT WING'''


<u>Vertical Axial Stress:</u>


From eq. (6):
{|border="0" cellpadding="5" align="center" style="text-align:center"


:<math>f_v = \frac{P_c}{b_{je}(h_c + h_b)} = \frac{520}{45(36 + 43)}</math> = 146.27 psi.
|[[Image:751.40_Reinf_End_Bent_Wing_Sec_AA.gif]]|
|rowspan="3"|[[Image:751.40_Reinf_End_Bent_Wing_Typ_Elevation.gif]]
|-
|'''SECTION A-A'''
|-
|&nbsp;
|-
|&nbsp;||'''TYPICAL ELEVATION OF WING'''
|}


<u>Horizontal Stress:</u>
Note: (1) Development length


:f<sub>h</sub> = 0 psi.


From eq. (7):
{|border="0" cellpadding="5" align="center" style="text-align:center"


<math>p_c =\frac{f_v + f_h}{2}+\sqrt{\Big(\frac {f_v - f_h}{2}\Big)^2 + v_{jh}^2} = \frac{146.27 +0}{2} + \sqrt{\Big(\frac{146.27 -0}{2}\Big)^2 + 269.18^2} </math>
|valign="top"|
{|border="1" cellpadding="5" align="center" style="text-align:center"


p<sub>c</sub> = 352.07 psi ≤ 0.3(3000 psi) = 900 psi '''O.K.'''
|h||(2)||(3)
|-
|2' or less||#4 @ 12"||#6 @ 6"
|-
|Over 2' to 4'||#5 @ 6"||#7 @ 6"
|-
|Over 4' to 6'||#7 @ 5"||#8 @ 5"
|}
|[[Image:751.40_Reinf_End_Bent_Wing_Sec_BB.gif]]
|-
|&nbsp;||'''SECTION B-B'''
|-
|[[Image:751.40_Reinf_End_Bent_Wing_Part_Sec_With_Passive_Pressure.gif]]
|rowspan="2"|[[Image:751.40_Reinf_End_Bent_Wing_Horiz_Sec_Thru_Wing.gif]]
|-
|'''PART SECTION THRU BENTS<br/>WITH PASSIVE PRESSURE'''
|-
|&nbsp;||'''HORIZONTAL SECTION THRU WING'''<br/>(K bars not shown for clarity)
|}


From eq. (8):


<math>p_t =\frac{f_v + f_h}{2}-\sqrt{\Big(\frac {f_v - f_h}{2}\Big)^2 + v_{jh}^2} = \frac{146.27 +0}{2} - \sqrt{\Big(\frac{146.27 -0}{2}\Big)^2 + 269.18^2} </math>
'''END BENT BEAM HEEL'''


p<sub>t</sub> = -205.80 psi ≥ 3.5 3000 = 191.7 psi '''Not O.K.'''


Since p<sub>t</sub> is greater than <math>3.5\sqrt{f'_c}</math>, special joint reinforcement based on eqs. (9) through (14) are needed.
{|border="0" cellpadding="5" align="center" style="text-align:center"


Check if moment capacity of the beam is greater than the overstrength moment capacity of the column.
|[[Image:751.40_Reinf_End_Bent_Beam_Heel_Elev_AA.gif]]
 
|[[Image:751.40_Reinf_End_Bent_Beam_Heel_Part_Plan_-_Square.gif]]
Neglect the effect of the compression steel (conservative).
|-
 
|'''ELEVATION A-A (TYP.)'''||'''PART PLAN OF BEAM (SQUARE)'''
[[image:751.9.3.1.7.8 compression.jpg|center|450px]]
|-
 
|[[Image:751.40_Reinf_End_Bent_Beam_Heel_Part_Plan_-_Skews_thru_15_deg.gif]]
Compare moment capacity of beam versus overstrength moment capacity of the column:
|[[Image:751.40_Reinf_End_Bent_Beam_Heel_Part_Plan_-_Skews_thru_15_deg_(2).gif]]
|-
|colspan="2"|'''PART PLAN OF BEAM - SKEWS THRU 15° - LEFT ADVANCE SHOWN'''
|}


:1669.39 k-ft. > 1562.60 k-ft.


Moment capacity of beam is greater than the overstrength moment capacity of the column. '''O.K.'''
{|border="0" cellpadding="5" align="center" style="text-align:center"


'''Design of reinforcement for the beam-column joint'''
|rowspan="2"|[[Image:751.40_Reinf_End_Bent_Beam_Heel_Part_Plan_-_Skews_over_15_deg_(1).gif]]
|[[Image:751.40_Reinf_End_Bent_Beam_Heel_Part_Plan_-_Skews_over_15_deg_(Sec_BB).gif]]
|rowspan="2"|[[Image:751.40_Reinf_End_Bent_Beam_Heel_Part_Plan_-_Skews_over_15_deg_(2).gif]]
|-
|'''SECTION B-B''' <!--column 1 occupied by cell [[Image:751.40_Reinf_End_Bent_Beam_Heel_Part_Plan_-_Skews_over_15_deg_(1).gif]]-->
|-
|colspan="3"|'''PART PLAN OF BEAM - SKEWS OVER 15° - LEFT ADVANCE SHOWN'''
|}


:- Vertical reinforcement should be placed throughout a distance of h<sub>b</sub>/2 from the column face on each side of the column.


::From eq.(9): <math>A_{jv} = 0.125 A_{sc}\frac{f^0_{yc}}{f_{yv}}</math>
Note:
:::A<sub>sc</sub> = 15.70 in<sup>2</sup>


:::<math>f^0_{yc}</math> = 1.1f = 66 ksi.
Vertical spacing for #7 bars shown in Elevation A-A is typical for all types of end bent beams.
:::f<sub>yv</sub> = 60 ksi.
:::A<sub>jv</sub> = 0.125 (15.70) 66 / 60 = 2.16 in<sup>2</sup>


:- Reinforcement within the joint confines:
For a long distance between heel pile and bearing beam investigate for use of larger bars; e.g. larger skews where the shear line does not fall within the bearing beam.


::From eq. (10): <math>A_{vi} = 0.0625 A_{sc}\frac{f^0_{yc}}{f_{yv}}</math>
:::::= 0.0625 (15.70) 66 / 60 = 1.08 in<sup>2</sup>


:- Additional bottom of beam longitudinal reinforcement:
{|border="1" cellpadding=6" cellspacing="1" align="center" style="text-align:center"


::From eq. (11): <math>A_{sb} = 0.0625 A_{sc}\frac{f^0_{yc}}{f_{yb}}</math>
|rowspan="2" width="150"|Pile Load Not Greater||rowspan="2" width="150"|(1)<math>*</math> Hair-Pin Stirrups||colspan="4"|(2) Horizontal Rebar around Heel Pile
:::::= 0.0625 (15.70) 66 / 60 = 1.08 in<sup>2</sup>
|-
|width="75"|Skew thru 30° <!--column 1 occupied by cell Pile Load Not Greater--> <!--column 2 occupied by cell (1)* Hair-Pin Stirrups-->||width="75"|Skew 31° thru 45°||width="75"|Skew 46° thru 60°||width="75"|Skew over 60°
|-
|140 kips||#6 @ 9"||5-#7||5-#7||5-#8||By Design
|-
|194 kips||#6 @ 6"||5-#7||5-#8||By Design||By Design
|}


::This reinforcement must be developed at a distance h<sub>b</sub>/2 away from the face of the column.


:- Hoop Reinforcement:
<math>*</math>  Use 21" horizontal leg.


::From eq. (13): <math> \rho_s = \frac{0.3A_{sc}f^\circ_{yc}}{L^2_af_{yh}}</math>


::::L<sub>a</sub> = 40 in.
'''END BENT BACKWALL'''
::::f<sub>yh</sub> = 60 ksi
::<math> \rho_s = \frac{0.3 (15.70)(66)}{40^2(60)}</math>
::<math> \rho_{s, min} = \frac{3.5 \sqrt{3000}}{60000} = 0.003195  \rho_s > \rho_{s, min}</math> ∴use ρs


:use #4 hoop reinforcement


:A<sub>s</sub> = 0.1963 in<sup>2</sup>
<center>[[Image:751.40_Reinf_End_Bent_Backwall_Part_Section.gif]]</center>


:D’ = 36 – 2(2) – 4/8 = 31.5 in.
<center>'''PART SECTION THRU BACKWALL AND BEAM'''</center>


:ρ<sub>s</sub> = 0.003238


:From eq. (15): <math>S=\frac{4A_s}{D'\rho_s} = \frac{4(0.1963)}{31.5(0.003238)}</math> = 7.70” spacing > 3” max. from Fig. 751.40.8.11.5.4.  Therefore, '''Use S = 3”'''
{|border="1" cellpadding="5" cellspacing="1" align="center" style="text-align:center"


[[image:751.9.3.1.7.9.jpg|center|650px|thumb|<center>'''Fig. 751.40.8.11.5.9 Summary of “T-Joint” Reinforcement'''</center>]]
|colspan="4"|'''V-BAR SIZE AND SPACING'''
 
|-
'''Principal Tension and Compression Stresses in Column-Footing Joints'''
|h<br/>(feet)||t<br/>(inch)||Fill Face<br/>Reinforcement||Front Face<br/>Reinforcement
 
|-
Column – Footing joints are essentially the same as inverted beam-column T joints. Eqs. (1) through (8) are applicable to column-footing joints except the beam height, h<sub>b</sub>, shall be changed to the footing height, h<sub>f</sub>.
|1-6||12||#5 @ 12"||#5 @ 12"
 
|-
'''Design of Reinforcement for Column-Footing Joint'''
|7||12||#5 @ 12"||#5 @ 12"
 
|-
The design of the reinforcement for column-footing joints is similar to that for beam-column T joint. From a joint performance viewpoint, it is desirable to bend the column bars inward toward the joint by using 90° hook bars, but this will cause undue congestion. Bending column bars away from the joint will increase the diagonal tension stress within the joint region. However, it makes a stable platform for supporting the column cage and prevents congestion. When the column reinforcement is bent outward, eqs. (9) through (14) shall be applied. Since the column inelastic action may develop in directions other than parallel to one of the principal axes of the footing, the amount of vertical reinforcement in eq. (9) shall be placed in each of the four quadrant areas outside the joint. In other words, a total vertical stirrup area of:
|8||12||#5 @ 12"||#5 @ 12"
|-
|9||12||#6 @ 12"||#5 @ 12"
|-
|10||12||#6 @ 10"||#5 @ 12"
|-
|11||15||#6 @ 10"||#5 @ 12"
|-
|12||15||#6 @ 8"||#5 @ 12"
|-
|13||18||#6 @ 8"||#5 @ 12"
|-
|14||18||#6 @ 6"||#5 @ 12"
|}


::<math>A_{jv} = 0.5 A_{sc}\frac{f^0_{yc}}{f_{yv}}</math> (16)


shall be placed around the column.
Note:


Extra top reinforcement in the footing is also required in accordance with eq. (11). This reinforcement should pass through the column reinforcement or be placed as close as possible to the sides of the column and extend a distance of not less than l = 0.5*D + L<sub>d</sub>, where L<sub>d</sub> is the bar development length, beyond the face on both sides of the column.
All reinforcement is grade 60.


'''Example 751.40.8.11.5.2:''' A column is subjected to an axial load (due to dead and seismic loads) of 520 kips. The column diameter is 36 in. with 20 #8 bars for longitudinal reinforcement. All column reinforcement is bent outward into the footing away from the joint. The footing depth is 39 inches. The top and bottom reinforcement for the footing is shown in Fig. 751.40.8.11.5.10, below. Design the reinforcement details for the column-footing joint.
Design is based on 45 lbs. per cu. ft. equivalent fluid pressure and 90 lbs. per sq. ft. live load surcharge.


[[image:751.9.3.1.7.10.jpg|center|750px|thumb|<center>'''Fig. 751.40.8.11.5.10 Details of Footing Reinforcement for Example 751.40.8.11.5.2'''</center>]]
Epoxy coat all reinforcing steel in beam and backwall on non-integral end bents with expansion devices.


'''Solution:'''
=== 751.40.8.14 Concrete Pile Cap Integral End Bents ===
[[image:751.9.3.1.7.10 solution.jpg|left|300px]]
The axial load for the column = 520 kips.


From Fig. 751.40.8.11.5.8 in Example 751.40.8.11.5.1, M<sup>0</sup> = 1562.6 k-ft.


From eq.(1): <math>V_{jh} = \frac{M^0}{h_f} = \frac{1562.6(12)}{39} </math> = 480.8 kips
==== 751.40.8.14.1 Design ====


From eq. (3): <math>b_{je} = \sqrt{2}D = \sqrt{2} \times 36'' = 50.9'' </math>


From eq. (2): <math>v_{jh} = \frac{V_{jh}}{b_{je}h_c} = \frac{480.8}{50.9(36)} </math> =262.39 psi.
===== 751.40.8.14.1.1 Design Unit Stresses =====


#Reinforced Concrete
#*Class B Concrete (Substructure) &nbsp; <math>\, f_c</math> &nbsp; = 1,200 psi, &nbsp; <math>\, f'_c</math> &nbsp; = 3,000 psi
#*Reinforcing Steel (Grade 60) &nbsp; &nbsp; &nbsp; &nbsp; <math>\, f_s</math> &nbsp; = 24,000 psi &nbsp; <math>\, f_y</math> &nbsp; = 60,000 psi
#*<math>\, n</math> &nbsp; = 10
#*<math>\, E_c</math> &nbsp; =<math>\, w^{1.5} \times 33 \sqrt{f'_c}</math> &nbsp; (AASHTO Article 8.7.1)(*)
#Structural Steel
#*Structural Carbon Steel  (ASTM A709 Grade 36) &nbsp; <math>\, f_s</math> &nbsp; = 20,000 psi &nbsp; <math>\, f_y</math> &nbsp; = 36,000 psi
#Piling
#*See the Bridge Memorandum if pile capacity is indicated.
#Overstress
#*The allowable overstresses as specified in AASHTO Article 3.22 shall be used where applicable for Service Loads design method.


<u>Vertical Axial Stress:</u>
(*) &nbsp; <math>\, E_c = 57,000 \sqrt {f'_c} for\ W = 145 pcf,\ E_c = 60,625 \sqrt{f'_c} for W = 150 pcf </math>


From eq. (6):
===== 751.40.8.14.1.2 Loads =====
:<math>f_v = \frac {P_c}{b_{je}(h_c + h_b)} = \frac{520}{50.9(36 + 39)} </math> = 136.21psi.


<u>Horizontal Axial Stress:</u>
#Dead Loads
:f<sub>h</sub> = 0 psi.
#Live Load
 
#*As specified on the Bridge Memorandum.
<u>Principal Stresses:</u>
#*Impact of 30% is to be used for design of the beam. No impact is to be used for design of any other portion of bent including the piles.
 
#Temperature, Wind and Frictional Loads
From eq. (7):
<math>p_c = \frac {f_c + f_h}{2} + \sqrt{\Big( \frac {f_v - f_h}{2}\Big)^2 + v_{jh}^2} = \frac{136.21 + 0}{2} + \sqrt{\Big( \frac{136.21 - 0}{2}\Big)^2 + 262.39^2}</math>


::= 339.19 psi. ≤ 0.3(3000psi.) = 900 psi. '''O.K.'''
===== 751.40.8.14.1.3 Distribution of Loads =====


From eq. (8):
#Dead Loads
<math>p_t = \frac {f_v + f_h}{2} - \sqrt{\Big( \frac {f_v - f_h}{2}\Big)^2 + v_{jh}^2} = \frac{136.21 + 0}{2} - \sqrt{\Big( \frac{136.21 - 0}{2}\Big)^2 + 262.39^2}</math>
#*Loads from stringers, girders, etc. shall be concentrated loads applied at the intersection of centerline of stringer and centerline of bearing.  Loads from concrete slab spans shall be applied as uniformly, distributed loads along the centerline of bearing.
#Live Load
#*Loads from stringers, girders, etc. shall be applied as concentrated loads at the intersection of centerline of stringer and centerline of bearing.  For concrete slab spans distribute two wheel lines over 10'-0" (normal to centerline of roadway) of substructure beam. This distribution shall be positioned on the beam on the same basis as used for wheel lines in Traffic Lanes for Substructure Design.
#Wing with Detached Wing Wall
#*When wing length, L, is greater than 17 feet, use maximum length of 10 feet rectangular wing wall combined with a detached wing wall.  When detached wing walls are used, no portion of the bridge live load shall be assumed distributed to the detached wing walls.  Design detached wing wall as a retaining wall.  (The weight of barrier or railing on top of the wall shall be included in Dead Load.)


::= -202.98 psi. > 3.5<math>\sqrt{3000}</math> = 191.7 psi. '''Not O.K.'''
===== 751.40.8.14.1.4 Design Examples =====


Since p<sub>t</sub> is greater than allowed, special joint reinforcement based on eqs. (9)through (14) are needed.
Design H-bar and F-bar of an intermediate wing as shown in the figures below (wing length = 12.5', wing thickness = 24", wing height = 8'-4"), a Seismic Force of &nbsp; <math>\, \omega</math> = 12.21 kips/ft. is applied on the wall.


<u>Check moment capacity</u>


Check the moment capacity of footing in the long direction to see if it is greater than the overstrength moment capacity of the column.
{|border="0" cellpadding="5" cellspacing="1" align="center" style="text-align:center"
|-
|[[Image:751.40 conc pile cap int end bents-section near intermediate wing.gif]]
|[[Image:751.40 conc pile cap int end bents-intermediate wing sectin b-b.gif]]
|-
!Section Near Intermediate Wing
!Section B-B
|-
|colspan="2"| &nbsp;
|-
|rowspan="2"|[[Image:751.40 conc pile cap int end bents-intermediate wing sectin c-c.gif]]
|[[Image:751.40 conc pile cap int end bents-interior wing design.gif]]
|-
!Interior Wing Design
|-
!Section C-C
|}


Neglect the effect of the compression reinforcement.


[[image:751.9.3.1.7.10 compression.jpg|center|550px]]
Solve:   Assume #6 V bar, #8 H bar, #6 F bar


:Since C<sub>c</sub> = T
{|
::<math>a = \frac{9.42(60,000)}{0.85(108)(3000)} </math> = 2.0523"
|valign="top" rowspan="14"|1.)||Design H-bar for bending
:M<sub>n</sub> = A<sub>s</sub>(f<sub>y</sub>)(d - a/2)
|-
 
|<math>\, d = 24in. - 2in. (clr.) - 0.75in. (V\ Bar) - 0.5 \times 1in. (H\ bar) = 20.75in.</math>.
::= 9.42(60)(35-(2.0523/2))
|-
::= 1600.17 k-ft.
| <math>\, \ell = 11ft.,</math> &nbsp; <math>\, \omega = 12.21 kips/ft.,</math> &nbsp;  <math>\, b = 8ft. 4in. = 100in. </math>
 
Compare moment capacity of footing overstrength moment capacity of the column:
:1600.17 k-ft > 1562.60 k-ft.
 
Moment capacity of the footing is greater than the overstrength moment of capacity of the column. '''O.K.'''
 
Check the moment capacity of the footing in the short direction to see if it is greater than the overstrength moment capacity of the column.
 
Neglect the effect of the compression reinforcement.
[[image:751.9.3.1.7.10 compression2.jpg|center|550px]]
 
:Since C<sub>c</sub> = T
::<math>a = \frac{9.43(60,000)}{0.85(168)(3000)} </math> = 1.3207"
:M<sub>n</sub> = A<sub>s</sub>(f<sub>y</sub>)(d - a/2)
::= 9.43(60)(35-(1.3207/2))
::= 1619.11 k-ft.
 
Compare moment capacity of footing overstrength moment capacity of the column:
:1619.11 k-ft > 1562.60 k-ft.
 
Moment capacity of the footing is greater than the overstrength moment of capacity of the column. '''O.K.'''
 
'''Design of reinforcement for the column-footing joint'''
 
:- Vertical reinforcement should be placed throughout a distance of h<sub>f</sub>/2 from the column face on each side of the column.
 
::From eq. (16): <math>A_{jv} = 0.5 A_{sc}\frac{f^0_{yc}}{f_{yv}}</math>
:::A<sub>sc</sub> = 15.71 in<sup>2</sup>
:::<math>f^0_{yc}</math> = 1.1 f<sub>y</sub> = 66 ksi.
:::f<sub>yv</sub> = 60 ksi.
:::A<sub>jv</sub> = 0.5 (15.71) (66 / 60) = 8.641 in<sup>2</sup>
 
:- Reinforcement within the joint confines:
 
::From eqs. (9),(10) & (16):
::: <math>A_{vi} = 0.25A_{sc}\frac{f^0_{yc}}{f_{yf}}</math>
:::::= 0.25 (15.71)(66/60) = 4.320 in<sup>2</sup>
 
:- Additional top of footing longitudinal reinforcement:
:::<math>A_{sb} = 0.0625A_{sc}\frac{f^0_{yc}}{f_{yf}}</math>
:::::= 0.0625 (15.70)(66 / 60) = 1.08 in<sup>2</sup>
 
:This reinforcement must be developed at a distance h<sub>b</sub>/2 away from the face of the column and must be placed so that the reinforcement goes through the column reinforcement. A<sub>sb</sub> is required in both directions in the footing.
 
:- Hoop Reinforcement:
 
::From eq. (13): <math> \rho_s = \frac{0.3A_{sc}f^\circ_{yc}}{L^2_af_{yh}}</math>
 
:::L<sub>a</sub> = 35 in.
:::f<sub>yh</sub> = 60 ksi
 
::<math> \rho_s = \frac{0.3 (15.71)(66)}{35^2(60)}</math> = 0.004232
 
::<math> \rho_{s, min} = \frac{3.5 \sqrt{3000}}{60000}</math> = 0.003195
 
::ρs > ρ<sub>s, min</sub> '''∴use ρ<sub>s</sub>'''
 
::Use #5 hoop reinforcement
 
::A<sub>s</sub> = 0.3068
 
::D’ = 36 - 2(2) - 5/8” = 31.375”
 
::ρ<sub>s</sub> = 0.004232
 
::From eq. (15): <math>S = \frac{4A_S}{D'\rho_s} = \frac{4 (0.3068)}{31.375(0.004232)} </math> = 9.24"
 
::'''Use 9” Spacing'''
 
:Note: By adding 3 in. to footing depth in this example problem, the principal tensile stress in the joint would have been less than the maximum allowed tensile stress, thus eliminating the need for the special joint reinforcement other than the minimum required reinforcement. However, the practice of increasing footing depth to eliminate the need for the special joint reinforcement should be limited to increasing the footing depth a maximum of 6 inches.
 
[[image:751.9.3.1.7.11.jpg|center|700px|thumb|<center>'''Fig. 751.40.8.11.5.11 Summary of Column-Footing Joint Reinforcement'''</center>]]
 
===751.40.8.12 Concrete Pile Cap Intermediate Bents===
 
====751.40.8.12.1 Design====
 
=====751.40.8.12.1.1 Unit Stresses=====
 
 
{|border="0"
 
|(1)||Reinforced Concrete
|-
|-
|&nbsp;||Class B Concrete (Substructure)||<math>\, f_c</math> = 1,200 psi||<math>\, f'_c</math> = 3,000 psi
|&nbsp;
|-
|-
|&nbsp;||Reinforcing Steel (Grade 60||<math>\, f_s</math> = 24,000 psi||<math>\, f_y</math> = 60,000 psi
|At Section A-A:
|-
|-
|&nbsp;||<math>\, n</math> = 10
|<math>\, Mu = (1.0)( \omega \ell^2 / 2) = 12.21 \times 11^2/2 = 738.705 kip-ft.</math>
|-
|-
|&nbsp;||colspan="3"|<math>\, E_c = 3,122 ksi (Ec = W^{1.5} \times 33 \sqrt{f'_c}, Ec = 57,000 \sqrt{f'c}</math>
|<math>\, Ru = Mu/( \phi bd^2) = 738.705 \times 12,000/(0.9 \times 100in. \times (20.75)^2) = 228.85 psi</math>
|-
|-
|&nbsp;
|Use <math>\, f-c = 3 kisi,</math> &nbsp; <math>\, fy = 60 ksi</math>
|-
|-
|(2)||Structural Steel
|<math>\, m = fy/(0.85 f'c) = 60/(0.85 \times 3) = 23.53</math>
|-
|-
|&nbsp;||Structural Carbon Steel (ASTM A709 Grade 36)||<math>\, f_s</math> = 20,000 psi||<math>\, f_y</math> = 36,000 psi
|<math>\, \rho = (1/m)[1 - \sqrt{1 - 2 Rum/fy}] = (1 - \sqrt{1 - 2 \times 228.85 \times 23.53/60000})/23.53 = 0.004003</math>
|-
|-
|&nbsp;
|As (Req'd) = <math>\, \rho\ bd = 0.004003 \times 100in. \times 20.75in. = 8.31 sq.\ in.</math>
|-
|-
|(3)||Piling
|Try No. 8 @ 9", USE &nbsp; <math>\, \frac{100in - 3in. (clr.) - 2in. (clr.) - 1in (No.\ 8\ bar)}{9in} = 10.44\ spacing</math>
|-
|-
|&nbsp;
|Say 11 spacings, 12 bars (Each Face)
|-
|-
|(4)||Overstress
|Total Area = <math>\, 12 (0.7854) = 9.42 sq.\ in. > 8.31 sq.\ in.,</math> &nbsp; USE 12-No. 8 H-bar (Each Face)
|-
|&nbsp;||colspan="3"|The allowable overstresses as specified in AASHTO Article 3.22 shall be used where applicable for service loads.
|}
|}


=====751.40.8.12.1.2 Loads=====


 
{|
{|border="0"
|valign="top" rowspan="22"|2.)||Design F-bar for shear
 
|-
|(1)||Dead Loads
|<math>\, Vu \le \phi (Vc = Vs),\ \phi = 0.85</math> &nbsp; (AASHTO Article 8.16.6.1.1)
|-
| &nbsp;
|-
|At Section A-A:
|-
|<math>\, Vu = 1.0 \times (\omega \ell) = (12.21 kips/ft.)(11ft.) = 134.11 kips</math>
|-
|-
|&nbsp;
|<math>\, Vc = bd(\vartheta c) = bd(2 \sqrt{f'c} = (100in. \times 20.75in.)(2 \times \sqrt{3000})/1000 = 227.30 kips</math>
|-
|-
|(2)||Live Load
|<math>\, \phi\ Vc = 0.85 Vc = 0.85 \times 227.30 kips = 193.20 kips</math>
|-
|-
|&nbsp;||As specified on Bridge Memorandum.
|<math>\, \phi\ Vc = 193.20 kips > Vu = 134.11 kips,</math> &nbsp; No &nbsp; <math>\, Vs</math> &nbsp; needed by AASHTO Article 8.16.6.3.1.
|-
|-
|&nbsp;||Impact of 30% is to be used for design of the beam. No impact is to be used for design of any other portion of bent including the piles.
|Minimum shear reinforcement is required by AASHTO Article 8.19.1.1(a).(ACI 318-95 11.5.5.1)
|-
|-
|&nbsp;
|&nbsp;
|-
|-
|(3)||Temperature, Wind and Frictional Loads
|F-bar is a single group of parallel bars, all bent up at the same distance from support (no "spacing" along the "L" direction of the wing).
|}
|-
 
|Try No. 6 @ 12" F-bar (each face).
=====751.40.8.12.1.3 Distribution of Loads=====
|-
 
|Try <math>\, (100in. - 3in. - 2in. - 1in. )/12in = 7.83,</math> say 8 spacing, 9 bars (each face).
{|border="0"
|-
 
| &nbsp;
|(1)||Dead Loads
|-
|Since seismic force is a cyclic loading, assume one bar works at any instance.
|-
|<math>\, Av (provided) = 1 \times 9 \times (0.4418 sq.\ in.) = 3.98 sq.\ in.</math>
|-
|-
|&nbsp;||Loads from stringers, girders, etc. shall be concentrated loads applied at the intersection of centerline of stringer and centerline of bearing.  Loads from concrete slab spans shall be applied as uniformly, distributed loads along the centerline of bearing.
| &nbsp;
|-
|-
|&nbsp;
|<math>\, Vs = Av (Fy\ Sin 45^\circ) = (3.98 sq.\ in.)(60 ksi)(Sin 45^\circ) = 168.7 kips</math>
|-
|-
|(2)||Live Load
|Check &nbsp; <math>3 \sqrt{f'c} b_\omega d = 3 \sqrt{3000} \times 100in. \times 20.75in. / 1000 = 341.0 kips</math>
|-
|-
|&nbsp;||Loads from stringers, girders, etc. shall be applied as concentrated loads at the intersection of centerline of stringer and centerline of bearing.  For concrete slab spans distribute two wheel lines over 10'-0" (normal to centerline of roadway) of substructure beam.  This distribution shall be positioned on the beam on the same basis as used for wheel lines in Traffic Lanes for Substructure Design.
| &nbsp;
|-
|-
|&nbsp;
|<math>\, Vs = Av (fy\ Sin 45^\circ) \le 3 \sqrt{f'c} b_\omega d,</math> &nbsp; O.K. by AASHTO Article 8.16.6.3.4.
|-
|-
|(3)||Temperature, Wind and Frictional Loads
|USE 9 No. 6 F-bars (each face).
|}
|}


=====751.40.8.12.1.4 Design Assumptions=====
==== 751.40.8.14.2 Reinforcement ====


'''LOADINGS'''


{|border="0"
===== 751.40.8.14.2.1 Earthquake Loads at End Bent – Intermediate Wing (Seismic Shear Wall) =====


|(1)||colspan="2"|Beam
{|border="0" cellpadding="5" cellspacing="1" align="center" style="text-align:center"
|-
|-
|&nbsp;||colspan="2"|The beam shall be assumed continuous over supports at centerline of piles.
|[[Image:751.40 conc pile cap int end bents-section near intermediate wing(seismic).gif]]
|[[Image:751.40 conc pile cap int end bents-intermediate wing sectin b-b(seismic).gif]]
|-
|-
|&nbsp;||colspan="2"|Intermediate bent beam caps shall be designed so that service dead load moments do not exceed the cracking moment of the beam cap (AASHTO Article 8.13.3, Eq. 8-2).
!Section Near Intermediate Wing
!Section B-B
|-
|colspan="2"| &nbsp;
|-
|-
|[[Image:751.40 conc pile cap int end bents-intermediate wing sectin a-a(seismic).gif]]
|&nbsp;
|&nbsp;
|-
|-
|(2)||colspan="2"|Piles
!Section A-A
|&nbsp;
|}
{|border="0" cellpadding="5" cellspacing="1" align="center" style="text-align:center"
|-
|-
|&nbsp;||(a)||Bending
|valign="top" align="right"|*||align="left" width="400pt"|Use 1.25 x development length for seismic design.
|-
|-
|colspan="2"|&nbsp;||Stresses in the piles due to bending need not be considered in design calculations for Seismic Performance Category A.
|valign="top" align="right"|**||align="left" width="400pt"|Additional reinforcing steel by design if required.
|-
|-
|&nbsp;||(b)||Dead Loads, etc.
|valign="top" align="right"|Note:||align="left" width="400pt"|Make sure reinforcement does not interfere with girders.
|-
|colspan="2"|&nbsp;||Dead load of superstructure and substructure will be distributed equally to all piles which are under the main portion of the bent.
|}
|}


====751.40.8.12.2 Reinforcement====
=== 751.40.8.15 Cast-In-Place Concrete Retaining Walls ===
=====751.40.8.12.2.1 General=====


'''PRESTRESS DOUBLE-TEE STRUCTURES'''
==== 751.40.8.15.1 Loads ====


'''Dead Loads'''


<center>[[Image:751.40_Conc_Pile_Cap_Int_Bents_PS_Dbl_Tee_(Bents_with_3_thru_6_in_crown).gif]]</center>
Dead loads shall be determined from the unit weights in [[751.2 Loads#751.2.1.1 Dead Load |EPG 751.2.1.1 Dead Load]].


<center>'''BENTS WITH 3" THRU 6" CROWN'''</center>
'''Equivalent Fluid Pressure (Earth Pressures)'''
 
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"  
 
|-
{|border="0" align="center" style="text-align:center"
|'''Additional Information'''
 
|[[Image:751.40_Conc_Pile_Cap_Int_Bents_PS_Dbl_Tee_(Section_AA).gif]]
|[[Image:751.40_Conc_Pile_Cap_Int_Bents_PS_Dbl_Tee_(Section_BB).gif]]
|-
|-
|'''SECTION A-A'''||'''SECTION B-B'''
|AASHTO 3.20.1
|}
|}


For determining equivalent earth pressures for Group Loadings I through VI the Rankine Formula for Active Earth Pressure shall be used.


{|border="0"
Rankine Formula: <math>P_a = \frac{1}{2}C_a\gamma_sH^2</math> where:
:''C<sub>a</sub>'' = <math>\cos\delta\Bigg[\frac{\cos\delta - \sqrt{\cos^2\delta - \cos^2\phi}}{\cos\delta + \sqrt{\cos^2\delta - \cos^2\phi}}\Bigg]</math> = coefficient of active earth pressure


|(*)||Channel shear connectors are to be used in Seismic Performance Categories B, C & D.  For details not shown, see [[751.9_Bridge_Seismic_Design|EPG 751.9 Bridge Seismic Design]].
:''P<sub>a</sub>'' = equivalent active earth pressure
|-
|valign="top"|(**)||2'-6" Min. for Seismic Performance Category A.<br/>2'-9" Min. for Seismic Performance Categories, B, C & D.
|-
|colspan="2"|Note:  Use square ends on Prestress Double-Tee Structures.
|}


:''H'' = height of the soil face at the vertical plane of interest


<center>[[Image:751.40_Conc_Pile_Cap_Int_Bents_PS_Dbl_Tee_(Bents_with_crown_over_6_in).gif]]</center>
:<math>{\gamma_s}</math> = unit weight of soil


<center>'''BENTS WITH CROWN OVER 6"'''</center>
:<math>{\delta}</math>= slope of fill in degrees


:<math>{\phi}</math> = angle of internal friction of soil in degrees
[[image:751.24.1.2.jpg|center|485px]]


'''Example'''


{|border="0" align="center" style="text-align:center"
Given:


|[[Image:751.40_Conc_Pile_Cap_Int_Bents_PS_Dbl_Tee_(Bents_with_crown_over_6_in)_(Section_AA).gif]]||[[Image:751.40_Conc_Pile_Cap_Int_Bents_PS_Dbl_Tee_(Bents_with_crown_over_6_in)_(Section_BB).gif]]
:''δ'' = 3:1 (H:V) slope
|-
|'''SECTION A-A'''||'''SECTION B-B'''
|}


:''ϕ'' = 25°


{|border="0"
:''γ<sub>s</sub>'' = 0.120 kcf


|(*)||Channel shear connectors are to be used in Seismic Performance Categories B, C & D.
:''H'' = 10 ft
|-
|valign="top"|(**)||2'-6" Min. for Seismic Performance Category A.<br/>2'-9" Min. for Seismic Performance Categories, B, C & D.
|-
|colspan="2"|Note:  Use square ends on Prestress Double-Tee Structures.
|}


=====751.40.8.12.2.2 Anchorage of Piles for Seismic Performance Categories B, C & D=====
''δ'' = arctan<math>\Big[\frac{1}{3}\Big]</math> = 18.


''C<sub>a</sub>'' = <math>\cos (18.4^\circ)\Bigg[\frac{\cos(18.4^\circ) - \sqrt{\cos^2(18.4^\circ) - \cos^2(25^\circ)}}{\cos(18.4^\circ) + \sqrt{\cos^2(18.4^\circ) - \cos^2(25^\circ)}}\Bigg]</math> = 0.515


'''STEEL PILE'''
''P<sub>a</sub>'' = (1/2)(0.515)(0.120 kips/ft<sup>3</sup>)(10 ft)<sup>2</sup> = 3.090 kips per foot of wall length


The ''ϕ'' angle shall be determined by the Materials Division from soil tests. If the ''ϕ'' angle cannot be provided by the [http://sp/sites/cm/Pages/default.aspx Construction and Materials Division] a ''ϕ'' angle of 27 degrees shall be used.


{|border="0" align="center" style="text-align:center"
Drainage shall be provided to relieve water pressure from behind all cast-in-place concrete retaining walls. If adequate drainage can not be provided then walls shall be designed to resist the maximum anticipated water pressure.


|[[Image:751.40_Conc_Pile_Cap_Int_Bents_Reinf_Steel_Pile_(Part_Elevation).gif]]
'''Surcharge Due to Point, Line and Strip Loads'''
|[[Image:751.40_Conc_Pile_Cap_Int_Bents_Reinf_Steel_Pile_(Sec_thru_beam).gif]]
|-
|'''PART ELEVATION'''||'''SECTION THRU BEAM'''
|-
|[[Image:751.40_Conc_Pile_Cap_Int_Bents_Reinf_Steel_Pile_(Part_Plan).gif]]
|-
|'''PART PLAN'''
|}


Surcharge due to point and line loads on the soil being retained shall be included as dead load surcharge. The effect of these loads on the wall may be calculated using Figure 5.5.2B from AASHTO.


Surcharge due to strip loads on the soil being retained shall be included as a dead load surcharge load. The following procedure as described in ''Principles of Foundation Engineering'' by Braja M. Das (1995) shall be applied to calculate these loads when strip loads are applicable. An example of this application is when a retaining wall is used in front of an abutment so that the wall is retaining the soil from behind the abutment as a strip load on the soil being retained by the wall.


'''CAST-IN-PLACE PILE'''
[[image:751.24.1.2 retaining.jpg|center|255px|thumb|<center>'''Retaining Wall in front of an Abutment'''</center>]]


The portion of soil that is in the active wedge must be determined because the surcharge pressure only affects the wall if it acts on the active wedge. The actual failure surface in the backfill for the active state can be represented by ABC shown in the figure below. An approximation to the failure surface based on Rankine's active state is shown by dashed line AD. This approximation is slightly unconservative because it neglects friction at the pseudo-wall to soil interface.


{|border="0" align="center" style="text-align:center"
The following variables are shown in the figure below:


|[[Image:751.40_Conc_Pile_Cap_Int_Bents_Reinf_CIP_Pile_(Part_Elevation).gif]]
:''β'' = slope of the active failure plane in degrees
|width="300"|[[Image:751.40_Conc_Pile_Cap_Int_Bents_Reinf_CIP_Pile_(Sec_thru_beam).gif]]
:''δ'' = slope of fill in degrees
|-
:''H'' = height of the pseudo-wall (fom the bottom of the footing).
|'''PART ELEVATION'''||'''SECTION THRU BEAM'''
:''L<sub>1</sub>'' = distance from back of stem to back of footing heel
|-
:''L<sub>2</sub>'' = distance from footing heel to intersection of failure plane with ground surface
|[[Image:751.40_Conc_Pile_Cap_Int_Bents_Reinf_CIP_Pile_(Part_Plan).gif]]
|-
|'''PART PLAN'''
|}


=====751.40.8.12.2.3 Beam Reinforcement Special Cases=====
[[image:751.24.1.2 wedges.jpg|center|575px|thumb|<center>'''Determination of Active Wedges'''</center>]]


In order to determine ''β'', the following equation which has been derived from Rankine's active earth pressure theory must be solved by iteration:


'''SPECIAL CASE I'''
:<math>\tan (-\beta) + \frac{1}{\tan (\beta - \phi)} - \frac{1}{\tan (\beta - \delta)} + \frac{1}{\tan (90^\circ + \phi + \delta - \beta)} = 0</math>


:''ϕ'' = angle of internal friction of soil in degrees


If centerline bearing is 12" or less on either side of centerline piles, for all piles (as shown above), use 4-#6 top and bottom and #4 at 12" cts. (stirrups), regardless of pile size.
A good estimate for the first iteration is to let ''β'' = 45° + (ϕ/2). In lieu of iterating the above equation a conservative estimate for ''β'' is 45°. Once β has been established, an estimate of L<sub>1</sub> is needed to determine L<sub>2</sub>. From the geometry of the variables shown in the above figure:


:<math>L_2 = H\frac{\cos\delta\cos\beta}{\sin(\beta - \delta)}</math>


<center>[[Image:751.40_Conc_Pile_Cap_Int_Bents_Beam_Reinf_(Special_Case_I).gif]]</center>
The resultant pressure due to the strip load surcharge and its location are then determined. The following variables are shown in the figure below:


:''q'' = load per unit area
:''P<sub>s</sub>'' = resultant pressure on wall due only to surcharge earth pressure
:<math>\bar{z}</math> = location of P<sub>s</sub> measured from the bottom of the footing
:''L<sub>3</sub>'' = distance from back of stem to where surcharge pressure begins


[[image:751.24.1.2 surcharge.jpg|center|625px|thumb|<center>'''Surcharge Pressure on Retaining Wall'''</center>]]


'''SPECIAL CASE II'''
From the figure:


:P<sub>s</sub> = <math>\frac{q}{90}\big[H(\theta_2 - \theta_1)\big]</math> where


When beam reinforcement is to be designed assuming piles to take equal force, design for negative moment in the beam over the interior piles.
:<math>\theta_1 = \arctan\Big[\frac{L_3}{H}\Big] \ and \ \theta_2 = \arctan\Big[\frac{L_2}{H}\Big]</math>


:<math>\bar{z} = \frac{H^2(\theta_2 - \theta_1) - (R - Q) + 57.03L_4H}{2H(\theta_2 - \theta_1)}</math> where


[[Image:751.40_Conc_Pile_Cap_Int_Bents_Beam_Reinf_(Special_Case_II).gif]]
:<math>R = (L_2)^2(90^\circ - \theta_2) \ and \ Q = (L_3)^2(90^\circ - \theta_1)</math>


When applicable, P<sub>s</sub> is applied to the wall in addition to other earth pressures. The wall is then designed as usual.


(*) Dimensions shown are for illustration purposes only.
'''Live Load Surcharge'''
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|'''Additional Information'''
|-
|AASHTO 3.20.3 & 5.5.2
|}
Live load surcharge pressure of not less than two feet of earth shall be applied to the structure when highway traffic can come within a horizontal distance equal to one-half of the wall height, measured from the plane where earth pressure is applied.


====751.40.8.12.3 Details====
[[image:751.24.1.2 live load1.jpg|center|475px]]
=====751.40.8.12.3.1 Sway Bracing=====


Refer to [[751.32 Concrete Pile Cap Intermediate Bents#751.32.3.2.1 Sway Bracing|EPG 751.32.3.2.1 Sway Bracing]].
[[image:751.24.1.2 live load surcharge.jpg|center|575px|thumb|<Center>'''Live Load Surcharge'''</center>]]


=====751.40.8.12.3.2 Miscellaneous Details for Prestressed Girder=====
:''P<sub>LLS</sub>'' = (2 ft.) ''γ<sub>s</sub> C<sub>a</sub> H'' = pressure due to live load surcharge only


'''PRESTRESSED GIRDERS (INTEGRAL INT. BENT)'''
:''γ<sub>s</sub>'' = unit weight of soil (Note: AASHTO 5.5.2 specifies a minimum of 125 pcf for live load surcharge, MoDOT policy allows 120 pcf as given from the unit weights in [[751.2 Loads#751.2.1.1 Dead Load |EPG 751.2.1.1 Dead Load]].)
:''C<sub>a</sub>'' = coefficient of active earth pressure


:''H'' = height of the soil face at the vertical plane of interest


<center>[[Image:751.40_Conc_Pile_Cap_Int_Bents_Misc_Details_PS_Girders_(Integral_Int_Bent)_Jt_Filler_Detail.gif]]</center>
The vertical live load surcharge pressure should only be considered when checking footing bearing pressures, when designing footing reinforcement, and when collision loads are present.


'''Live Load Wheel Lines'''


<center>'''DETAIL OF JOINT FILLER AT INT. BENTS<br/>(Continuous Spans - No Longitudinal Beam Steps)'''</center>
Live load wheel lines shall be applied to the footing when the footing is used as a riding or parking surface.
 
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"  
 
|-
{|border="0"
|'''Additional Information'''
 
|(*)||¼ Joint Filler for a P/S Double Tee Structure
|-
|-
|&nbsp;||½ Joint Filler for a P/S I-Girder Structure
|AASHTO 3.24.5.1.1 & 5.5.6.1
|}
|}


Distribute a LL<sub>WL</sub> equal to 16 kips as a strip load on the footing in the following manner.


'''PRESTRESSED GIRDERS (NON-INTEGRAL INT. BENT)'''


:P = LL<sub>WL</sub>/E


<center>[[Image:751.40_Conc_Pile_Cap_Int_Bents_Misc_Details_PS_Girders_(Non_Integral_Int_Bent)_Jt_Filler_Detail.gif]]</center>
::where E = 0.8X + 3.75


::::X = distance in ft. from the load to the front face of the wall
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|'''Additional Information'''
|-
|AASHTO 3.24.2 & 3.30
|}


<center>'''DETAIL OF JOINT FILLER AT INT. BENTS<br/>Longitudinal Beam Step and Shear Blocks shown)'''</center>
Two separate placements of wheel lines shall be considered, one foot from the barrier or wall and one foot from the toe of the footing.


[[image:751.24.1.2 wheel.jpg|center|350px]]


'''DETAILS OF CONST. JOINT KEY'''
'''Collision Forces'''
 
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"  
{|border="0" align="center" style="text-align:center"
|-
 
|'''Additional Information'''
|[[Image:751.40_Conc_Pile_Cap_Int_Bents_Misc_Details_Const_Jt_Key_(Part_Elevation).gif]]
|[[Image:751.40_Conc_Pile_Cap_Int_Bents_Misc_Details_Const_Jt_Key_(Part_Section_PS_I_Girders).gif]]
|[[Image:751.40_Conc_Pile_Cap_Int_Bents_Misc_Details_Const_Jt_Key_(Part_Section_Dbl_Tee_Girders).gif]]
|-
|-
|'''PART ELEVATION'''||'''PART SECTION THRU KEYS<BR/>(P/S I-GIRDERS)'''||'''PART SECTION THRU KEYS<BR/>(P/S DOUBLE TEE GIRDERS)'''
|AASHTO Figure 2.7.4B
|}
|}


Collision forces shall be applied to a wall that can be hit by traffic. Apply a point load of 10 kips to the wall at a point 3 ft. above the finished ground line.


===751.40.8.13 Concrete Pile Cap Non-Integral End Bents===
[[image:751.24.1.2 collision section.jpg|center|450px|thumb|<center>'''Section'''</center>]]


====751.40.8.13.1 Design====
Distribute the force to the wall in the following manner:


=====751.40.8.13.1.1 Unit Stresses=====
:Force per ft of wall = (10 kips)/2L
 
[[image:751.24.1.2 collision profile.jpg|center|350px|thumb|<center>'''Profile'''</center>]]


{|border="0"
When considering collision loads, a 25% overstress is allowed for bearing pressures and a factor of safety of 1.2 shall be used for sliding and overturning.


|(1)||Reinforced Concrete
'''Wind and Temperature Forces'''
|-
|&nbsp;||Class B Concrete (Substructure)||<math>\, f_c</math> = 1,200 psi||<math>\, f'_c</math> = 3,000 psi
|-
|&nbsp;||Reinforcing Steel (Grade 60)||<math>\, f_s</math> = 24,000 psi||<math>\, f_y</math> = 60,000 psi
|-
|&nbsp;||<math>\, n</math> = 10
|-
|&nbsp;||colspan="3"|<math>\, E_c = W^{1.5} \times 33 \sqrt{f'_c}</math> AASHTO Article 8.7.1) (*)
|-
|&nbsp;
|-
|(2)||Structural Steel
|-
|&nbsp;||Structural Carbon Steel (ASTM A709 Grade 36)||<math>\, f_s</math> = 20,000 psi||<math>\, f_y</math> = 36,000 psi
|-
|&nbsp;
|-
|(3)||Piling
|-
|&nbsp;
|-
|(4)||Overstress
|-
|&nbsp;||colspan="3"|The allowable overstresses as specified in AASHTO Article 3.22 shall be used where applicable for Service Loads design method.
|-
|(*)||colspan="3"| <math>\, E_c = 57,000 \sqrt{f'c} W</math> = 145 pcf., <math>\, Ec = 60,625 \sqrt{f'c}</math> for <math>\, W</math> = 150 pcf.
|}


=====751.40.8.13.1.2 Loads=====
These forces shall be disregarded except for special cases, consult the Structural Project Manager.


When walls are longer than 84 ft., an expansion joint shall be provided.


{|border="0"
Contraction joint spacing shall not exceed 28 feet.


|(1)||Dead Loads
'''Seismic Loads'''
 
Retaining walls in Seismic Performance Category A (SPC A) and SPC B that are located adjacent to roadways may be designed in accordance with AASHTO specifications for SPC A. Retaining walls in SPC B which are located under a bridge abutment or in a location where failure of the wall may affect the structural integrity of a bridge shall be designed to AASHTO specifications for SPC B. All retaining walls located in SPC C and SPC D shall be designed in accordance to
AASHTO specifications for the corresponding SPC.
 
In seismic category B, C and D determine equivalent fluid pressure from Mononobe-Okabe static method.
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|-
|&nbsp;
|'''Additional Information'''
|-
|-
|(2)||Live Load
|1992 AASHTO Div. IA Eqns. C6-3 and C6-4
|-
|&nbsp;||As specified on the Bridge Memorandum
|-
|&nbsp;||Impact of 30% is to be used for design of the beam. No impact is to be used for design of any other portion of bent including the piles.
|-
|&nbsp;
|-
|(3)||Temperature, Wind and Frictional Loads
|-
|&nbsp;||Wind and temperature forces can be calculated based on longitudinal force distribution.
|}
|}
''P<sub>AE</sub>'' = equivalent active earth pressure during an earthquake
''P<sub>AE</sub>'' = 0.5 γ<sub>s</sub>H<sup>2</sup>(1 - k<sub>v</sub>)K<sub>AE</sub> where
''K<sub>AE</sub>'' = seismic active pressure coefficient


=====751.40.8.13.1.3 Distribution of Loads=====
:<math>K_{AE} = \frac{\cos^2(\phi - \theta - \beta)}{\cos\theta\cos^2\beta\cos(\delta + \beta + \theta)\Big\{1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi - \theta - i)}{\cos(\delta + \beta + \theta)\cos(i - \beta)}}\Big\}^2}</math>




{|border="0"
''γ<sub>s</sub>'' = unit weight of soil


|(1)||Dead Loads
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|-
|&nbsp;||Loads from stringers, girders, etc. shall be concentrated loads applied at the intersection of centerline of stringer and centerline of bearing.
|'''Additional Information'''
|-
|-
|&nbsp;
|AASHTO 5.2.2.3 & Div. IA 6.4.3
|-
|}
|(2)||Live Load
''k<sub>v</sub>'' = vertical acceleration coefficient
|-
 
|&nbsp;||Loads from stringers, girders, etc. shall be applied as concentrated loads at the intersection of centerline of stringer and centerline of earing.
''k<sub>h</sub>'' = horizontal acceleration coefficient which is equal to 0.5A for all walls,
|-
:::but 1.5A for walls with battered piles where
|&nbsp;
:::A = seismic acceleration coefficient
|-
 
|(3)||Temperature
The following variables are shown in the figure below:
|-
 
|&nbsp;||The force due to expansion or contraction applied at bearing pads are not used for stability or pile bearing computations.  However, the movement due to temperature should be considered in the bearing pad design and expansion device design.
''ϕ'' = angle of internal friction of soil
|-
|&nbsp;
|-
|(4)||Wing with Detached Wing Wall
|}


<center>[[Image:751.40_Detached_Wing_Wall_Section_AA.gif]]</center>
''θ'' = <math>\arctan\ \Big(\frac{k_h}{1 - k_v}\Big)</math>


<center>'''SECTION A-A'''</center>
''β'' = slope of soil face


''δ'' = angle of friction between soil and wall in degrees


<center>[[Image:751.40_Detached_Wing_Wall_Detail_B.gif]]</center>
''i'' = backfill slope angle in degrees


<center>'''DETAIL B'''</center>
''H'' = distance from the bottom of the part of the wall to which the pressure is applied to the top of the fill at the location where the earth pressure is to be found.


[[image:751.24.1.2 active soil.jpg|center|450px|thumb|<center>'''Active Soil Wedge'''</center>]]


{|border="0"
<div id="Group Loads"></div>
'''Group Loads'''


|(*)||Detached wing wall shown is for illustration purpose only. Design detached wing wall as a retaining wall.
For SPC A and B (if wall does not support an abutment), apply AASHTO Group I Loads only. Bearing capacity, stability and sliding shall be calculated using working stress loads. Reinforced concrete design shall be calculated using load factor design loads.
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|'''Additional Information'''
|-
|-
|(**)||See retaining wall design.
|AASHTO Table 3.22.1A
|}
|}


=====751.40.8.13.1.4 Design Assumptions - Loadings=====
AASHTO Group I Load Factors for Load Factor Design of concrete:
''γ'' = 1.3
 
''β<sub>D</sub>'' = 1.0 for concrete weight
 
''β<sub>D</sub>'' = 1.0 for flexural member
 
''β<sub>E</sub>'' = 1.3 for lateral earth pressure for retaining walls
 
''β<sub>E</sub>'' = 1.0 for vertical earth pressure


''β<sub>LL</sub>'' = 1.67 for live load wheel lines


{|border="0"
''β<sub>LL</sub>'' = 1.67 for collision forces


|'''1)'''||colspan="3"|'''Piles'''
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"  
|-
|-
|&nbsp;||valign="top"|a.||colspan="2"|Stresses in the piles due to bending need not be considered in design calculations except for seismic design in categories B, C and D.
|'''Additional Information'''
|-
|-
|&nbsp;||b.||colspan="2"|The following four loading cases should be considered.
|AASHTO 5.14.2
|-
|}
|&nbsp;||&nbsp;||colspan="2"|
 
{|border="1" style="text-align:center" cellpadding="5" cellspacing="0"
''β<sub>E</sub>'' = 1.67 for vertical earth pressure resulting from live load surcharge
 
''β<sub>E</sub>'' = 1.3 for horizontal earth pressure resulting from live load surcharge
 
For SPC B (if wall supports an abutment), C, and D apply AASHTO Group I Loads and seismic loads in accordance with AASHTO Division IA - Seismic Design Specifications.


|Case||Vertical Loads||Horizontal Loads||Special Consideration
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|-
|I||DL + E + SUR||EP + SUR||-
|'''Additional Information'''
|-
|-
|II||DL + LL + E + SUR||EP + SUR||-
|AASHTO Div. IA 4.7.3
|-
|III||DL + LL + E||EP||-
|-
|IV||DL + LL + E||None||Allow 25% Overstress
|}
|}
When seismic loads are considered, load factor for all loads = 1.0.
==== 751.40.8.15.3 Unit Stresses ====
'''Concrete'''
Concrete for retaining walls shall be Class B Concrete (f'c = 3000 psi) unless the footing is used as a riding surface in which case Class B-1 Concrete (f'c = 4000 psi) shall be used.
'''Reinforcing Steel'''
Reinforcing Steel shall be Grade 60 (fy = 60,000 psi).
'''Pile Footing'''
For steel piling material requirements, see the unit stresses in [[751.50 Standard Detailing Notes#A1. Design Specifications, Loadings & Unit Stresses and Standard Plans|EPG 751.50 Standard Detailing Notes]].
'''Spread Footing'''
For foundation material capacity, see Foundation Investigation Geotechnical Report.
==== 751.40.8.15.4 Design ====
For epoxy coated reinforcement requirements, see [[751.5 Structural Detailing Guidelines#751.5.9.2.2 Epoxy Coated Reinforcement Requirements|EPG 751.5.9.2.2 Epoxy Coated Reinforcement Requirements]].
If the height of the wall or fill is a variable dimension, then base the structural design of the wall, toe, and heel on the high quarter point between expansion joints.
[[image:751.24.3.2.jpg|center|600px|thumb|<center>'''Fig. 40.8.15.4.1'''</center>]]
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|-
|&nbsp;||&nbsp;||colspan="2"|Where,
|'''Additional Information'''
|-
|&nbsp;||&nbsp;||LL||= live load
|-
|-
|&nbsp;||&nbsp;||DL||= dead load of superstructure, substructure and one half of the apporach slab
|AASHTO 5.5.5
|-
|}
|&nbsp;||&nbsp;||SUR||= two feet of live load surcharge
 
|-
===== 751.40.8.15.4.1 Spread Footings =====
|&nbsp;||&nbsp;||E||= dead load of earth fill
 
'''Location of Resultant'''
 
The resultant of the footing pressure must be within the section of the footing specified in the following table.
 
{| border="1" class="wikitable" style="margin: 1em auto 1em auto"
|+
! style="background:#BEBEBE" |When Retaining Wall is Built on: !! style="background:#BEBEBE"|AASHTO Group Loads I-VI !! style="background:#BEBEBE"|For Seismic Loads
|-
|-
|&nbsp;||&nbsp;||EP||= equivalent fluid pressure of earth
| align="center" |Soil<sup>a</sup> || align="center"|Middle 1/3|| align="center"|Middle 1/2 <sup>b</sup>
|-
|-
|&nbsp;||&nbsp;||colspan="2"|Maximum pile pressure = pile capacity
| align="center"|Rock<sup>c</sup> || align="center"|Middle 1/2||align="center"|Middle 2/3
|-
|-
|&nbsp;||&nbsp;||colspan="2"|Minimum pile pressure = 0 (tension on a pile will not be allowed for any combination of forces exept as noted)
|colspan="3"|<sup>'''a'''</sup> Soil is defined as clay, clay and boulders, cemented gravel, soft shale, etc. with allowable bearing values less than 6 tons/sq. ft.
|-
|-
|&nbsp;
|colspan="3"|<sup>'''b'''</sup> MoDOT is more conservative than AASHTO in this requirement.
|-
|-
|'''2)'''||colspan="3"|'''Analysis Procedure'''
|colspan="3"|<sup>'''c'''</sup> Rock is defined as rock or hard shale with allowable bearing values of 6 tons/sq. ft. or more.
|}
 
Note: The location of the resultant is not critical when considering collision loads.
 
'''Factor of Safety Against Overturning'''
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|-
|&nbsp;||a.||colspan="2"|''Find the lateral stiffness of a pile, <math>\, K_\delta</math>'':
|'''Additional Information'''
|-
|-
|&nbsp;||&nbsp;||colspan="2"|With fixed pile-head (i.e., only translation movement is allowed but no rotation allowed): The lateral stiffness of a pile can be estimated using Figures 1 and 3 or 2 and 3 for pile in cohesionless or cohesive soil, respectively. The method of using Figures 1, 2, and 3 to find lateral stiffness is called Linear Subgrade Modulus Method. Usually the significant soil-pile interaction zone for pile subjected to lateral movement is confined to a depth at the upper 5 to 10 pile diameters. Therefore, simplified single layer stiffness chart shown in Figure 3 is appropriate for lateral loading. The coefficient <math>\, f</math> in Figures 1 and 2 is used to define the subgrade modulus <math>\, E_s</math> at depth “z” representing the soil stiffness per unit pile length. For the purpose of selecting an appropriate <math>\, f</math> value, the soil condition at the upper 5 pile diameters should be used. Since soil property, friction angle <math>\, \phi</math>, or cohesion c, is needed when Figure 1 or 2 is used, determine soil properties based on available soil boring data. If soil boring data is not available, one can conservatively use <math>\, f</math> value of 0.1 in Figure 3. Designer may also use soil properties to convert SPT N value to friction angle <math>\, \phi</math>, or cohesion c, for granular or cohesive soil, respectively. Figures 1 and 2 were based on test data for smaller-diameter (12 inches) piles, but can be used for piles up to about 24 inches in diameter. In Figure 2, the solid line (by Lam et al. 1991) shall be used in design.
|AASHTO 5.5.5
|}
 
AASHTO Group Loads I - VI:
* F.S. for overturning ≥ 2.0 for footings on soil.
* F.S. for overturning ≥ 1.5 for footings on rock.
 
For seismic loading, F.S. for overturning may be reduced to 75% of the value for AASHTO Group Loads I - VI. For seismic loading:
* F.S. for overturning ≥ (0.75)(2.0) = 1.5 for footings on soil.
* F.S. for overturning ≥ (0.75)(1.5) = 1.125 for footings on rock.
 
For collision forces:
* F.S. for overturning ≥ 1.2.
 
'''Factor of Safety Against Sliding'''
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|-
|&nbsp;||b.||colspan="2"|''Find the axial stiffness of a pile, <math>\, K_a</math>'':
|'''Additional Information'''
|-
|-
|&nbsp;||&nbsp;||colspan="2"|For friction pile, <math>\, K_a</math> may be determined based on a secant stiffness approach as described in [[751.9_Bridge_Seismic_Design|EPG 751.9 Bridge Seismic Design]] or by the in-house computer program “SPREAD” where <math>\, K_a</math> is calculated as:
|AASHTO 5.5.5
|}
 
Only spread footings on soil need be checked for sliding because spread footings on rock or shale are embedded into the rock.
* F.S. for sliding ≥ 1.5 for AASHTO Group Loads I - VI.
* F.S. for sliding ≥ (0.75)(1.5) = 1.125 for seismic loads.
* F.S. for sliding ≥ 1.2 for collision forces.
 
The resistance to sliding may be increased by:
* adding a shear key that projects into the soil below the footing.
* widening the footing to increase the weight and therefore increase the frictional resistance to sliding.
 
'''Passive Resistance of Soil to Lateral Load'''
 
The Rankine formula for passive pressure can be used to determine the passive resistance of soil to the lateral force on the wall. This passive pressure is developed at shear keys in retaining walls and at end abutments.
 
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|-
|&nbsp;||&nbsp;||colspan="2"|<math>\, \frac{1}{K_a} = \frac{1}{AE / L'} + \frac{1}{K_{Q_f}} + \frac{1}{K_{Q_b}}</math> &nbsp;  Equation (1)
|'''Additional Information'''
|-
|-
|&nbsp;||&nbsp;||colspan="2"|Where:
|AASHTO 5.5.5A
|-
|}
|&nbsp;||&nbsp;||<math>\, A</math>||= cross sectional area of pile
 
|-
The passive pressure against the front face of the wall and the footing of a retaining wall is loosely compacted and should be neglected when considering sliding.
|&nbsp;||&nbsp;||<math>\, E</math>||= elastic modulus of pile
 
|-
Rankine Formula: <math>P_p = \frac{1}{2}C_p\gamma_s[H^2-H_1^2]</math> where thefollowing variables are defined in the figure below
|&nbsp;||&nbsp;||<math>\, L'</math>||= total length of pile
:
|-
:''C<sub>p</sub>'' = <math>\tan \big( 45^\circ + \frac{\phi}{2}\big)</math>
|&nbsp;||&nbsp;||<math>\, K_{Q_f}</math>||= secant stiffness due to ultimate friction capacity of the pile as described in [[751.9 LFD Seismic#751.9.2.6.3 Pile Axial Stiffness|EPG 751.9.2.6.3 Pile Axial Stiffness]]
 
:''y<sub>1</sub> = <math>\frac{H_1y_2^2 + \frac{2}{3}y_2^3}{H^2 - H_1^2}</math>
 
:''P<sub>p</sub>'' = passive force at shear key in pounds per foot of wall length
 
:''C<sub>p</sub>'' = coefficient of passive earth pressure
 
:<math>{\gamma_s}</math> = unit weight of soil
 
:''H'' = height of the front face fill less than 1 ft. min. for erosion
 
:''H<sub>1</sub>'' = H minus depth of shear key
 
:''y<sub>1</sub>'' = location of ''P<sub>p</sub>'' from bottom of footing
 
:<math>{\phi}</math> = angle of internal friction of soil
 
[[image:751.24.3.2.1 passive.jpg|center|500px]]
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|-
|&nbsp;||&nbsp;||<math>\, K_{Q_f}</math> ||= secant stiffness due to ultimate bearing capacity of the pile as described in [[751.9 LFD Seismic#751.9.2.6.3 Pile Axial Stiffness|EPG 751.9.2.6.3 Pile Axial Stiffness]]
|'''Additional Information'''
|-
|-
|&nbsp;||colspan="3"|For HP bearing pile on rock <math>\, K_a</math> shall be calculated as:
|AASHTO 5.5.2
|}
The resistance due to passive pressure in front of the shear key shall be neglected unless the key extends below the depth of frost penetration.
{|style="padding: 0.3em; margin-right:7px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="left"  
|-
|-
|&nbsp;||&nbsp;||colspan="2"|<math>\, \frac{1}{K_a} = \frac{1}{AE / L'} + \frac{1}{K_{Q_f}}</math> &nbsp;  Equation (2)
|'''Additional Information'''
|-
|-
|&nbsp;||&nbsp;||colspan="2"|Or Conservatively, <math>\, K_a</math> may be determined as:
|[http://sp/sites/cm/Pages/default.aspx MoDOT Materials Division]
|}
 
Frost line is set at 36 in. at the north border of Missouri and at 18 in. at the south border.
 
'''Passive Pressure During Seismic Loading'''
 
During an earthquake, the passive resistance of soil to lateral loads is slightly decreased. The Mononobe-Okabe static method is used to determine the equivalent fluid pressure.
 
:''P<sub>PE</sub>'' = equivalent passive earth pressure during an earthquake
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|-
|&nbsp;||&nbsp;||colspan="2"|<math>\, K_a = \frac{AE}{L'}</math> &nbsp;  Equation (3)
|'''Additional Information'''
|-
|-
|&nbsp;
|1992 AASHTO Div. IA Eqns. C6-5 and C6-6
|}
:<math>P_{PE} = \frac{1}{2}\gamma_sH^2(1 - k_v)K_{PE}</math> where:
 
:''K<sub>PE</sub>'' = seismic passive pressure coefficient
 
:<math>K_{PE} = \frac{\cos^2(\phi - \theta - \beta)}{\cos\theta\cos^2\beta\cos(\delta + \beta + \theta)\Bigg[1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi - \theta - i)}{\cos(\delta + \beta + \theta)\cos(i - \beta)}}\Bigg]^2}</math>
 
::<math>{\gamma}_s</math> = unit weight of soil
 
:''H'' = height of soil at the location where the earth pressure is to be found
 
:''k<sub>V</sub>'' = vertical acceleration coefficient
 
:<math>{\phi}</math> = angle of internal friction of soil
 
:<math>{\theta} =  arctan \big[\frac{k_h}{1 - k_V}\big]</math>
 
:''k<sub>H</sub>'' = horizontal acceleration coefficient
 
:<math>{\beta}</math> = slope of soil face in degrees
 
:''i'' = backfill slope angle in degrees
 
:<math>{\delta}</math> = angle of friction between soil and wall
 
'''Special Soil Conditions'''
 
Due to creep, some soft clay soils have no passive resistance under a continuing load. Removal of undesirable material and replacement with suitable material such as sand or crushed stone is necessary in such cases. Generally, this condition is indicated by a void ratio above 0.9, an angle of internal friction (<math>{\phi}</math>) less than 22°, or a soil shear less than 0.8 ksf. Soil shear is determined from a standard penetration test.
 
:Soil Shear <math>\Big(\frac{k}{ft^2}\Big) = \frac{blows \ per\ 12\ in.}{10}</math>
 
'''Friction'''
 
In the absence of tests, the total shearing resistance to lateral loads between the footing and a soil that derives most of its strength from internal friction may be taken as the normal force times a coefficient of friction. If the plane at
which frictional resistance is evaluated is not below the frost line then this resistance must be neglected.
 
[[image:751.24.3.2.1 friction 2016.jpg|center|450px|thumb|<center>'''When A Shear Key Is Not Used'''</center>]]
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|-
|align="center" colspan="4"|[[Image:751.40_Subgrade_Modulus_with_Depth_for_Sand.gif]]
|'''Additional Information'''
|-
|-
|&nbsp;
|AASHTO 5.5.2B
|-
|}
|align="center" colspan="4"|'''Recommended Coefficient <math>f</math> of Variation in Subgrade Modulus with Depth for Sand'''
 
|-
Sliding is resisted by the friction force developed at the interface between the soil and the concrete footing along the failure plane. The coefficient of friction for soil against concrete can be taken from the table below. If soil data
|&nbsp;
is not readily available or is inconsistent, the friction factor (f) can be taken as
 
: ''f'' =<math>tan \Big(\frac{2\phi}{3}\Big)</math> where <math>{\phi}</math> is the angle of internal friction of the soil (''Civil Engineering Reference Manual'' by Michael R. Lindeburg, 6th ed., 1992).
 
{| border="1" class="wikitable" style="margin: 1em auto 1em auto"
|+
!style="background:#BEBEBE" colspan="2"|Coefficient of Friction Values for Soil Against Concrete
|-
! style="background:#BEBEBE" |Soil Type<sup>a</sup> !! style="background:#BEBEBE"|Coefficient of Friction
|-
|-
|align="center" colspan="4"|[[Image:751.40_Subgrade_Modulus_with_Depth_for_Clay.gif]]
| align="center" |coarse-grained soil without silt || align="center"|0.55
|-
|-
|&nbsp;
| align="center"|coarse-grained soil with silt  || align="center"|0.45
|-
|-
|align="center" colspan="4"|'''Recommended Coefficient <math>\, f</math> of Variation in Subgrade Modulus with Depth for Clay'''
|align="center"|silt (only)||  align="center"|0.35
|-
|-
|&nbsp;
|align="center"|clay||  align="center"|0.30<sup>b</sup>
|-
|-
|align="center" colspan="4"|[[Image:751.40_Lateral_Embedded_Pile-Head_Stiffness.gif]]
|colspan="2"|<sup>'''a'''</sup> It is not necessary to check rock or shale for sliding due to embedment.
|-
|-
|align="center" colspan="4"|
|colspan="2"|<sup>'''b'''</sup> Caution should be used with soils with <math>{\phi}</math> < 22° or soil shear < 0.8 k/sq.ft. (soft clay soils). Removal and replacement of such soil with suitable material should be considered.
{|border="0" align="center" style="text-align:center" cellpadding="5"
|}
 
[[image:751.24.3.2.1 soil and soil.jpg|center|450px|thumb|<center>'''When A Shear Key Is Used'''</center>]]
 
When a shear key is used, the failure plane is located at the bottom of the shear key in the front half of the footing. The friction force resisting sliding in front of the shear key is provided at the interface between the stationary layer of soil and the moving layer of soil, thus the friction angle is the internal angle of friction of the soil (soil against soil). The friction force resisting sliding on the rest of the footing is of that between the concrete and soil. Theoretically
the bearing pressure distribution should be used to determine how much normal load exists on each surface, however it is reasonable to assume a constant distribution. Thus the normal load to each surface can be divided out between the two surfaces based on the fractional length of each and the total frictional force will be the sum of the normal load on each surface
multiplied by the corresponding friction factor.


|'''PILE HEAD AT<br/>GRADE LEVEL'''||&nbsp;||'''EMBEDDED PILE HEAD'''
'''Bearing Pressure'''
|}
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|-
|&nbsp;
|'''Additional Information'''
|-
|-
|align="center" colspan="4"|'''Lateral Embedded Pile-Head Stiffness'''
|AASHTO 4.4.7.1.2 & 4.4.8.1.3
|-
|}
|&nbsp;
 
:'''Group Loads I - VI'''
 
:The bearing capacity failure factor of safety for Group Loads I - VI must be greater than or equal to 3.0. This factor of safety is figured into the allowable bearing pressure given on the "Design Layout Sheet".
 
:The bearing pressure on the supporting soil shall not be greater than the allowable bearing pressure given on the "Design Layout Sheet".
 
:'''Seismic Loads'''
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|-
|&nbsp;||c.||colspan="2"|''Find the equivalent cantilever pile length, <math>\, L</math>''
|'''Additional Information'''
|-
|-
|&nbsp;||&nbsp;||colspan="2"|For the structural model used in the structural analyses of loading cases I through IVAs shown in figure below, length L can be calculated as:
|AASHTO Div. IA 6.3.1(B) and AASHTO 5.5.6.2
|}
 
:When seismic loads are considered, AASHTO allows the ultimate bearing capacity to be used. The ultimate capacity of the foundation soil can be conservatively estimated as 2.0 times the allowable bearing pressure given on the "Design Layout".
 
:'''Stem Design'''
   
:The vertical stem (the wall portion) of a cantilever retaining wall shall be designed as a cantilever supported at the base.
 
:'''Footing Design'''
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|-
|&nbsp;||&nbsp;||colspan="2"|<math>\, L = \Bigg(\frac{12EI}{K_\delta}\Bigg)^{1/3}</math> &nbsp;  Equation (4)
|'''Additional Information'''
|-
|-
|&nbsp;
|AASHTO 5.5.6.1
|-
|}
|colspan="4" align="center"|[[Image:751.40_Structural_Model.gif]]
 
|-
::'''Toe'''
|&nbsp;
 
|-
::The toe of the base slab of a cantilever wall shall be designed as a cantilever supported by the wall. The critical section for bending moments shall be taken at the front face of the stem. The critical section for shear shall be taken at a distance d (d = effective depth) from the front face of the stem.
|colspan="4" align="center|'''Structural Model'''
 
|-
::'''Heel'''
|&nbsp;
 
|-
::The rear projection (heel) of the base slab shall be designed to support the entire weight of the superimposed materials, unless a more exact method is used. The heel shall be designed as a cantilever supported by the wall. The critical section for bending moments and shear shall be taken at the back face of the stem.
|&nbsp;||d.||colspan="2"|''Find the equivalent pile area, <math>\, A_e</math> :
 
|-
:'''Shear Key Design'''
|&nbsp;||&nbsp;||colspan="2"|Once the equivalent cantilever pile length has been determined from step (c) above, the equivalent axial rigidity of the pile, <math>\, A_e \times E_e</math> , can be calculated as <math>\, A_e \times E = K_a L</math>. Then, the equivalent pile area, <math>\, A_e</math> , is equal to
 
|-
:The shear key shall be designed as a cantilever supported at the bottom of the footing.
|&nbsp;||&nbsp;||colspan="2"|<math>\, A_e = \frac{K_aL}{E}</math> &nbsp;  Equation (5)
|-
|&nbsp;
|-
|&nbsp;||e.||colspan="2"|''Perform structural analyses for loading cases I through IV.
|-
|&nbsp;||&nbsp;||colspan="2"|Use computer programs STRUCT3D, SAP2000 or any other program capable of running static analysis.
|-
|&nbsp;
|-
|&nbsp;||f.||colspan="2"|''Check abutment movement at the top of backwall and at the bottom of beam cap''
|-
|&nbsp;||&nbsp;||colspan="2"|Maximum movement away from the backfill shall not be greater than 1/8". Maximum movement toward the backfill shall not be greater than 1/4".
|-
|&nbsp;
|-
|&nbsp;||g.||colspan="2"|''Check pile axial loads from the analysis with the allowable pile axial load capacity.
|-
|&nbsp;
|-
|&nbsp;||h.||colspan="2"|''Check overturning of bent''
|-
|&nbsp;||&nbsp;||colspan="2"|Conservatively, use the same equivalent cantilever pile length, <math>\, L</math>.  Check overturning of bent at the bottom of toe pile for loading cases I and II(Figure of Structural model).
|-
|&nbsp;||&nbsp;||colspan="2"|
{|border="1" style="text-align:center" cellpadding="5" cellspacing="0"


|Case I||Point of<br/>Investigation||Vertical Loads||Horizontal Loads||Factor of Safety (**)
===== 751.40.8.15.4.2 Pile Footings =====
|-
 
|I||Toe Pile||DL + E||EP + SUR||1.2
Footings shall be cast on piles when specified on the "Design Layout Sheet". If the horizontal force against the retaining wall cannot otherwise be resisted, some of the piles shall be driven on a batter.
|-
 
|II||Toe Pile||DL + LL + E||EP + SUR||1.5
:'''Pile Arrangement'''
|}
|-
|&nbsp;
|-
|'''5)'''||colspan="3"|'''Deadman Anchorage System'''
|-
|&nbsp;||colspan="3"|Deadman anchorage can be used when the abutment movement exceeds the allowable movement.
|-
|&nbsp;||colspan="3"|The size and location of deadman anchorage shall be designed appropriately to maintain the stability of the abutment.
|-
|&nbsp;||colspan="3"|The deadman forces may be used to resist overturning with the approval of the Structural Project Manager.
|-
|&nbsp;
|-
|'''6)'''||colspan="3"|'''Passive Pressure Shear Key (if applicable)'''
|-
|&nbsp;||colspan="3"|Passive pressure shear key may be used when the abutment movement exceeds the allowable movement.
|-
|&nbsp;||colspan="3"|The passive resistance of soil to the lateral force at shear keys may be used with the approval of structural project manager.
|}


=====751.40.8.13.1.5 Deadman Anchors=====
:For retaining walls subject to moderate horizontal loads (walls 15 to 20 ft. tall), the following layout is suggested.


'''Design Assumptions'''
[[image:751.24.3.2.2 batter piles.jpg|center|300px|thumb|<center>'''Section'''</center>]]


[[image:751.24.3.2.2 plan 2016.jpg|center|450px|thumb|<center>'''Plan'''</center>]]


<center>[[Image:751.40_Deadman_Anchor_Design_Assumption_Detail.gif]]</center>
:For higher walls and more extreme conditions of loading, it may be necessary to:


:* use the same number of piles along all rows


{|border="0" cellpadding="3"
:* use three rows of piles


|&nbsp;||Length of Deadman = <math>\, (F_E + F_S / (P_P - P_A)</math>
:* provide batter piles in more than one row
|-
 
|&nbsp;||Number of tie rods required = <math>\, (F_E + F_S) / F_R</math>
::'''Loading Combinations for Stability and Bearing'''
|-
 
|&nbsp;||<math>\, P_A</math> = Active earth pressure on deadman, in lb./ft. = (120 pcf) <math>\, K_A hT</math>
::The following table gives the loading combinations to be checked for stability and pile loads. These abbreviations are used in the table:
 
:::DL = dead load weight of the wall elements
 
:::SUR = two feet of live load surcharge
 
:::E = earth weight
 
:::EP = equivalent fluid earth pressure
 
:::COL = collision force
 
:::EQ = earthquake inertial force of failure wedge
 
{| border="1" class="wikitable" style="margin: 1em auto 1em auto"
|+  
!style="background:#BEBEBE" rowspan="2"|Loading Case !!style="background:#BEBEBE" rowspan="2"|Vertical Loads !!style="background:#BEBEBE" rowspan="2"|Horizontal Loads !!style="background:#BEBEBE" rowspan="2"|Overturning Factor of Safety !!style="background:#BEBEBE" colspan="2"|Sliding Factor of Safety
|-
|-
|(**)||<math>\, P_P</math> = Passive earth pressure on deadman, in lb./ft. = (120 pcf) <math>\, K_P hT</math>
!style="background:#BEBEBE" |Battered Toe Piles !!style="background:#BEBEBE" |Vertical Toe Piles
|-
|-
|&nbsp;||<math>\, F_E</math> = Earth pressure on end bent, in lb. = 0.5(120 pcf)<math>\, K_A H^2</math> (length of beam)
|align="center"|I<sup>a</sup>||align="center"| DL+SUR+E ||align="center"|EP+SUR||align="center"| 1.5||align="center"| 1.5||align="center"|2.0
|-
|-
|&nbsp;||<math>\, F_S</math> = Surcharge on end bent, in lb. = <math>\, (120 pcf)(2')K_A H (length\ of\ beam)</math>
|align="center"|II||align="center"| DL+SUR+E ||align="center"|EP+SUR+COL||align="center"| 1.2|| align="center"|1.2||align="center"| 1.2
|-
|-
|&nbsp;||<math>\, K_A = Tan^2 (45^\circ - \phi/2)</math>
|align="center"|III||align="center"| DL+E||align="center"| EP||align="center"| 1.5||align="center"| 1.5||align="center"| 2.0
|-
|-
|&nbsp;||<math>\, K_P = Tan^2 (45^\circ - \phi/2)</math>
|align="center"|IV<sup>b</sup>||align="center"| DL+E ||align="center"|None||align="center"| -||align="center"| -||align="center"| -
|-
|-
|valign="top"|(***)||<math>\, F_R</math> = 8.0 kips for 7/8" Ø tie rod and 10.50 kips for 1" Ø tie rods<br/>(Capacity of the tie rods based on a maximum skew of 30°.)
|align="center"|V<sup>c</sup>||align="center"| DL+E||align="center"| EP+EQ||align="center"| 1.125||align="center"| 1.125||align="center"| 1.5
|-
|-
|&nbsp;
|colspan="6"|<sup>'''a'''</sup> Load Case I should be checked with and without the vertical surcharge.
|-
|-
|align="right"|*||If the number of 7/8" Ø tie rods causes too long of a deadman, then try 1" Ø tie rods.
|colspan="6"|<sup>'''b'''</sup> A 25% overstress is allowed on the heel pile in Load Case IV.
|-
|-
|align="right"|**||For seismic loads only, use <math>\, P_P</math> = 4 kips/sq.ft. as the ultimate capacity of compacted fill.
|colspan="6"|<sup>'''c'''</sup> The factors of safety for earthquake loading are 75% of that used in Load Case III. Battered piles are not recommended for use in seismic performance categories B, C, and D. Seismic design of retaining walls is not required in SPC A and B. Retaining walls in SPC B located under a bridge abutment shall be designed to AASHTO Specifications for SPC B.
|-
|align="right"|***||For seismic loads only, the allowable stress in the tie rod may be taken as the yield stress of the rod.
|}
|}


::'''Pile Properties and Capacities'''


Notes:
::For Load Cases I-IV in the table above, the allowable compressive pile force may be taken from the pile capacity table in the Piling Section of the Bridge Manual which is based in part on AASHTO 4.5.7.3. Alternatively, the allowable compressive pile capacity of a friction pile may be determined from the ultimate frictional and bearing capacity between the soil and pile divided by a safety factor of 3.5 (AASHTO Table 4.5.6.2.A). The maximum amount of tension allowed on a heel pile is 3 tons.
 
::For Load Case V in the table above, the allowable compressive pile force may be taken from the pile capacity table in the Piling Section of the Bridge Manual multiplied by the appropriate factor (2.0 for steel bearing piles, 1.5 for friction piles). Alternatively, the allowable compressive pile capacity of a friction pile may be determined from the ultimate frictional and bearing capacity between the soil and pile divided by a safety factor of 2.0. The allowable tension force on a bearing or friction pile will be equal to the ultimate friction capacity between the soil and pile divided by a safety factor of 2.0.
 
::To calculate the ultimate compressive or tensile capacity between the soil and pile requires the boring data which includes the SPT blow counts, the friction angle, the water level, and the soil layer descriptions.


No more than 20% of deadman may fall outside of the roadway shoulders.  To prevent more than 20% limit, using a deeper deadman to reduce its length.  If this is not possible, the total passive pressure resistance should be calculated by summing the resistance from the different fill depths.
::Assume the vertical load carried by battered piles is the same as it would be if the pile were vertical. The properties of piles may be found in the Piling Section of the Bridge Manual.


When deadman anchors are to be used, design the piles for a factor of safety of 1.0 for sliding and design deadman anchors to resist all horizontal earth forces with a factor of safety of 1.0.  This will result in a factor of safety for sliding of 2.0. For special cases, see the Structural Project Manager.
:::'''Neutral Axis of Pile Group'''


:::Locate the neutral axis of the pile group in the repetitive strip from the toe of the footing at the bottom of the footing.


'''Design Example'''
:::'''Moment of Inertia of Pile Group'''


{|border="0"
:::The moment of inertia of the pile group in the repetitive strip about the neutral axis of the section may be determined using the parallel axis theorem:


|colspan="2"|Assume:
::::I = Σ(I<sub>A</sub>) + Σ(Ad<sup>2</sup>) where :
|-
|width="25"|&nbsp;||Roadway width = 36', Out-Out slab width = 36' + 2 x 16" = 38.67'
|-
|width="25"|&nbsp;||Skew = <math>\, 15^\circ</math>, Length of Beam = <math>\, (38.67')/(Cos 15^\circ) = 40.03'</math>
|-
|width="25"|&nbsp;||Beam depth = <math>\, 3^\prime-0^{\prime\prime} </math>, <math>\, \phi = 27^\circ</math>, <math>\, H = 8.20'</math>
|-
|&nbsp;
|-
|width="25"|&nbsp;||<math>\, \frac{H}{3} = \frac{8.20'}{3} = 2.73'</math>
|-
|width="25"|&nbsp;||<math>\, 3^\prime - 2.73^\prime = 0.27^\prime < 9^{\prime\prime}</math>, use <math>\, 9^{\prime\prime}</math>
|-
|width="25"|&nbsp;||<math>\, h = H - (Beam\ depth) + 9^{\prime\prime} = 8.20^\prime - 3^\prime + 0.75 = 5.95^\prime</math>
|-
|width="25"|&nbsp;||Assume <math>\, T = 2^\prime-0^{\prime\prime} </math> (Deadman anchor depth)
|}


::::''I<sub>A</sub>'' = moment of inertia of a pile about its neutral axis


{|border="0" cellpadding="5"
::::''A'' = area of a pile


|colspan="4"|Determine Earth and Surcharge Forces
::::''d'' = distance from a pile's neutral axis to pile group's neutral axis
|-
|width="25"|&nbsp;||<math>\, K_A</math>||=||<math>\, Tan^2 (45^\circ - \varnothing/2) = Tan^2 (45^\circ - 27^\circ/2) = 0.3755</math>
|-
|width="25"|&nbsp;||<math>\, K_P</math>||=||<math>\, Tan^2 (45^\circ - \varnothing/2) = Tan^2 (45^\circ - 27^\circ/2) = 2.6629</math>
|-
|width="25"|&nbsp;||<math>\, F_e</math>||=||<math>\, \frac{1}{2} (120 K_AH^2)(Length\,of\,Beam)</math>
|-
|width="25" colspan="2"|&nbsp;||=||<math>\, (60 lb./cu.ft.)(0.3755)(8.20')^2(40.03')</math>
|-
|width="25" colspan="2"|&nbsp;||=||<math>\, 60,842 lbs.</math>
|-
|width="25"|&nbsp;||<math>\, F_s</math>||=||<math>\, (2')(120 K_AH)</math><math>(Length\,of\,Beam)</math>
|-
|width="25" colspan="2"|&nbsp;||=||<math>\, (240 lb./cu.ft.)(0.3755)(8.20')(40.03')</math>
|-
|width="25" colspan="2"|&nbsp;||=||<math>\, 297,582 lbs.</math>
|-
|width="25"|&nbsp;||<math>\, P_A</math>||=||<math>\, 120 K_Ah\;T</math>
|-
|width="25" colspan="2"|&nbsp;||=||<math>\, (120 lb./cu.ft.)(0.3755)(5.95')(2.0')</math>
|-
|width="25" colspan="2"|&nbsp;||=||<math>\, 536 lbs.\,per\,foot\,of\,Deadman</math>
|-
|width="25"|&nbsp;||<math>\, P_P</math>||=||<math>\, 120 K_Ph\;T</math>
|-
|width="25" colspan="2"|&nbsp;||=||<math>\, (120 lb./cu.ft.)(2.6629)(5.95')(2.0')</math>
|-
|width="25" colspan="2"|&nbsp;||=||<math>\, 3,803 lbs.\,per\,foot\,of\,Deadman</math>
|}


:::''I<sub>A</sub>'' may be neglected so the equation reduces to:


{|border="0"
::::''I'' = Σ(Ad<sup>2</sup>)


|colspan="2"|Determine number of Tie Rods required
::'''Resistance To Sliding'''
|-
|width="25"|&nbsp;||Try 7/8"Ø Rods: <math>\, F_R = 8.0</math> kips
|-
|width="25"|&nbsp;||Number of Rods required = <math>\, (F_E + F_S)/F_R = (60,642 + 29,582)/8,000 = 11.29</math>
|-
|width="25"|&nbsp;||Use 12-7/8"Ø Rie Rods.
|}


{|border="0"
::Any frictional resistance to sliding shall be ignored, such as would occur between the bottom of the footing and the soil on a spread footing.


|colspan="2"|Determine length of Deadman
::'''Friction or Bearing Piles With Batter (Case 1)'''
|-
|width="25"|&nbsp;||Length of Deadman required = <math>\, (F_E + F_S)/(P_P - P_A = {(60,642 + 29,582) lbs.}/{(3,803 - 536) lb/ft.} = 27.62'</math>
|-
|width="25"|&nbsp;||Tie Rod spacing = <math>\, (27.62^\prime - 2.0^\prime )/11 = 2.33^\prime  say 2^\prime-4^{\prime\prime} > 12^{\prime\prime}</math> minimum, ok.
|-
|width="25"|&nbsp;||Length of Deadman provided = <math>\, (2'-4^{\prime\prime})(11) + 2.0^\prime = 27^\prime-8^{\prime\prime}</math>
|}


::Retaining walls using friction or bearing piles with batter should develop lateral strength (resistance to sliding) first from the batter component of the pile and second from the passive pressure against the shear key and the piles.


<center>[[Image:751.40_Deadman_Anchor_Design_Example_Detail_1.gif]]</center>
::'''Friction or Bearing Piles Without Batter (Case 2)'''


::Retaining walls using friction or bearing piles without batter due to site constrictions should develop lateral strength first from the passive pressure against the shear key and second from the passive pressure against the pile below the bottom of footing. In this case, the shear key shall be placed at the front face of the footing.


<center><math>\, \phi = 27^\circ</math></center>
::'''Concrete Pedestal Piles or Drilled Shafts (Case 3)'''


::Retaining walls using concrete pedestal piles should develop lateral strength first from passive pressure against the shear key and second from passive pressure against the pile below the bottom of the footing. In this case, the shear key shall be placed at the front of the footing. Do not batter concrete pedestal piles.


<center><math>\, 45^\circ - \frac{\phi}{2} = 31.5^\circ</math></center>
[[image:751.24.3.2.2 cases.jpg|center|450px]]


::'''Resistance Due to Passive Pressure Against Pile'''


{|border="0" cellpadding="5"
::The procedure below may be used to determine the passive pressure resistance developed in the soil against the piles. The procedure assumes that the piles develop a local failure plane.


|1)||colspan="2"|Check tie rod skew angle at Fill Face of End Bent
:::''F'' = the lateral force due to passive pressure on pile
|-
|&nbsp;|| <math>\, (5.5\ spacing)(30.5^{\prime\prime} - 28^{\prime\prime}) = 13.75^{\prime\prime}, tan</math> || <math>\, \phi = 13.75^{\prime\prime}/(24.33 \times 12^{\prime\prime}) = 0.471</math>
|-
|colspan="2"|&nbsp;||<math>\, \phi = 2.70^\circ < 30^\circ</math>, tie capacity ok.
|-
|&nbsp;
|-
|colspan="3" align="center"|[[Image:751.40_Deadman_Anchor_Design_Example_Detail_2.gif]]
|-
|&nbsp;
|-
|2)||colspan="2"|Check criteria for Deadman Anchors extending into Fill Slope
|-
|&nbsp;
|-
|colspan="3" align="center"|[[Image:751.40_Deadman_Anchor_Design_Example_Detail_3.gif]]
|}


:::<math>F = \frac{1}{2}\gamma_s C_P H^2 B </math> , where: <math> C_P = tan^2\Big[45 + \frac{\phi}{2}\Big]</math>


:{|border="0"
:::<math>{\gamma_s}</math> = unit weight of soil


|A)||colspan="3"|Extension of Deadman into Fill Slope
:::''H'' = depth of pile considered for lateral resistance (H<sub>max</sub>= 6B)
|-
|&nbsp;||colspan="3"|Length of Deadman extending into Fill Slope = <math>\, 1.08^\prime tan 15^\circ +</math>
|-
|&nbsp;||width="10"|&nbsp;||colspan="2"| <math>\, (13.83^\prime - ((15.04^\prime + 3.87^\prime) - 24.33^\prime  tan 15^\circ)) = 1.73^\prime</math>
|-
|colspan="2"|&nbsp;||colspan="2"|0.2 (Length of Deadman) = <math>\, 0.2 (27.67^\prime) = 5.53^\prime</math>
|-
|colspan="2"|&nbsp;||width="60"|&nbsp;||<math>\, 1.73^\prime < 5.53^\prime</math>
|-
|&nbsp;||colspan="3"|Length of Deadman extending into Fill Slope <math>\, < 0.2</math> (Length of Deadman), ok
|-
|&nbsp;
|-
|colspan="4"|Note: See below for Section A-A details.
|-
|&nbsp;
|-
|B)||colspan="3"|Cover of Deadman in Fill Slope
|-
|&nbsp;||colspan="3"|<math>\, 1.44^\prime \times (cos 15^\circ) = 1.39^\prime</math>
|}


:::''C<sub>P</sub>'' = coefficient of active earth pressure


<center>[[Image:751.40_Deadman_Anchor_Design_Example_Detail_4.gif]]</center>
:::''B'' = width of pile


<center>'''SECTION A-A<BR/>DETAIL AT FILL SLOPE'''</center>
:::<math>{\phi}</math> = angle of internal friction of soil


[[image:751.24.3.2.2 resistance passive.jpg|center|450px]]


Note:
::'''Resistance Due to Pile Batter'''


(*) Fill slope shown is for illustration purpose only, see roadway plans.
::Use the horizontal component (due to pile batter) of the allowable pile load as the lateral resistance of the battered pile. (This presupposes that sufficient lateral movement of the wall can take place before failure to develop the ultimate strength of both elements.)


====751.40.8.13.2 Reinforcement====
[[image:751.24.3.2.2 12.jpg|center|125px]]
=====751.40.8.13.2.1 Wide Flange Beams, Plate Girders and Prestressed Girders=====


:::''b'' = the amount of batter per 12 inches.


'''END BENT WITH EXPANSION DEVICE'''
:::<math> c = \sqrt{(12 in.)^2 + b^2}</math>


:::<math>P_{HBatter} = P_T \Big(\frac{b}{c}\Big)</math> (# of battered piles) where:


{|border="0" cellpadding="5" align="center" style="text-align:center"
:::''P<sub>HBatter</sub>'' = the horizontal force due to the battered piles


|[[Image:751.40_Reinf_End_Bent_With_Exp_Device_Sec_AA.gif]]
:::''P<sub>T</sub>'' = the allowable pile load
|rowspan="4"|[[Image:751.40_Reinf_End_Bent_With_Exp_Device_Part_Elevation.gif]]
|-
|'''SECTION A-A'''
|-
|&nbsp;
|-
|&nbsp;
|-
|&nbsp;||'''PART ELEVATION'''
|}


Notes:
::Maximum batter is 4" per 12".


(1) See details for reinforcement of end bent backwall.
::'''Resistance Due to Shear Keys'''


(2) #6-H bars and #4-H bars in backwall of skewed bridges shall be bent in field if required.
::A shear key may be needed if the passive pressure against the piles and the horizontal force due to batter is not sufficient to attain the factor of safety against sliding. The passive pressure against the shear key on a pile footing is found in the same manner as for spread footings.


(3) Center #5 bars in backwall.
::'''Resistance to Overturning'''


Epoxy coat all reinforcing in end bents with expansion devices. See ______ for details of protective coating and sloping top of beam to drain.
::The resisting and overturning moments shall be computed at the centerline of the toe pile at a distance of 6B (where B is the width of the pile) below the bottom of the footing. A maximum of 3 tons of tension on each heel pile may be assumed to resist overturning. Any effects of passive pressure, either on the shear key or on the piles, which resist overturning, shall be ignored.


[[image:751.24.3.2.2 resistance overturning.jpg|center|450px]]


::'''Pile Properties'''


{|border="0" cellpadding="5" align="center" style="text-align:center"
:::'''Location of Resultant'''


|rowspan="2"|[[Image:751.40_Reinf_End_Bent_With_Exp_Device_Part_Plan_BB.gif]]
:::The location of the resultant shall be evaluated at the bottom of the footing and can be determined by the equation below:
|width="250"|[[Image:751.40_Reinf_End_Bent_With_Exp_Device_Detail_of_-5_Shape_19_Bar.gif]]
|-
|'''DETAIL OF #5 BARS<br/>SHAPE 19'''<!--cell 1 occupied by [[Image:751.40_Reinf_End_Bent_With_Exp_Device_Part_Plan_BB.gif]]-->
|-
|'''PART PLAN B-B'''
|}


::::<math>e = \frac{\Sigma M}{\Sigma V}</math>  where:


'''END BENT WITHOUT EXPANSION DEVICE'''
::::e = the distance between the resultant and the neutral axis of the pile group


::::''ΣM'' = the sum of the moments taken about the neutral axis of the pile group at the bottom of the footing


{|border="0" cellpadding="5" align="center" style="text-align:center"
::::''ΣV'' = the sum of the vertical loads used in calculating the moment


|[[Image:751.40_Reinf_End_Bent_Without_Exp_Device_Sec_AA.gif]]
:::'''Pile Loads'''
|rowspan="4"|[[Image:751.40_Reinf_End_Bent_Without_Exp_Device_Part_Elevation.gif]]
 
:::The loads on the pile can be determined as follows:
 
::::<math>P = \frac{\Sigma V}{A} \pm \frac{Mc}{I}</math> where:
 
:::::''P'' = the force on the pile
 
:::::''A'' = the areas of all the piles being considered
 
:::::''M'' = the moment of the resultant about the neutral axis
 
:::::''c'' = distance from the neutral axis to the centerline of the pile being investigated
 
:::::''I'' = the moment of inertia of the pile group
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|-
|'''SECTION A-A'''
|'''Additional Information'''
|-
|-
|&nbsp;
|AASHTO 5.5.6.2
|-
|&nbsp;
|-
|&nbsp;||'''PART ELEVATION'''
|}
|}


:::'''Stem Design'''


{|border="0" cellpadding="5" align="center" style="text-align:center"
:::The vertical stem (the wall portion) of a cantilever retaining wall shall be designed as a cantilever supported at the base.


|[[Image:751.40_Reinf_End_Bent_Without_Exp_Device_Part_Plan_BB.gif]]
:::'''Footing Design'''
|valign="top"|
{|border="0" cellpadding="3" style="text-align:left"


|valign="top"|(1)||#5 Dowel bars are 2'-6" long and placed parallel to centerline roadway.
::::'''Toe'''
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"  
|-
|-
|valign="top"|(2)||#6-H bars and #4-H bars in backwall of skewed bridges shall be bent in field.
|'''Additional Information'''
|-
|-
|valign="top"|(3)||For skewed bridges with no expansion device place a #4 bar along skew.
|AASHTO 5.5.6.1
|-
|}
|valign="top"|(4)||See details of end bent backwall for reinforcement.
|-
|valign="top"|(5)||Seal joint with joint sealant.  See special provisions.
|-
|colspan="2"|Note:  See Structural Project Manager before using this detail.
|}
|-
|'''PART PLAN B-B
|}


::::The toe of the base slab of a cantilever wall shall be designed as a cantilever supported by the wall. The critical section for bending moments shall be taken at the front face of the stem. The critical section for shear shall be taken at a distance d (d = effective depth) from the front face of the stem.


'''END BENT WING'''
::::'''Heel'''
::::The top reinforcement in the rear projection (heel) of the base slab shall be designed to support the entire weight of the superimposed materials plus any tension load in the heel piles (neglect compression loads in the pile), unless a more exact method is used. The bottom reinforcement in the heel of the base slab shall be designed to support the maximum compression load in the pile neglecting the weight of the superimposed materials. The heel shall be designed as a cantilever supported by the wall. The critical sections for bending moments and shear shall be taken at the back face of the stem.


:::'''Shear Key Design'''
:::The shear key shall be designed as a cantilever supported at the bottom of the footing.


{|border="0" cellpadding="5" align="center" style="text-align:center"
=====751.40.8.15.4.3 Counterfort Walls=====


|[[Image:751.40_Reinf_End_Bent_Wing_Sec_AA.gif]]|
'''Assumptions:'''
|rowspan="3"|[[Image:751.40_Reinf_End_Bent_Wing_Typ_Elevation.gif]]
|-
|'''SECTION A-A'''
|-
|&nbsp;
|-
|&nbsp;||'''TYPICAL ELEVATION OF WING'''
|}


Note: (1) Development length
(1) Stability
The external stability of a counterfort retaining wall shall be determined in the same manner as described for cantilever retaining walls. Therefore refer to previous pages for the criteria for location of resultant, factor of safety for sliding and bearing pressures.
   
(2) Stem
[[image:751.24.3.2.3 counterfort.jpg|center|800px]]


:<math>P = C_a \gamma_s</math>


{|border="0" cellpadding="5" align="center" style="text-align:center"
:where:
::''C<sub>a</sub>'' = coefficient of active earth pressure


|valign="top"|
::<math>\gamma_s</math> = unit weigt of soil
{|border="1" cellpadding="5" align="center" style="text-align:center"


|h||(2)||(3)
Design the wall to support horizontal load from the earth pressure and the liveload surcharge (if applicable) as outlined on the previous pages and as designated in AASHTD Section 3.20, except that maximum horizontal loads shall be the calculated equivalent fluid pressure at 3/4 height of wall [(0.75 H)P] which shall be considered applied uniformly from the lower quarter point to the bottom of wall.
|-
|2' or less||#4 @ 12"||#6 @ 6"
|-
|Over 2' to 4'||#5 @ 6"||#7 @ 6"
|-
|Over 4' to 6'||#7 @ 5"||#8 @ 5"
|}
|[[Image:751.40_Reinf_End_Bent_Wing_Sec_BB.gif]]
|-
|&nbsp;||'''SECTION B-B'''
|-
|[[Image:751.40_Reinf_End_Bent_Wing_Part_Sec_With_Passive_Pressure.gif]]
|rowspan="2"|[[Image:751.40_Reinf_End_Bent_Wing_Horiz_Sec_Thru_Wing.gif]]
|-
|'''PART SECTION THRU BENTS<br/>WITH PASSIVE PRESSURE'''
|-
|&nbsp;||'''HORIZONTAL SECTION THRU WING'''<br/>(K bars not shown for clarity)
|}


In addition, vertical steel In the fill face of the bottom quarter of the wall shall be that required by the vertical cantilever wall with the equivalent fluid pressure of that (0.25 H) height.


'''END BENT BEAM HEEL'''
Maximum concrete stress shall be assumed as the greater of the two thus obtained.
The application of these horizontal pressures shall be as follows:
[[image:751.24.3.2.3 counterfort wall.jpg|center|800px|thumb|<center>'''Counterfort Wall Section'''</center> <center>Moments are to be determined by analysis as a continuous beam.  The counterforts are to be spaced so as to produce approximately equal positive and negative moments.</center>]]


(3)  Counterfort
Counterforts shall be designed as T-beams, of which the wall is the flange and the counterfort is the stem.  For this reason the concrete stresses ane normally low and will not control.


{|border="0" cellpadding="5" align="center" style="text-align:center"
For the design of reinforcing steel in the back of the counterfort, the effective d shall be the perpendicular distance from the front face of the wall (at point that moment is considered), to center of reinforcing steel.


|[[Image:751.40_Reinf_End_Bent_Beam_Heel_Elev_AA.gif]]
[[image:751.24.3.2.3 moment.jpg|center|500px]]
|[[Image:751.40_Reinf_End_Bent_Beam_Heel_Part_Plan_-_Square.gif]]
|-
|'''ELEVATION A-A (TYP.)'''||'''PART PLAN OF BEAM (SQUARE)'''
|-
|[[Image:751.40_Reinf_End_Bent_Beam_Heel_Part_Plan_-_Skews_thru_15_deg.gif]]
|[[Image:751.40_Reinf_End_Bent_Beam_Heel_Part_Plan_-_Skews_thru_15_deg_(2).gif]]
|-
|colspan="2"|'''PART PLAN OF BEAM - SKEWS THRU 15° - LEFT ADVANCE SHOWN'''
|}


(4) Footing


{|border="0" cellpadding="5" align="center" style="text-align:center"
The footing of the counterfort walls shall be designed as a continuous beam of spans equal to the distance between the counterforts.


|rowspan="2"|[[Image:751.40_Reinf_End_Bent_Beam_Heel_Part_Plan_-_Skews_over_15_deg_(1).gif]]
The rear projection or heel shall be designed to support the entire weight of the superimposed materials, unless a more exact method is used. Refer to AASHTD Section 5.5.6.
|[[Image:751.40_Reinf_End_Bent_Beam_Heel_Part_Plan_-_Skews_over_15_deg_(Sec_BB).gif]]
|rowspan="2"|[[Image:751.40_Reinf_End_Bent_Beam_Heel_Part_Plan_-_Skews_over_15_deg_(2).gif]]
|-
|'''SECTION B-B''' <!--column 1 occupied by cell [[Image:751.40_Reinf_End_Bent_Beam_Heel_Part_Plan_-_Skews_over_15_deg_(1).gif]]-->
|-
|colspan="3"|'''PART PLAN OF BEAM - SKEWS OVER 15° - LEFT ADVANCE SHOWN'''
|}


Divide footing (transversely) into four (4) equal sections for design footing pressures.


Note:
Counterfort walls on pile are very rare and are to be treated as special cases.  See Structural Project Manager.


Vertical spacing for #7 bars shown in Elevation A-A is typical for all types of end bent beams.
(5)  Sign-Board type walls


For a long distance between heel pile and bearing beam investigate for use of larger bars; e.g. larger skews where the shear line does not fall within the bearing beam.
The Sign-Board type of retaining walls are a special case of the counterfort retaining walls.  This type of wall is used where the soiI conditions are such that the footings must be placed a great distance below the finished ground line. For this situation, the wall is discontinued approximately 12 in. below the finished ground line or below the frost line.


Due to the large depth of the counterforts, it may be more economical to use a smaller number of counterforts than would otherwise be used.
All design assumptions that apply to counterfort walls will apply to sign-board walls with the exception of the application of horizontal forces for the stem (or wall design), and the footing design which shall be as follows:


{|border="1" cellpadding=6" cellspacing="1" align="center" style="text-align:center"
:'''Wall'''


|rowspan="2" width="150"|Pile Load Not Greater||rowspan="2" width="150"|(1)<math>*</math> Hair-Pin Stirrups||colspan="4"|(2) Horizontal Rebar around Heel Pile
[[image:751.24.3.2.3 load.jpg|center|550px]]
|-
|width="75"|Skew thru 30° <!--column 1 occupied by cell Pile Load Not Greater--> <!--column 2 occupied by cell (1)* Hair-Pin Stirrups-->||width="75"|Skew 31° thru 45°||width="75"|Skew 46° thru 60°||width="75"|Skew over 60°
|-
|140 kips||#6 @ 9"||5-#7||5-#7||5-#8||By Design
|-
|194 kips||#6 @ 6"||5-#7||5-#8||By Design||By Design
|}


:'''Footing'''


<math>*</math> Use 21" horizontal leg.
:The individual footings shall be designed transversely as cantilevers supported by the wall. Refer to AASHTO Section 5.


==== 751.40.8.15.5 Example 1:  Spread Footing Cantilever Wall ====


'''END BENT BACKWALL'''
[[image:751.24.3.3.jpg|center|750px|thumb|<Center>'''Typical Section thru Wall</center><center>(Spread Footing)</center>''']]


:f'<sub>c</sub> = 3,000 psi
:f<sub>y</sub> = 60,000 psi
:''φ'' = 24 in.
:''γ<sub>s</sub>'' = 120 pcf (unit wgt of soil)
:Allowable soil pressure = 2 tsf
:''γ<sub>c</sub>'' = 150 pcf (unit wgt of concr.)
:Retaining wall is located in Seismic Performance Category (SPC) B.
:A = 0.1 (A = seismic acceleration coefficient)


<center>[[Image:751.40_Reinf_End_Bent_Backwall_Part_Section.gif]]</center>
{| style="margin: 1em auto 1em auto"
 
<center>'''PART SECTION THRU BACKWALL AND BEAM'''</center>
 
 
{|border="1" cellpadding="5" cellspacing="1" align="center" style="text-align:center"
 
|colspan="4"|'''V-BAR SIZE AND SPACING'''
|-
|-
|h<br/>(feet)||t<br/>(inch)||Fill Face<br/>Reinforcement||Front Face<br/>Reinforcement
|<math>P_a = \frac{1}{2}\gamma_s C_a H^2</math>||width=50| ||<math>P_p = \frac{1}{2}\gamma_s C_p H_2^2 - H_1^2</math>
|-
|1-6||12||#5 @ 12"||#5 @ 12"
|-
|7||12||#5 @ 12"||#5 @ 12"
|-
|8||12||#5 @ 12"||#5 @ 12"
|-
|9||12||#6 @ 12"||#5 @ 12"
|-
|10||12||#6 @ 10"||#5 @ 12"
|-
|11||15||#6 @ 10"||#5 @ 12"
|-
|12||15||#6 @ 8"||#5 @ 12"
|-
|13||18||#6 @ 8"||#5 @ 12"
|-
|14||18||#6 @ 6"||#5 @ 12"
|}
|}


'''Assumptions'''


Note:
* Retaining wall is under an abutment or in a location where failure of the wall may affect the structural integrity of a bridge. Therefore, it must be designed for SPC B.


All reinforcement is grade 60.
* Design is for a unit length (1 ft.) of wall.


Design is based on 45 lbs. per cu. ft. equivalent fluid pressure and 90 lbs. per sq. ft. live load surcharge.
* Sum moments about the toe at the bottom of the footing for overturning.


Epoxy coat all reinforcing steel in beam and backwall on non-integral end bents with expansion devices.
*For Group Loads I-VI loading:
:* F.S. for overturning ≥ 2.0 for footings on soil.
:* F.S. for sliding ≥ 1.5.
* Resultant to be within middle 1/3 of footing.


=== 751.40.8.14 Concrete Pile Cap Integral End Bents ===
* For earthquake loading:
:* F.S. for overturning ≥ 0.75(2.0) = 1.5.
:* F.S. for sliding ≥ 0.75(1.5) = 1.125.
:* Resultant to be within middle 1/2 of footing.


* Base of footing is below the frost line.


==== 751.40.8.14.1 Design ====
* Neglect top one foot of fill over toe when determining passive pressure and soil weight.


* Use of a shear key shifts the failure plane to "B" where resistance to sliding is provided by passive pressure against the shear key, friction of soil along failure plane "B" in front of the key, and friction between soil and concrete along the footing behind the key.


===== 751.40.8.14.1.1 Design Unit Stresses =====
* Soil cohesion along failure plane is neglected.


#Reinforced Concrete
* Footings are designed as cantilevers supported by the wall.
#*Class B Concrete (Substructure) &nbsp; <math>\, f_c</math> &nbsp; = 1,200 psi, &nbsp; <math>\, f'_c</math> &nbsp; = 3,000 psi
:* Critical sections for bending are at the front and back faces of the wall.
#*Reinforcing Steel (Grade 60) &nbsp; &nbsp; &nbsp; &nbsp; <math>\, f_s</math> &nbsp; = 24,000 psi &nbsp; <math>\, f_y</math> &nbsp; = 60,000 psi
:* Critical sections for shear are at the back face of the wall for the heel and at a distance d (effective depth) from the front face for the toe.
#*<math>\, n</math> &nbsp; = 10
#*<math>\, E_c</math> &nbsp; =<math>\, w^{1.5} \times 33 \sqrt{f'_c}</math> &nbsp; (AASHTO Article 8.7.1)(*)
#Structural Steel
#*Structural Carbon Steel  (ASTM A709 Grade 36) &nbsp; <math>\, f_s</math> &nbsp; = 20,000 psi &nbsp; <math>\, f_y</math> &nbsp; = 36,000 psi
#Piling
#*See the Bridge Memorandum if pile capacity is indicated.
#Overstress
#*The allowable overstresses as specified in AASHTO Article 3.22 shall be used where applicable for Service Loads design method.


(*) &nbsp; <math>\, E_c = 57,000 \sqrt {f'_c} for\ W = 145 pcf,\ E_c = 60,625 \sqrt{f'_c} for W = 150 pcf </math>
* Neglect soil weight above toe of footing in design of the toe.


===== 751.40.8.14.1.2 Loads =====
* The wall is designed as a cantilever supported by the footing.


#Dead Loads
* Load factors for AASHTO Groups I - VI for design of concrete:
#Live Load
:* ''γ'' = 1.3.
#*As specified on the Bridge Memorandum.
:* ''β<sub>E</sub>'' = 1.3 for horizontal earth pressure on retaining walls.
#*Impact of 30% is to be used for design of the beam. No impact is to be used for design of any other portion of bent including the piles.
:* ''β<sub>E</sub>'' = 1.0 for vertical earth pressure.
#Temperature, Wind and Frictional Loads
 
* Load factor for earthquake loads = 1.0.
 
'''Lateral Pressures Without Earthquake'''
 
:''C<sub>a</sub>'' = <math>\cos\delta\Bigg[\frac{\cos\delta - \sqrt{\cos^2\delta - \cos^2\phi}}{\cos\delta + \sqrt{\cos^2\delta - \cos^2\phi}}\Bigg]</math>
 
:''C<sub>a</sub>'' = <math>\cos 18.435^\circ \Bigg[\frac{\cos\ 18.435^\circ - \sqrt{\cos^2\ 18.435^\circ - \cos^2\ 24^\circ }}{\cos\ 18.435^\circ  + \sqrt{\cos^2\ 18.435^\circ  - \cos^2\ 24^\circ }}\Bigg]</math> = 0.546


===== 751.40.8.14.1.3 Distribution of Loads =====
:<math>C_p = tan^2 \big( 45^\circ + \frac{\phi}{2}\big)  = tan^2 \big( 45^\circ + \frac{24^\circ}{2}\big) = 2.371</math>


#Dead Loads
:<math>P_A = \frac{1}{2}\big[0.120\frac{k}{ft^3}\big](1 ft)(0.546)(10.667 ft)^2 = 3.726k</math>
#*Loads from stringers, girders, etc. shall be concentrated loads applied at the intersection of centerline of stringer and centerline of bearing.  Loads from concrete slab spans shall be applied as uniformly, distributed loads along the centerline of bearing.
#Live Load
#*Loads from stringers, girders, etc. shall be applied as concentrated loads at the intersection of centerline of stringer and centerline of bearing.  For concrete slab spans distribute two wheel lines over 10'-0" (normal to centerline of roadway) of substructure beam. This distribution shall be positioned on the beam on the same basis as used for wheel lines in Traffic Lanes for Substructure Design.
#Wing with Detached Wing Wall
#*When wing length, L, is greater than 17 feet, use maximum length of 10 feet rectangular wing wall combined with a detached wing wall. When detached wing walls are used, no portion of the bridge live load shall be assumed distributed to the detached wing walls.  Design detached wing wall as a retaining wall.  (The weight of barrier or railing on top of the wall shall be included in Dead Load.)


===== 751.40.8.14.1.4 Design Examples =====
:<math>P_P = \frac{1}{2}\big[0.120\frac{k}{ft^3}\big](1 ft)(2.371)\big[(5.0)^2 - (2.5)^2\big] = 2.668k</math>


Design H-bar and F-bar of an intermediate wing as shown in the figures below (wing length = 12.5', wing thickness = 24", wing height = 8'-4"), a Seismic Force of &nbsp; <math>\, \omega</math> = 12.21 kips/ft. is applied on the wall.
:<math>P_{AV} = P_A (sin \delta) = 3.726k (sin 18.435^\circ ) = 1.178k</math>


:<math>P_{AH} = P_A (cos \delta) = 3.726k (cos 18.435^\circ ) = 3.534k</math>


{|border="0" cellpadding="5" cellspacing="1" align="center" style="text-align:center"
{| border="1" class="wikitable" style="margin: 1em auto 1em auto"
|+
!style="background:#BEBEBE" |Load !!style="background:#BEBEBE" |Area (ft<sup>2</sup>) !!style="background:#BEBEBE" |Force (k) = (Unit Wgt.)(Area) !!style="background:#BEBEBE" |Arm (ft.) !!style="background:#BEBEBE"|Moment (ft-k)
|-
|-
|[[Image:751.40 conc pile cap int end bents-section near intermediate wing.gif]]
|align="center"|(1)||align="center"| (0.5)(6.667ft)(2.222ft) = 7.407||align="center"| 0.889||align="center"| 7.278 ||align="center"|6.469
|[[Image:751.40 conc pile cap int end bents-intermediate wing sectin b-b.gif]]
|-
|-
!Section Near Intermediate Wing
|align="center"|(2)||align="center"| (6.667ft)(6.944ft) = 46.296||align="center"| 5.556||align="center"| 6.167||align="center"| 34.259
!Section B-B
|-
|-
|colspan="2"| &nbsp;
|align="center"|(3) ||align="center"|(0.833ft)(8.000ft) + (0.5)(0.083ft)(8.000ft) = 7.000||align="center"|1.050||align="center"| 2.396||align="center"| 2.515
|-
|-
|rowspan="2"|[[Image:751.40 conc pile cap int end bents-intermediate wing sectin c-c.gif]]
|align="center"|(4) ||align="center"|(1.500ft)(9.500ft) = 14.250||align="center"| 2.138 ||align="center"|4.750 ||align="center"|10.153
|[[Image:751.40 conc pile cap int end bents-interior wing design.gif]]
|-
|-
!Interior Wing Design
|align="center"|(5) ||align="center"|(2.500ft)(1.000ft) = 2.500||align="center"| 0.375||align="center"| 2.500||align="center"| 0.938
|-
|-
!Section C-C
|align="center"|(6) ||align="center"|(1.000ft)(1.917ft)+(0.5)(0.010ft)(1.000ft) = 1.922||align="center"|<u>0.231</u>||align="center"| 0.961||align="center"|<u>0.222</u>
|}
 
 
Solve:  Assume #6 V bar, #8 H bar, #6 F bar
 
{|
|valign="top" rowspan="14"|1.)||Design H-bar for bending
|-
|-
|<math>\, d = 24in. - 2in. (clr.) - 0.75in. (V\ Bar) - 0.5 \times 1in. (H\ bar) = 20.75in.</math>.
|align="center"|Σ ||align="center"| - ||align="center"|ΣV = 10.239 ||align="center"| - ||align="center"|ΣM<sub>R</sub> = 54.556
|-
|-
| <math>\, \ell = 11ft.,</math> &nbsp; <math>\, \omega = 12.21 kips/ft.,</math> &nbsp;  <math>\, b = 8ft. 4in. = 100in. </math>
|align="center"|P<sub>AV</sub>||align="center"| -  ||align="center"|<u>1.178</u>||align="center"| 9.500 ||align="center"|<u>11.192</u>
|-
|-
|&nbsp;
|align="center"|Σ resisting ||align="center"| - ||align="center"|ΣV = 11.417||align="center"| - ||align="center"| ΣM<sub>R</sub> = 65.748
|-
|-
|At Section A-A:
|align="center"|P<sub>AH</sub> ||align="center"| - ||align="center"|3.534 ||align="center"|3.556 ||align="center"|12.567
|-
|-
|<math>\, Mu = (1.0)( \omega \ell^2 / 2) = 12.21 \times 11^2/2 = 738.705 kip-ft.</math>
|align="center"|P<sub>P</sub>||align="center"| -  ||align="center"|2.668 ||align="center"|1.389<sup>1</sup>||align="center"| -
|-
|-
|<math>\, Ru = Mu/( \phi bd^2) = 738.705 \times 12,000/(0.9 \times 100in. \times (20.75)^2) = 228.85 psi</math>
|colspan="5"|'''<sup>1</sup>''' The passive capacity at the shear key is ignored in overturning checks,since this capacity is considered in the factor of safety against sliding. It is assumed that a sliding and overturning failure will not occur simultaneously. The passive capacity at the shear key is developed only if the wall does slide.
|-
|Use <math>\, f-c = 3 kisi,</math> &nbsp; <math>\, fy = 60 ksi</math>
|-
|<math>\, m = fy/(0.85 f'c) = 60/(0.85 \times 3) = 23.53</math>
|-
|<math>\, \rho = (1/m)[1 - \sqrt{1 - 2 Rum/fy}] = (1 - \sqrt{1 - 2 \times 228.85 \times 23.53/60000})/23.53 = 0.004003</math>
|-
|As (Req'd) = <math>\, \rho\ bd = 0.004003 \times 100in. \times 20.75in. = 8.31 sq.\ in.</math>
|-
|Try No. 8 @ 9", USE &nbsp; <math>\, \frac{100in - 3in. (clr.) - 2in. (clr.) - 1in (No.\ 8\ bar)}{9in} = 10.44\ spacing</math>
|-
|Say 11 spacings, 12 bars (Each Face)
|-
|Total Area = <math>\, 12 (0.7854) = 9.42 sq.\ in. > 8.31 sq.\ in.,</math> &nbsp; USE 12-No. 8 H-bar (Each Face)
|}
|}


[[image:751.24.3.3 passive.jpg|right|150px]]
<math>\bar{y} = \frac{H_1y^2 + \frac{2}{3}y^3}{H_2^2 - H_1^2} = \frac{(2.5 ft)(2.5 ft)^2 + \frac{2}{3}(2.5 ft)^3}{(5.0 ft)^2 - (2.5 ft)^2}</math> = 1.389 ft.


{|
:'''Overturning'''
|valign="top" rowspan="22"|2.)||Design F-bar for shear
 
|-
:F.S. = <math>\frac{M_R}{M_{OT}} = \frac{65.748(ft-k)}{12.567(ft-k)} = 5.232 \ge 2.0 </math> <u>o.k.</u>
|<math>\, Vu \le \phi (Vc = Vs),\ \phi = 0.85</math> &nbsp; (AASHTO Article 8.16.6.1.1)
 
|-
:where: M<sub>OT</sub> = overturning moment; M<sub>R</sub> = resisting moment
| &nbsp;
 
|-
:'''Resultant Eccentricity'''
|At Section A-A:
 
|-
:<math>\bar{x} = \frac{(65.748 - 12.567)(ft-k)}{11.417k}</math> = 4.658 ft.
|<math>\, Vu = 1.0 \times (\omega \ell) = (12.21 kips/ft.)(11ft.) = 134.11 kips</math>
 
|-
:<math>e = \frac{9.500 ft}{2} - 4.658 ft. = 0.092 ft.</math>
|<math>\, Vc = bd(\vartheta c) = bd(2 \sqrt{f'c} = (100in. \times 20.75in.)(2 \times \sqrt{3000})/1000 = 227.30 kips</math>
:<math>\frac{L}{6} =\frac{9.500 ft}{6} = 1.583 ft > e</math> <u>o.k.</u>
|-
 
|<math>\, \phi\ Vc = 0.85 Vc = 0.85 \times 227.30 kips = 193.20 kips</math>
:'''Sliding'''
|-
 
|<math>\, \phi\ Vc = 193.20 kips > Vu = 134.11 kips,</math> &nbsp; No &nbsp; <math>\, Vs</math> &nbsp; needed by AASHTO Article 8.16.6.3.1.
:Check if shear key is required for Group Loads I-VI:
|-
 
|Minimum shear reinforcement is required by AASHTO Article 8.19.1.1(a).(ACI 318-95 11.5.5.1)
:F.S. = <math>\frac{\Sigma V(tan\phi_{s-c})}{P_{AH}} = \frac{11.042k(tan \frac{2}{3}(24^\circ)}{3.534k} </math>= 0.896 <u>no good - shear key req'd</u>
|-
 
|&nbsp;
:where: ''φ<sub>s-c</sub>'' = angle of friction between soil and concrete = (2/3)''φ<sub>s-s</sub>''
|-
 
|F-bar is a single group of parallel bars, all bent up at the same distance from support (no "spacing" along the "L" direction of the wing).
:F.S. = <math>\frac{P_P + (\Sigma V) \Big(\frac{L_2}{L_1} tan \phi_{s-s}+\frac{L_3}{L_1} tan \phi_{s-c}\Big)}{P_{AH}}</math>
|-
 
|Try No. 6 @ 12" F-bar (each face).
:where: ''φ<sub>s-s</sub>''  = angle of internal friction of soil
|-
 
|Try <math>\, (100in. - 3in. - 2in. - 1in. )/12in = 7.83,</math> say 8 spacing, 9 bars (each face).
:F.S. = <math>\frac{2.668k + (11.417k) \Big[\Big(\frac{2 ft}{9.50 ft}\Big) tan 24^\circ + \Big(\frac{7.50 ft}{9.50 ft} tan \Big(\frac{2}{3}(24^\circ)\Big)\Big]}{3.534 k}</math> = 1.789 ≥ 1.5  <u>o.k.</u>
|-
 
| &nbsp;
:'''Footing Pressure'''
|-
 
|Since seismic force is a cyclic loading, assume one bar works at any instance.  
:<math>P = \frac{\Sigma V}{bL} \Big[1 \pm \frac{6e}{L}\Big]</math>
|-
|<math>\, Av (provided) = 1 \times 9 \times (0.4418 sq.\ in.) = 3.98 sq.\ in.</math>
|-
| &nbsp;
|-
|<math>\, Vs = Av (Fy\ Sin 45^\circ) = (3.98 sq.\ in.)(60 ksi)(Sin 45^\circ) = 168.7 kips</math>
|-
|Check &nbsp; <math>3 \sqrt{f'c} b_\omega d = 3 \sqrt{3000} \times 100in. \times 20.75in. / 1000 = 341.0 kips</math>
|-
| &nbsp;
|-
|<math>\, Vs = Av (fy\ Sin 45^\circ) \le 3 \sqrt{f'c} b_\omega d,</math> &nbsp; O.K. by AASHTO Article 8.16.6.3.4.
|-
|USE 9 No. 6 F-bars (each face).
|}


==== 751.40.8.14.2 Reinforcement ====
:P<sub>H</sub> = pressure at heel <math>P_H = \frac{11.417 k}{(1 ft)9.50 ft} \Big[1 - \frac{6 (0.092 ft)}{9.50 ft}\Big]</math> = 1.132 k/ft<sup>2</sup>


:P<sub>T</sub> = pressure at toe <math>P_T = \frac{11.417 k}{(1 ft)9.50 ft} \Big[1 + \frac{6 (0.092 ft)}{9.50 ft}\Big]</math> = 1.272 k/ft<sup>2</sup>


===== 751.40.8.14.2.1 Earthquake Loads at End Bent – Intermediate Wing (Seismic Shear Wall) =====
:Allowable pressure = 2 tons/ft<sup>2</sup> = 4 k/ft<sup>2</sup> ≥ 1.272 k/ft<sup>2</sup> <u>o.k.</u>


{|border="0" cellpadding="5" cellspacing="1" align="center" style="text-align:center"
'''Lateral Pressures With Earthquake'''
|-
|[[Image:751.40 conc pile cap int end bents-section near intermediate wing(seismic).gif]]
|[[Image:751.40 conc pile cap int end bents-intermediate wing sectin b-b(seismic).gif]]
|-
!Section Near Intermediate Wing
!Section B-B
|-
|colspan="2"| &nbsp;
|-
|[[Image:751.40 conc pile cap int end bents-intermediate wing sectin a-a(seismic).gif]]
|&nbsp;
|-
!Section A-A
|&nbsp;
|}
{|border="0" cellpadding="5" cellspacing="1" align="center" style="text-align:center"
|-
|valign="top" align="right"|*||align="left" width="400pt"|Use 1.25 x development length for seismic design.
|-
|valign="top" align="right"|**||align="left" width="400pt"|Additional reinforcing steel by design if required.
|-
|valign="top" align="right"|Note:||align="left" width="400pt"|Make sure reinforcement does not interfere with girders.
|}


=== 751.40.8.15 Cast-In-Place Concrete Retaining Walls ===
k<sub>h</sub> = 0.5A = 0.5 (0.1) = 0.05


==== 751.40.8.15.1 Loads ====
k<sub>v</sub> = 0


'''Dead Loads'''
<math>\theta = arctan \Big[\frac{k_h}{1 - k_v}\Big] = arctan \Big[\frac{0.05}{1 - 0}\Big] = 2.862^\circ</math>


Dead loads shall be determined from the unit weights in [[751.2 Loads#751.2.1.1 Dead Load |EPG 751.2.1.1 Dead Load]].
:'''Active Pressure on Psuedo-Wall'''


'''Equivalent Fluid Pressure (Earth Pressures)'''
:''δ'' = ''φ'' = 24° (''' is the angle of friction between the soil and the wall. In this case, ''δ'' = ''φ'' = because the soil wedge considered is next to the soil above the footing.)
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|'''Additional Information'''
|-
|AASHTO 3.20.1
|}


For determining equivalent earth pressures for Group Loadings I through VI the Rankine Formula for Active Earth Pressure shall be used.
:''i'' = 18.435°


Rankine Formula: <math>P_a = \frac{1}{2}C_a\gamma_sH^2</math> where:
:''β'' =
:''C<sub>a</sub>'' = <math>\cos\delta\Bigg[\frac{\cos\delta - \sqrt{\cos^2\delta - \cos^2\phi}}{\cos\delta + \sqrt{\cos^2\delta - \cos^2\phi}}\Bigg]</math> = coefficient of active earth pressure


:''P<sub>a</sub>'' = equivalent active earth pressure
:<math>K_{AE} = \frac{cos^2(\phi - \theta - \beta)}{cos \theta cos^2 \beta cos(\delta + \beta + \theta)\Big(1 + \sqrt\frac{sin(\phi + \delta) sin (\phi - \theta - i)}{cos (\delta + \beta + \theta) cos(I - \beta)}\Big)^2}</math>


:''H'' = height of the soil face at the vertical plane of interest
:<math>K_{AE} = \frac{cos^2(24^\circ - 2.862^\circ - 0^\circ)}{cos (2.862^\circ) cos^2 (0^\circ) cos(24^\circ + 0^\circ + 2.862^\circ)\Big(1 + \sqrt\frac{sin(24^\circ + 24^\circ) sin (24^\circ - 2.862^\circ - 18.435^\circ)}{cos (24^\circ + 0^\circ + 2.862^\circ) cos(18.435^\circ - 0^\circ)}\Big)^2}</math>


:<math>\boldsymbol{\gamma_s}</math> = unit weight of soil
:K<sub>AE</sub> = 0.674


:<math>\boldsymbol{\delta}</math>= slope of fill in degrees
:P<sub>AE</sub> = ½''γ<sub>s</sub>H<sup>2</sup>''(1 − ''k<sub>v</sub>'')''K<sub>AE</sub>''


:<math>\boldsymbol{\phi}</math> = angle of internal friction of soil in degrees
:P<sub>AE</sub> = ½[0.120 k/ft<sup>3</sup>](10.667 ft)<sup>2</sup>(1 ft.)(1 - 0)(0.674) = 4.602k
[[image:751.24.1.2.jpg|center|485px]]


'''Example'''
:P<sub>AEV</sub> = P<sub>AE</sub>(sin''δ'') = 4.602k(sin24°) = 1.872k


Given:
:P<sub>AEH</sub> = P<sub>AE</sub>(cos''δ'') = 4.602k(cos 24°) = 4.204k


:''δ'' = 3:1 (H:V) slope
:P'<sub>AH</sub> = P<sub>AEH</sub> − P<sub>AH</sub> = 4.204k − 3.534k = 0.670k


:''ϕ'' = 25°
:P'<sub>AV</sub> = P<sub>AEV</sub> − P<sub>AV</sub> = 1.872k − 1.178k = 0.694k


:''γ<sub>s</sub>'' = 0.120 kcf
:where: P'<sub>AH</sub> and P'<sub>AV</sub> are the seismic components of the active force.


:''H'' = 10 ft
:'''Passive Pressure on Shear Key'''


''δ'' = arctan<math>\Big[\frac{1}{3}\Big]</math> = 18.
:''δ'' = ''φ'' = 24° (''δ'' = ''φ'' because the soil wedge considered is assumed to form in front of the footing.)


''C<sub>a</sub>'' = <math>\cos (18.4^\circ)\Bigg[\frac{\cos(18.4^\circ) - \sqrt{\cos^2(18.4^\circ) - \cos^2(25^\circ)}}{\cos(18.4^\circ) + \sqrt{\cos^2(18.4^\circ) - \cos^2(25^\circ)}}\Bigg]</math> = 0.515
:''i'' = 0


''P<sub>a</sub>'' = (1/2)(0.515)(0.120 kips/ft<sup>3</sup>)(10 ft)<sup>2</sup> = 3.090 kips per foot of wall length
:''β'' = 0


The ''ϕ'' angle shall be determined by the Materials Division from soil tests. If the ''ϕ'' angle cannot be provided by the [http://sp/sites/cm/Pages/default.aspx Construction and Materials Division] a ''ϕ'' angle of 27 degrees shall be used.
:<math>K_{PE} = \frac{cos^2(\phi - \theta + \beta)}{cos \theta cos^2 \beta cos(\delta - \beta + \theta)\Big(1 - \sqrt\frac{sin(\phi - \delta) sin (\phi - \theta + i)}{cos (\delta - \beta + \theta) cos(I - \beta)}\Big)^2}</math>


Drainage shall be provided to relieve water pressure from behind all cast-in-place concrete retaining walls. If adequate drainage can not be provided then walls shall be designed to resist the maximum anticipated water pressure.
:<math>K_{PE} = \frac{cos^2(24^\circ - 2.862^\circ + 0^\circ)}{cos (2.862^\circ) cos^2 (0^\circ) cos(24^\circ - 0^\circ + 2.862^\circ)\Big(1 - \sqrt\frac{sin(24^\circ - 24^\circ) sin (24^\circ - 2.862^\circ + 0^\circ)}{cos (24^\circ - 0^\circ + 2.862^\circ) cos(0^\circ - 0^\circ)}\Big)^2}</math>


'''Surcharge Due to Point, Line and Strip Loads'''
:K<sub>PE</sub> = 0.976


Surcharge due to point and line loads on the soil being retained shall be included as dead load surcharge. The effect of these loads on the wall may be calculated using Figure 5.5.2B from AASHTO.
:P<sub>PE</sub> = ½''γ<sub>s</sub>H<sup>2</sup>''(1 − ''k<sub>v</sub>'')''K<sub>PE</sub>''


Surcharge due to strip loads on the soil being retained shall be included as a dead load surcharge load. The following procedure as described in ''Principles of Foundation Engineering'' by Braja M. Das (1995) shall be applied to calculate these loads when strip loads are applicable. An example of this application is when a retaining wall is used in front of an abutment so that the wall is retaining the soil from behind the abutment as a strip load on the soil being retained by the wall.
:P<sub>PE</sub> =  ½[0.120 k/ft<sup>3</sup>][(5.0 ft)<sup>2</sup> - (2.5 ft<sup>2</sup>)](1 ft.)(1 - 0)(0.976) = 1.098k


[[image:751.24.1.2 retaining.jpg|center|255px|thumb|<center>'''Retaining Wall in front of an Abutment'''</center>]]
{| border="1" class="wikitable" style="margin: 1em auto 1em auto"
 
|+
The portion of soil that is in the active wedge must be determined because the surcharge pressure only affects the wall if it acts on the active wedge. The actual failure surface in the backfill for the active state can be represented by ABC shown in the figure below. An approximation to the failure surface based on Rankine's active state is shown by dashed line AD. This approximation is slightly unconservative because it neglects friction at the pseudo-wall to soil interface.
!style="background:#BEBEBE" |Load !!style="background:#BEBEBE" |Force (k) !!style="background:#BEBEBE" |Arm (ft) !!style="background:#BEBEBE" |Moment (ft-k)
|-
|align="center"|Σ (1) thru (6) ||align="center"| 10.239||align="center"| - ||align="center"| 54.556
|-
|align="center"|P<sub>AV</sub>||align="center"| 1.178 ||align="center"|9.500||align="center"| 11.192
|-
|align="center"|P'<sub>AV</sub> ||align="center"|0.694 ||align="center"|9.500||align="center"| 6.593
|-
|align="center"|Σ<sub>resisting</sub> ||align="center"|ΣV = 12.111 ||align="center"| - ||align="center"|ΣM<sub>R</sub> = 72.341
|-
|align="center"|P<sub>AH</sub> ||align="center"|3.534 ||align="center"|3.556 ||align="center"|12.567
|-
|align="center"|P'<sub>AH</sub> ||align="center"|0.670||align="center"| 6.400<sup>a</sup>||align="center"| 4.288
|-
|align="center"|P<sub>PEV</sub> ||align="center"|0.447<sup>b</sup>||align="center"| 0.000||align="center"| 0.000
|-
|align="center"|P<sub>PEH</sub> ||align="center"|1.003<sup>b</sup> ||align="center"|1.389<sup>c</sup>||align="center"| <u>0.000</u>
|-
|align="center"| - ||align="center"| - ||align="center"| - ||align="center"|ΣM<sub>OT</sub> = 16.855
|-
|colspan="4"|<sup>'''a'''</sup> P'<sub>AH</sub> acts at 0.6H of the wedge face (1992 AASHTO Div. IA Commentary).
|-
|colspan="4"|<sup>'''b'''</sup> P<sub>PEH</sub> and P<sub>PEH</sub> are the components of P<sub>PE</sub> with respect to ''δ'' (the friction angle). P<sub>PE</sub> does not contribute to overturning.
|-
|colspan="4"|<sup>'''c'''</sup> The line of action of P<sub>PEH</sub> can be located as was done for P<sub>P</sub>.
|}


The following variables are shown in the figure below:
:'''Overturning'''


:''β'' = slope of the active failure plane in degrees
:<math>F.S._{OT} = \frac{72.341ft-k}{16.855ft-k} = 4.292 > 1.5</math> <u>o.k.</u>
:''δ'' = slope of fill in degrees
:''H'' = height of the pseudo-wall (fom the bottom of the footing).
:''L<sub>1</sub>'' = distance from back of stem to back of footing heel
:''L<sub>2</sub>'' = distance from footing heel to intersection of failure plane with ground surface


[[image:751.24.1.2 wedges.jpg|center|575px|thumb|<center>'''Determination of Active Wedges'''</center>]]
:'''Resultant Eccentricity'''


In order to determine ''β'', the following equation which has been derived from Rankine's active earth pressure theory must be solved by iteration:
:<math>\bar{x} = \frac{72.341ft-k - 16.855ft-k}{12.111k} = 4.581 ft.</math>


:<math>\tan (-\beta) + \frac{1}{\tan (\beta - \phi)} - \frac{1}{\tan (\beta - \delta)} + \frac{1}{\tan (90^\circ + \phi + \delta - \beta)} = 0</math>
:<math>e = \frac{9.5 ft.}{2}\ - 4.581 ft. = 0.169 ft.</math>


:''ϕ'' = angle of internal friction of soil in degrees
:<math>\frac{L}{4} = \frac{9.5 ft.}{4} = 2.375 ft. > e</math> <u>o.k.</u>


A good estimate for the first iteration is to let ''β'' = 45° + (ϕ/2). In lieu of iterating the above equation a conservative estimate for ''β'' is 45°. Once β has been established, an estimate of L<sub>1</sub> is needed to determine L<sub>2</sub>. From the geometry of the variables shown in the above figure:


:<math>L_2 = H\frac{\cos\delta\cos\beta}{\sin(\beta - \delta)}</math>
:'''Sliding'''


The resultant pressure due to the strip load surcharge and its location are then determined. The following variables are shown in the figure below:
:<math>F.S. = \frac{1.003k + 12.111k \Big[(\frac{2}{9.5})tan 24^\circ + (\frac{7.5}{9.5}) tan \Big( \frac{2}{3}(24^\circ) \Big)\Big]}{4.204 k} = 1.161 > 1.125</math> <u>o.k.</u>


:''q'' = load per unit area
:''P<sub>s</sub>'' = resultant pressure on wall due only to surcharge earth pressure
:<math>\bar{z}</math> = location of P<sub>s</sub> measured from the bottom of the footing
:''L<sub>3</sub>'' = distance from back of stem to where surcharge pressure begins


[[image:751.24.1.2 surcharge.jpg|center|625px|thumb|<center>'''Surcharge Pressure on Retaining Wall'''</center>]]
:'''Footing Pressure'''


From the figure:
:for e ≤ L/6:


:P<sub>s</sub> = <math>\frac{q}{90}\big[H(\theta_2 - \theta_1)\big]</math> where
:<math>P = \frac{\Sigma V}{bL} \Big[ 1 \pm \frac{6e}{L}\Big] </math>


:<math>\theta_1 = \arctan\Big[\frac{L_3}{H}\Big] \ and \ \theta_2 = \arctan\Big[\frac{L_2}{H}\Big]</math>
:<math>P_H = pressure\ at\ heel\ P_H = \frac{12.111 k}{(1 ft.)9.50 ft.} \Big[1 - \frac{6(0.169 ft.)}{9.50 ft}\Big]</math> = 1.139 k/ft<sup>2</sup>


:<math>\bar{z} = \frac{H^2(\theta_2 - \theta_1) - (R - Q) + 57.03L_4H}{2H(\theta_2 - \theta_1)}</math> where
:<math>P_TH = pressure\ at\ toe\ P_T = \frac{12.111 k}{(1 ft.)9.50 ft.} \Big[1 + \frac{6(0.169 ft.)}{9.50 ft}\Big]</math> = 1.411 k/ft<sup>2</sup>


:<math>R = (L_2)^2(90^\circ - \theta_2) \ and \ Q = (L_3)^2(90^\circ - \theta_1)</math>
:Allowable soil pressure for earthquake = 2 (allowable soil pressure)


When applicable, P<sub>s</sub> is applied to the wall in addition to other earth pressures. The wall is then designed as usual.
:(2)[4 k/ft<sup>2</sup>] = 8 k/ft<sup>2</sup> > 1.411 k/ft<sup>2</sup> <u>o.k.</u>


'''Live Load Surcharge'''
'''Reinforcement-Stem'''
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|'''Additional Information'''
|-
|AASHTO 3.20.3 & 5.5.2
|}
Live load surcharge pressure of not less than two feet of earth shall be applied to the structure when highway traffic can come within a horizontal distance equal to one-half of the wall height, measured from the plane where earth pressure is applied.


[[image:751.24.1.2 live load1.jpg|center|475px]]
[[image:751.24.3.3 reinforcement stem.jpg|center|200px]]


[[image:751.24.1.2 live load surcharge.jpg|center|575px|thumb|<Center>'''Live Load Surcharge'''</center>]]
d = 11" - 2" - (1/2)(0.5") = 8.75"


:''P<sub>LLS</sub>'' = (2 ft.) ''γ<sub>s</sub> C<sub>a</sub> H'' = pressure due to live load surcharge only
b = 12"


:'<sub>s</sub>'' = unit weight of soil (Note: AASHTO 5.5.2 specifies a minimum of 125 pcf for live load surcharge, MoDOT policy allows 120 pcf as given from the unit weights in [[751.2 Loads#751.2.1.1 Dead Load |EPG 751.2.1.1 Dead Load]].)
f'<sub>c</sub> = 3,000 psi
:''C<sub>a</sub>'' = coefficient of active earth pressure


:''H'' = height of the soil face at the vertical plane of interest
:'''Without Earthquake'''


The vertical live load surcharge pressure should only be considered when checking footing bearing pressures, when designing footing reinforcement, and when collision loads are present.
:P<sub>AH</sub> = ½ [0.120 k/ft<sup>3</sup>](0.546)(6.944 ft.)<sup>2</sup>(1 ft.)(cos 18.435°) = 1.499k


'''Live Load Wheel Lines'''
:''γ'' = 1.3


Live load wheel lines shall be applied to the footing when the footing is used as a riding or parking surface.
:''β<sub>E</sub>'' = 1.3 (active lateral earth pressure)
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|'''Additional Information'''
|-
|AASHTO 3.24.5.1.1 & 5.5.6.1
|}


Distribute a LL<sub>WL</sub> equal to 16 kips as a strip load on the footing in the following manner.
:M<sub>u</sub> = (1.3)(1.3)(1.499k)(2.315ft) = 5.865 (ft-k)


:'''With Earthquake'''


:P = LL<sub>WL</sub>/E
:k<sub>h</sub> = 0.05


::where E = 0.8X + 3.75
:k<sub>v</sub> = 0
 
::::X = distance in ft. from the load to the front face of the wall
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"  
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"  
|-
|-
|'''Additional Information'''
|'''Additional Information'''
|-
|-
|AASHTO 3.24.2 & 3.30
|1992 AASHTO Div. IA Commentary
|}
|}


Two separate placements of wheel lines shall be considered, one foot from the barrier or wall and one foot from the toe of the footing.
:''θ'' = 2.862°


[[image:751.24.1.2 wheel.jpg|center|350px]]
:''δ'' = ''φ''/2 = 24°/2 = 12° for angle of friction between soil and wall. This criteria is used only for seismic loading if the angle of friction is not known.


'''Collision Forces'''
:''φ'' = 24°
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|'''Additional Information'''
|-
|AASHTO Figure 2.7.4B
|}


Collision forces shall be applied to a wall that can be hit by traffic. Apply a point load of 10 kips to the wall at a point 3 ft. above the finished ground line.
:''i'' = 18.435°


[[image:751.24.1.2 collision section.jpg|center|450px|thumb|<center>'''Section'''</center>]]
:''β'' = 0°


Distribute the force to the wall in the following manner:
:K<sub>AE</sub> = 0.654


:Force per ft of wall = (10 kips)/2L
:P<sub>AEH</sub> = 1/2 ''γ<sub>s''</sub>K<sub>AE</sub>H<sup>2</sup>cos''δ''


[[image:751.24.1.2 collision profile.jpg|center|350px|thumb|<center>'''Profile'''</center>]]
:P<sub>AEH</sub> = 1/2 [0.120k/ft](0.654)(6.944 ft.)<sup>2</sup>(1 ft.) cos(12°) = 1.851k


When considering collision loads, a 25% overstress is allowed for bearing pressures and a factor of safety of 1.2 shall be used for sliding and overturning.
:M<sub>u</sub> = (1.499k)(2.315 ft.) + (1.851k − 1.499k)(0.6(6.944 ft.)) = 4.936(ft−k)


'''Wind and Temperature Forces'''
:The moment without earthquake controls:


These forces shall be disregarded except for special cases, consult the Structural Project Manager.
:<math>R_n = \frac{M_u}{\phi bd^2} = \frac{5.865(ft-k)}{0.9(1 ft.)(8.75 in.)^2}\Big(1000 \frac{lb}{k}\Big)</math> = 85.116 psi


When walls are longer than 84 ft., an expansion joint shall be provided.  
:''ρ'' = <math>\frac{0.85f'_c}{f_y} \Big[1 - \sqrt{1 - \frac{2R_n}{0.85f'_c}}\Big]</math>


Contraction joint spacing shall not exceed 28 feet.
:''ρ'' = <math>\frac{0.85 (3.000 psi}{60,000 psi} \Bigg[1 - \sqrt{1 - \frac{2 (85.116 psi}{0.85 (3000 psi)}}\Bigg]</math> = 0.00144


'''Seismic Loads'''
Retaining walls in Seismic Performance Category A (SPC A) and SPC B that are located adjacent to roadways may be designed in accordance with AASHTO specifications for SPC A. Retaining walls in SPC B which are located under a bridge abutment or in a location where failure of the wall may affect the structural integrity of a bridge shall be designed to AASHTO specifications for SPC B. All retaining walls located in SPC C and SPC D shall be designed in accordance to
AASHTO specifications for the corresponding SPC.
In seismic category B, C and D determine equivalent fluid pressure from Mononobe-Okabe static method.
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"  
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"  
|-
|-
|'''Additional Information'''
|'''Additional Information'''
|-
|-
|1992 AASHTO Div. IA Eqns. C6-3 and C6-4
|AASHTO 8.17.1.1 & 8.15.2.1.1
|}
|}
''P<sub>AE</sub>'' = equivalent active earth pressure during an earthquake


''P<sub>AE</sub>'' = 0.5 γ<sub>s</sub>H<sup>2</sup>(1 - k<sub>v</sub>)K<sub>AE</sub> where
:''ρ<sub>min</sub>'' = <math> 1.7 \Bigg[\frac{h}{d}\Bigg]^2 \frac{\sqrt{f'_c}}{f_y} = 1.7 \Bigg[\frac{11 in.}{8.75 in.}^2 \frac{\sqrt{3000 psi}}{60,000 psi}\Bigg]</math> = 0.00245
 
:Use ''ρ'' = 4/3 ''ρ'' = 4/3 (0.00144) = 0.00192


''K<sub>AE</sub>'' = seismic active pressure coefficient
:''A<sub>S<sub>Req</sub></sub>'' = ''ρbd'' = 0.00192 (12 in.)(8.75 in.) = 0.202 in.<sup>2</sup>/ft


:<math>K_{AE} = \frac{\cos^2(\phi - \theta - \beta)}{\cos\theta\cos^2\beta\cos(\delta + \beta + \theta)\Big\{1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi - \theta - i)}{\cos(\delta + \beta + \theta)\cos(i - \beta)}}\Big\}^2}</math>
:One #4 bar has A<sub>S</sub> = 0.196 in<sup>2</sup>


:<math>\frac{s}{0.196 in.^2} = \frac{12 in.}{0.202 in.^2}</math>


''γ<sub>s</sub>'' = unit weight of soil
:''s'' = 11.64 in.


{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"  
:<u>Use #4's @ 10" cts.</u>
|-
|'''Additional Information'''
|-
|AASHTO 5.2.2.3 & Div. IA 6.4.3
|}
''k<sub>v</sub>'' = vertical acceleration coefficient


''k<sub>h</sub>'' = horizontal acceleration coefficient which is equal to 0.5A for all walls,
:'''Check Shear'''
:::but 1.5A for walls with battered piles where
:::A = seismic acceleration coefficient


The following variables are shown in the figure below:
:V<sub>u</sub> ≥ ''φ'' V<sub>n</sub>


''ϕ'' = angle of internal friction of soil
::'''Without Earthquake'''


''θ'' = <math>\arctan\ \Big(\frac{k_h}{1 - k_v}\Big)</math>
::V<sub>u,</sub> = (1.3)(1.3)(1.499k) = 2.533k


''β'' = slope of soil face
::'''With Earthquake'''


''δ'' = angle of friction between soil and wall in degrees
::V<sub>u</sub> = 1.851k


''i'' = backfill slope angle in degrees
:The shear force without earthquake controls.


''H'' = distance from the bottom of the part of the wall to which the pressure is applied to the top of the fill at the location where the earth pressure is to be found.
:<math>\frac{\nu_u}{\phi} = \frac{2.533k}{0.85(12 in.)(8.75 in.)} (1000 lb/k)</math> = 28.4 psi


[[image:751.24.1.2 active soil.jpg|center|450px|thumb|<center>'''Active Soil Wedge'''</center>]]
:<math>\nu_c = 2 \sqrt{3,000 psi}</math> = 109.5 psi > 28.4 psi <u>o.k.</u>


<div id="Group Loads"></div>
'''Reinforcement-Footing-Heel'''
'''Group Loads'''


For SPC A and B (if wall does not support an abutment), apply AASHTO Group I Loads only. Bearing capacity, stability and sliding shall be calculated using working stress loads. Reinforced concrete design shall be calculated using load factor design loads.
[[image:751.24.3.3 heel.jpg|center|250px]]
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|'''Additional Information'''
|-
|AASHTO Table 3.22.1A
|}


AASHTO Group I Load Factors for Load Factor Design of concrete:
Note: Earthquake will not control and will not be checked.
''γ'' = 1.3


''β<sub>D</sub>'' = 1.0 for concrete weight
''β<sub>E</sub>'' = 1.0 (vertical earth pressure)


''β<sub>D</sub>'' = 1.0 for flexural member
d = 18" - 3" - (1/2)(0.750") = 14.625"


''β<sub>E</sub>'' = 1.3 for lateral earth pressure for retaining walls
b = 12"


''β<sub>E</sub>'' = 1.0 for vertical earth pressure
''f'<sub>c</sub>'' = 3,000 psi


''β<sub>LL</sub>'' = 1.67 for live load wheel lines
''M<sub>u</sub>'' = 1.3 [(5.556k + 1.500k)(3.333ft) + 0.889k(4.444ft) + 1.178k(6.667ft)]


''β<sub>LL</sub>'' = 1.67 for collision forces
''M<sub>u</sub>'' = 45.919(ft−k)


{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
<math>R_n = \frac{45.919(ft-k)}{0.9(1 ft.)(14.625 in.)^2}(1000\frac{lb}{k})</math> = 238.5 psi
|-
|'''Additional Information'''
|-
|AASHTO 5.14.2
|}


''β<sub>E</sub>'' = 1.67 for vertical earth pressure resulting from live load surcharge
''ρ'' = <math>\frac{0.85(3000)psi}{60,000 psi} \Bigg[ 1 - \sqrt{1 - \frac{2(238.5 psi)}{0.85(3000psi)}}\Bigg]</math> = 0.00418


''β<sub>E</sub>'' = 1.3 for horizontal earth pressure resulting from live load surcharge
''ρ<sub>min</sub>'' = <math> 1.7 \Big[\frac{18 in.}{14.625 in.}\Big]^2 \frac{\sqrt{3000 psi}}{60,000 psi}</math> = 0.00235


For SPC B (if wall supports an abutment), C, and D apply AASHTO Group I Loads and seismic loads in accordance with AASHTO Division IA - Seismic Design Specifications.
''A<sub>S<sub>Req</sub></sub>'' = 0.00418 (12 in.) (14.625 in.) = 0.734 in<sup>2</sup>/ft.


{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|'''Additional Information'''
|-
|AASHTO Div. IA 4.7.3
|}


When seismic loads are considered, load factor for all loads = 1.0.
<u>Use #6's @ 7" cts.</u>


==== 751.40.8.15.3 Unit Stresses ====
:'''Check Shear'''


'''Concrete'''
:Shear shall be checked at back face of stem.
Concrete for retaining walls shall be Class B Concrete (f'c = 3000 psi) unless the footing is used as a riding surface in which case Class B-1 Concrete (f'c = 4000 psi) shall be used.


'''Reinforcing Steel'''
:''V<sub>u</sub>'' = 1.3 (5.556k + 1.500k + 0.889k + 1.178k) = 11.860k


Reinforcing Steel shall be Grade 60 (fy = 60,000 psi).  
:<math>\frac{\nu_u}{\phi} = \frac{11.860k}{0.85(12 in.)(14.625 in.)}(1000 \frac{lb}{k} ) = 79.5 psi < 2 \sqrt{3,000 psi}</math> = 109.5 psi  o.k.


'''Pile Footing'''
'''Reinforcement-Footing-Toe'''


For steel piling material requirements, see the unit stresses in [[751.50 Standard Detailing Notes#A1. Design Specifications, Loadings & Unit Stresses and Standard Plans|EPG 751.50 Standard Detailing Notes]].
[[image:751.24.3.3. toe.jpg|center|350px]]


'''Spread Footing'''
d = 18" - 4" = 14"


For foundation material capacity, see Foundation Investigation Geotechnical Report.
b = 12"


==== 751.40.8.15.4 Design ====
:'''Without Earthquake'''


For epoxy coated reinforcement requirements, see [[751.5 Structural Detailing Guidelines#751.5.9.2.2 Epoxy Coated Reinforcement Requirements|EPG 751.5.9.2.2 Epoxy Coated Reinforcement Requirements]].
::'''Apply Load Factors'''


If the height of the wall or fill is a variable dimension, then base the structural design of the wall, toe, and heel on the high quarter point between expansion joints.
::load 4 (weight) = 0.431k(1.3)(1.0) = 0.560k


[[image:751.24.3.2.jpg|center|600px|thumb|<center>'''Fig. 40.8.15.4.1'''</center>]]
::''β<sub>E</sub>'' = 1.3 for lateral earth pressure for retaining walls.
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|'''Additional Information'''
|-
|AASHTO 5.5.5
|}


===== 751.40.8.15.4.1 Spread Footings =====
::''β<sub>E</sub>'' = 1.0 for vertical earth pressure.


'''Location of Resultant'''
::''ΣM<sub>OT</sub>'' = 12.567(ft−k)(1.3)(1.3) = 21.238(ft−k)


The resultant of the footing pressure must be within the section of the footing specified in the following table.
::''ΣM<sub>R</sub>'' = [54.556(ft−k) + 11.192(ft−k)](1.3)(1.0) = 85.472(ft−k)


{| border="1" class="wikitable" style="margin: 1em auto 1em auto"
::''ΣV'' = 11.417k(1.3)(1.0) = 14.842k
|+
! style="background:#BEBEBE" |When Retaining Wall is Built on: !! style="background:#BEBEBE"|AASHTO Group Loads I-VI !! style="background:#BEBEBE"|For Seismic Loads
|-
|  align="center" |Soil<sup>a</sup> || align="center"|Middle 1/3||  align="center"|Middle 1/2 <sup>b</sup>
|-
|  align="center"|Rock<sup>c</sup> || align="center"|Middle 1/2||align="center"|Middle 2/3
|-
|colspan="3"|<sup>'''a'''</sup> Soil is defined as clay, clay and boulders, cemented gravel, soft shale, etc. with allowable bearing values less than 6 tons/sq. ft.
|-
|colspan="3"|<sup>'''b'''</sup> MoDOT is more conservative than AASHTO in this requirement.
|-
|colspan="3"|<sup>'''c'''</sup> Rock is defined as rock or hard shale with allowable bearing values of 6 tons/sq. ft. or more.
|}


Note: The location of the resultant is not critical when considering collision loads.
:<math>\bar{x} = \frac{85.472(ft-k) - 21.238(ft-k)}{14.842k}</math> = 4.328 ft.


'''Factor of Safety Against Overturning'''
:''e'' = (9.5 ft./2) − 4.328 ft. = 0.422 ft.
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|'''Additional Information'''
|-
|AASHTO 5.5.5
|}


AASHTO Group Loads I - VI:
:<math>P_H = \frac{14.842k}{(1 ft.)(9.5 ft.)} \Big[1 - \frac{6(0.422 ft.)}{9.5 ft.}\Big]</math> = 1.146k/ft<sup>2</sup>
* F.S. for overturning ≥ 2.0 for footings on soil.
* F.S. for overturning ≥ 1.5 for footings on rock.


For seismic loading, F.S. for overturning may be reduced to 75% of the value for AASHTO Group Loads I - VI. For seismic loading:
:<math>P_T = \frac{14.842k}{(1 ft.)(9.5 ft.)} \Big[1 + \frac{6(0.422 ft.)}{9.5 ft.}\Big]</math> = 1.979k/ft<sup>2</sup>
* F.S. for overturning ≥ (0.75)(2.0) = 1.5 for footings on soil.
* F.S. for overturning ≥ (0.75)(1.5) = 1.125 for footings on rock.


For collision forces:
:<math>P =\Bigg[\frac{1.979 \frac{k}{ft.} - 1.146 \frac{k}{ft.}}{9.5 ft.}\Bigg](7.583 ft.) + 1.146\frac{k}{ft.}</math> = 1.811k/ft.
* F.S. for overturning ≥ 1.2.


'''Factor of Safety Against Sliding'''
:<math>M_u = 1.811\frac{k}{ft.}\frac{(1.917 ft.)^2}{2} + \frac{1}{2}(1.917 ft.)^2\Big[1.979\frac{k}{ft.} - 1.811\frac{k}{ft.}\Big]\frac{2}{3} - 0.560k(0.958 ft.)</math>
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|'''Additional Information'''
|-
|AASHTO 5.5.5
|}


Only spread footings on soil need be checked for sliding because spread footings on rock or shale are embedded into the rock.
:''M<sub>u</sub>'' = 2.997(ft−k)
* F.S. for sliding ≥ 1.5 for AASHTO Group Loads I - VI.
* F.S. for sliding ≥ (0.75)(1.5) = 1.125 for seismic loads.
* F.S. for sliding ≥ 1.2 for collision forces.


The resistance to sliding may be increased by:
:'''With Earthquake'''
* adding a shear key that projects into the soil below the footing.
* widening the footing to increase the weight and therefore increase the frictional resistance to sliding.


'''Passive Resistance of Soil to Lateral Load'''
:''P<sub>H</sub>'' = 1.139 k/ft


The Rankine formula for passive pressure can be used to determine the passive resistance of soil to the lateral force on the wall. This passive pressure is developed at shear keys in retaining walls and at end abutments.
:''P<sub>T</sub>'' = 1.411 k/ft
 
:<math>P = \Bigg[\frac{1.411\frac{k}{ft.} - 1.139\frac{k}{ft.}}{9.5 ft.}\Bigg](7.583 ft.) + 1.139\frac{k}{ft.}</math> = 1.356 k/ft
 
:<math>M_u = 1.356\frac{k}{ft.}\frac{(1.917 ft.)^2}{2} + \frac{1}{2}(1.917 ft.)^2 \Bigg[1.411\frac{k}{ft.} - 1.356\frac{k}{ft.}\Bigg]\frac{2}{3} - 0.431k (0.958 ft.)</math>
 
:''M<sub>u</sub>'' = 2.146(ft−k)


{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
:The moment without earthquake controls.
|-
|'''Additional Information'''
|-
|AASHTO 5.5.5A
|}


The passive pressure against the front face of the wall and the footing of a retaining wall is loosely compacted and should be neglected when considering sliding.
:<math>R_n = \frac{2.997(ft-k)}{0.9(1 ft.)(14.0 in.)^2}(1000\frac{lb}{k})</math> = 16.990 psi


Rankine Formula: <math>P_p = \frac{1}{2}C_p\gamma_s[H^2-H_1^2]</math> where thefollowing variables are defined in the figure below
:''ρ'' = <math>\frac{0.85(3000 psi)}{60,000 psi}\Bigg[1 - \sqrt{1 - \frac{2(16.990 psi)}{0.85(3000psi)}}\Bigg]</math> = 0.000284
:
:''C<sub>p</sub>'' = <math>\tan \big( 45^\circ + \frac{\phi}{2}\big)</math>


:''y<sub>1</sub> = <math>\frac{H_1y_2^2 + \frac{2}{3}y_2^3}{H^2 - H_1^2}</math>
:''ρ<sub>min</sub>'' = <math>1.7\Big[\frac{18 in.}{14.0 in.}\Big]^2 \frac{\sqrt{3,000 psi}}{60,000 psi}</math> = 0.00257


:''P<sub>p</sub>'' = passive force at shear key in pounds per foot of wall length
:Use ''ρ'' = 4/3 ''ρ'' = <math>\frac{4}{3}(0.000284)</math> = 0.000379


:''C<sub>p</sub>'' = coefficient of passive earth pressure
:''A<sub>S<sub>Req</sub></sub>'' = 0.000379 (12 in.)(14.0 in.) = 0.064 in.<sup>2</sup>/ft.


:<math>\boldsymbol{\gamma_s}</math> = unit weight of soil


:''H'' = height of the front face fill less than 1 ft. min. for erosion
:<math>\frac{12 in.}{0.064 in.^2} = \frac{s}{0.196 in.^2}</math>


:''H<sub>1</sub>'' = H minus depth of shear key
:''s'' = 36.8 in.


:''y<sub>1</sub>'' = location of ''P<sub>p</sub>'' from bottom of footing
:Minimum is # 4 bars at 12 inches. These will be the same bars that are in the back of the stem. Use the smaller of the two spacings.


:<math>\boldsymbol{\phi}</math> = angle of internal friction of soil
:<u>Use # 4's @ 10" cts.</u>


[[image:751.24.3.2.1 passive.jpg|center|500px]]
:'''Check Shear'''
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|'''Additional Information'''
|-
|AASHTO 5.5.2
|}
The resistance due to passive pressure in front of the shear key shall be neglected unless the key extends below the depth of frost penetration.
{|style="padding: 0.3em; margin-right:7px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="left"
|-
|'''Additional Information'''
|-
|[http://sp/sites/cm/Pages/default.aspx MoDOT Materials Division]
|}


Frost line is set at 36 in. at the north border of Missouri and at 18 in. at the south border.
:Shear shall be checked at a distance "d" from the face of the stem.


'''Passive Pressure During Seismic Loading'''
::'''Without Earthquake'''


During an earthquake, the passive resistance of soil to lateral loads is slightly decreased. The Mononobe-Okabe static method is used to determine the equivalent fluid pressure.
::<math>P_d =\Bigg[\frac{1.979\frac{k}{ft.} - 1.146\frac{k}{ft.}}{9.5 ft.}\Bigg](8.750 ft.) + 1.146\frac{k}{ft.}</math> = 1.913k/ft.


:''P<sub>PE</sub>'' = equivalent passive earth pressure during an earthquake
::<math>V_u =\frac{1.979\frac{k}{ft.} + 1.913\frac{k}{ft.}}{2}(0.750 ft.) - 1.3\Big[0.225\frac{k}{ft.}\Big](0.750 ft.)</math> = 1.240k
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|'''Additional Information'''
|-
|1992 AASHTO Div. IA Eqns. C6-5 and C6-6
|}
:<math>P_{PE} = \frac{1}{2}\gamma_sH^2(1 - k_v)K_{PE}</math> where:


:''K<sub>PE</sub>'' = seismic passive pressure coefficient
::'''With Earthquake'''


:<math>K_{PE} = \frac{\cos^2(\phi - \theta - \beta)}{\cos\theta\cos^2\beta\cos(\delta + \beta + \theta)\Bigg[1 + \sqrt{\frac{\sin(\phi + \delta)\sin(\phi - \theta - i)}{\cos(\delta + \beta + \theta)\cos(i - \beta)}}\Bigg]^2}</math>
::<math>P_d =\Bigg[\frac{1.411\frac{k}{ft.} - 1.139\frac{k}{ft.}}{9.5 ft.}\Bigg](8.750 ft.) + 1.139\frac{k}{ft.}</math> = 1390k/ft.


::<math>\boldsymbol{\gamma}_s</math> = unit weight of soil
::<math>V_u =\frac{1.411\frac{k}{ft.} + 1.139\frac{k}{ft.}}{2}(0.750 ft.) - \Big[0.225\frac{k}{ft.}\Big](0.750 ft.)</math> = 0.788k


:''H'' = height of soil at the location where the earth pressure is to be found
:Shear without earthquake controls.


:''k<sub>V</sub>'' = vertical acceleration coefficient
:<math>\frac{\nu_u}{\phi} = \frac{1.240k}{0.85(12 in.)(14.0 in.)}(1000\frac{lb}{k} ) = 8.7 psi < 2\sqrt{3000 psi}</math> = 109.5 psi <u>o.k.</u>


:<math>\boldsymbol{\phi}</math> = angle of internal friction of soil
'''Reinforcement-Shear Key'''


:<math>\boldsymbol{\theta} =  arctan \big[\frac{k_h}{1 - k_V}\big]</math>
[[image:751.24.3.3 shear key.jpg|center|250px]]


:''k<sub>H</sub>'' = horizontal acceleration coefficient
The passive pressure is higher without earthquake loads.


:<math>\boldsymbol{\beta}</math> = slope of soil face in degrees
''γ'' = 1.3


:''i'' = backfill slope angle in degrees
''β<sub>E</sub>'' = 1.3 (lateral earth pressure)


:<math>\boldsymbol{\delta}</math> = angle of friction between soil and wall
d = 12"-3"-(1/2)(0.5") = 8.75"


'''Special Soil Conditions'''
b = 12"


Due to creep, some soft clay soils have no passive resistance under a continuing load. Removal of undesirable material and replacement with suitable material such as sand or crushed stone is necessary in such cases. Generally, this condition is indicated by a void ratio above 0.9, an angle of internal friction (<math>\boldsymbol{\phi}</math>) less than 22°, or a soil shear less than 0.8 ksf. Soil shear is determined from a standard penetration test.
''M<sub>u</sub> = (3.379k)(1.360 ft.)(1.3)(1.3) = 7.764(ft−k)


:Soil Shear <math>\Big(\frac{k}{ft^2}\Big) = \frac{blows \ per\ 12\ in.}{10}</math>
<math>R_n = \frac{7.764(ft-k)}{0.9(1 ft.)(8.75 in.)^2} (1000\frac{lb}{k})</math> = 112.677 psi


'''Friction'''
''ρ'' = <math>\frac{0.85(3000 psi)}{60,000 psi}\Bigg[1 - \sqrt{1 - \frac{2(112.677 psi)}{0.85(3000psi)}}\Bigg]</math> = 0.00192


In the absence of tests, the total shearing resistance to lateral loads between the footing and a soil that derives most of its strength from internal friction may be taken as the normal force times a coefficient of friction. If the plane at
''ρ<sub>min</sub> = <math>1.7\Big[\frac{12 in.}{8.75 in.}\Big]^2 \frac{\sqrt{3000 psi}}{60,000 psi}</math> = 0.00292
which frictional resistance is evaluated is not below the frost line then this resistance must be neglected.


[[image:751.24.3.2.1 friction 2016.jpg|center|450px|thumb|<center>'''When A Shear Key Is Not Used'''</center>]]
Use ''ρ'' = 4/3 ''ρ'' = 4/3 (0.00192) = 0.00256
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|'''Additional Information'''
|-
|AASHTO 5.5.2B
|}


Sliding is resisted by the friction force developed at the interface between the soil and the concrete footing along the failure plane. The coefficient of friction for soil against concrete can be taken from the table below. If soil data
A<sub>S<sub>Req</sub></sub> = 0.00256(12 in.)(8.75 in.) = 0.269 in.<sup>2</sup>/ft.
is not readily available or is inconsistent, the friction factor (f) can be taken as


: ''f'' =<math>tan \Big(\frac{2\phi}{3}\Big)</math> where <math>\boldsymbol{\phi}</math> is the angle of internal friction of the soil (''Civil Engineering Reference Manual'' by Michael R. Lindeburg, 6th ed., 1992).


{| border="1" class="wikitable" style="margin: 1em auto 1em auto"
<u>Use # 4 @ 8.5 in cts.</u>
|+
!style="background:#BEBEBE" colspan="2"|Coefficient of Friction Values for Soil Against Concrete
|-
! style="background:#BEBEBE" |Soil Type<sup>a</sup> !! style="background:#BEBEBE"|Coefficient of Friction
|-
|  align="center" |coarse-grained soil without silt || align="center"|0.55
|-
|  align="center"|coarse-grained soil with silt  || align="center"|0.45
|-
|align="center"|silt (only)||  align="center"|0.35
|-
|align="center"|clay||  align="center"|0.30<sup>b</sup>
|-
|colspan="2"|<sup>'''a'''</sup> It is not necessary to check rock or shale for sliding due to embedment.
|-
|colspan="2"|<sup>'''b'''</sup> Caution should be used with soils with <math>\boldsymbol{\phi}</math> < 22° or soil shear < 0.8 k/sq.ft. (soft clay soils). Removal and replacement of such soil with suitable material should be considered.
|}


[[image:751.24.3.2.1 soil and soil.jpg|center|450px|thumb|<center>'''When A Shear Key Is Used'''</center>]]
Check Shear


When a shear key is used, the failure plane is located at the bottom of the shear key in the front half of the footing. The friction force resisting sliding in front of the shear key is provided at the interface between the stationary layer of soil and the moving layer of soil, thus the friction angle is the internal angle of friction of the soil (soil against soil). The friction force resisting sliding on the rest of the footing is of that between the concrete and soil. Theoretically
:<math>\frac{\nu_u}{\phi} = \frac{1.3(3.379k)(1.3)}{0.85(12 in.)(8.75.)}(1000\frac{lb}{k} ) = 64.0 psi < 2\sqrt{3000 psi}</math> = 109.5 psi <u>o.k.</u>
the bearing pressure distribution should be used to determine how much normal load exists on each surface, however it is reasonable to assume a constant distribution. Thus the normal load to each surface can be divided out between the two surfaces based on the fractional length of each and the total frictional force will be the sum of the normal load on each surface
multiplied by the corresponding friction factor.


'''Bearing Pressure'''
'''Reinforcement Summary'''
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|'''Additional Information'''
|-
|AASHTO 4.4.7.1.2 & 4.4.8.1.3
|}


:'''Group Loads I - VI'''
[[Image:751.24.3.3 summary.jpg|500px|center]]


:The bearing capacity failure factor of safety for Group Loads I - VI must be greater than or equal to 3.0. This factor of safety is figured into the allowable bearing pressure given on the "Design Layout Sheet".
==== 751.40.8.15.6 Example 2: L-Shaped Cantilever Wall ====


:The bearing pressure on the supporting soil shall not be greater than the allowable bearing pressure given on the "Design Layout Sheet".
[[image:751.24.3.4.jpg|center|650px|thumb|<center>'''Typical Section thru Wall</center><center>(Spread Footing)</center>''']]


:'''Seismic Loads'''
''f'<sub>c</sub>'' = 4000 psi
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|'''Additional Information'''
|-
|AASHTO Div. IA 6.3.1(B) and AASHTO 5.5.6.2
|}


:When seismic loads are considered, AASHTO allows the ultimate bearing capacity to be used. The ultimate capacity of the foundation soil can be conservatively estimated as 2.0 times the allowable bearing pressure given on the "Design Layout".
''f<sub>y</sub>'' = 60,000 psi


:'''Stem Design'''
''φ'' = 29°
:The vertical stem (the wall portion) of a cantilever retaining wall shall be designed as a cantilever supported at the base.


:'''Footing Design'''
''γ<sub>s</sub> = 120 pcf
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|'''Additional Information'''
|-
|AASHTO 5.5.6.1
|}


::'''Toe'''
Allowable soil pressure = 1.5 tsf = 3.0 ksf


::The toe of the base slab of a cantilever wall shall be designed as a cantilever supported by the wall. The critical section for bending moments shall be taken at the front face of the stem. The critical section for shear shall be taken at a distance d (d = effective depth) from the front face of the stem.
Retaining wall is located in Seismic Performance Category (SPC) A.


::'''Heel'''
<math>\delta = tan^{-1}\frac{1}{2.5}</math> = 21.801°


::The rear projection (heel) of the base slab shall be designed to support the entire weight of the superimposed materials, unless a more exact method is used. The heel shall be designed as a cantilever supported by the wall. The critical section for bending moments and shear shall be taken at the back face of the stem.
<math>C_a = cos \delta\Bigg[\frac{cos \delta - \sqrt{cos^2\delta - cos^2\phi}}{cos \delta + \sqrt{cos^2\delta - cos^2\phi}}\Bigg]</math> = 0.462


:'''Shear Key Design'''
<math>C_p = tan^2\Big[45 + \frac{\phi}{2}\Big]</math> = 2.882


:The shear key shall be designed as a cantilever supported at the bottom of the footing.
''P<sub>A</sub>'' = 1/2 ''γ<sub>s</sub>'' C<sub>a</sub>H<sup>2</sup> = 1/2 (0.120 k/ft<sup>3</sup>)(0.462)(4.958 ft.)<sup>2</sup> = 0.681k


===== 751.40.8.15.4.2 Pile Footings =====
For sliding, P<sub>P</sub> is assumed to act only on the portion of key below the frost line that is set at an 18 in. depth on the southern border.


Footings shall be cast on piles when specified on the "Design Layout Sheet". If the horizontal force against the retaining wall cannot otherwise be resisted, some of the piles shall be driven on a batter.
''P<sub>P</sub>'' = 1/2 (0.120 k/ft<sup>3</sup>)(2.882)[(2.458 ft.)<sup>2</sup> − (1.500 ft.)<sup>2</sup>] = 0.656k


:'''Pile Arrangement'''
'''Assumptions'''


:For retaining walls subject to moderate horizontal loads (walls 15 to 20 ft. tall), the following layout is suggested.
* Design is for a unit length (1 ft.) of wall.


[[image:751.24.3.2.2 batter piles.jpg|center|300px|thumb|<center>'''Section'''</center>]]
* Sum moments about the toe at the bottom of the footing for overturning.


[[image:751.24.3.2.2 plan 2016.jpg|center|450px|thumb|<center>'''Plan'''</center>]]
* F.S. for overturning ≥ 2.0 for footings on soil.


:For higher walls and more extreme conditions of loading, it may be necessary to:
* F.S. for sliding ≥ 1.5 for footings on soil.


:* use the same number of piles along all rows
* Resultant of dead load and earth pressure to be in back half of the middle third of the footing if subjected to frost heave.


:* use three rows of piles
* For all loading combinations the resultant must be in the middle third of the footing except for collision loads.


:* provide batter piles in more than one row
* The top 12 in. of the soil is not neglected in determining the passive pressure because the soil there will be maintained.


::'''Loading Combinations for Stability and Bearing'''
* Frost line is set at 18 in. at the south border for Missouri.


::The following table gives the loading combinations to be checked for stability and pile loads. These abbreviations are used in the table:
* Portions of shear key which are above the frost line are assumed not to resist sliding by passive pressure.


:::DL = dead load weight of the wall elements
* Use of a shear key shifts the failure plane to "B" where resistance to sliding is also provided by friction of soil along the failure plane in front of the shear key. Friction between the soil and concrete behind the shear key will be neglected.


:::SUR = two feet of live load surcharge
* Soil cohesion along the failure plane is neglected.


:::E = earth weight
* Live loads can move to within 1 ft. of the stem face and 1 ft. from the toe.


:::EP = equivalent fluid earth pressure
* The wall is designed as a cantilever supported by the footing.


:::COL = collision force
* Footing is designed as a cantilever supported by the wall. Critical sections for bending and shear will be taken at the face of the wall.
 
* Load factors for AASHTO Groups I-VI for design of concrete are:
 
::*''γ'' = 1.3.
 
::*''β<sub>E</sub>'' = 1.3 for horizontal earth pressure on retaining walls.
 
::*''β<sub>E</sub>'' = 1.0 for vertical earth pressure.
 
::*''β<sub>LL</sub>'' = 1.67 for live loads and collision loads.


:::EQ = earthquake inertial force of failure wedge
'''Dead Load and Earth Pressure - Stabilty and Pressure Checks'''


{| border="1" class="wikitable" style="margin: 1em auto 1em auto"
{| border="1" class="wikitable" style="margin: 1em auto 1em auto"
|+  
|+  
!style="background:#BEBEBE" rowspan="2"|Loading Case !!style="background:#BEBEBE" rowspan="2"|Vertical Loads !!style="background:#BEBEBE" rowspan="2"|Horizontal Loads !!style="background:#BEBEBE" rowspan="2"|Overturning Factor of Safety !!style="background:#BEBEBE" colspan="2"|Sliding Factor of Safety
|-
|-
!style="background:#BEBEBE" |Battered Toe Piles !!style="background:#BEBEBE" |Vertical Toe Piles
!colspan="4" style="background:#BEBEBE" |Dead Load and Earth Pressure - Stabilty and Pressure Checks
|-
!style="background:#BEBEBE" |Load !!style="background:#BEBEBE" |Force (k) !!style="background:#BEBEBE" |Arm (in.) !!style="background:#BEBEBE"|Moment (ft-k)
|-
|align="center"|(1)||align="center"| (0.833 ft.)(5.167 ft.)(0.150k/ft<sup>3</sup>) = 0.646||align="center"| 5.333||align="center"| 3.444
|-
|align="center"|(2)||align="center"| (0.958ft)(5.750ft)(0.150k/ft3) = 0.827||align="center"| 2.875||align="center"| 2.376
|-
|-
|align="center"|I<sup>a</sup>||align="center"| DL+SUR+E ||align="center"|EP+SUR||align="center"| 1.5||align="center"| 1.5||align="center"|2.0
|align="center"| (3)||align="center"| (1.000ft)(1.500ft)(0.150k/ft3) = 0.22534.259||align="center"| 4.250 ||align="center"| 0.956
|-
|-
|align="center"|II||align="center"| DL+SUR+E ||align="center"|EP+SUR+COL||align="center"| 1.2|| align="center"|1.2||align="center"| 1.2
|align="center" colspan="3"|ΣV = 1.698 ||align="center"| ΣM<sub>R</sub> = 6.776
|-
|-
|align="center"|III||align="center"| DL+E||align="center"| EP||align="center"| 1.5||align="center"| 1.5||align="center"| 2.0
|align="center"| P<sub>AV</sub>||align="center"| 0.253 ||align="center"| 5.750 ||align="center"| 1.455
|-
|-
|align="center"|IV<sup>b</sup>||align="center"| DL+E ||align="center"|None||align="center"| -||align="center"| -||align="center"| -
|align="center" colspan="3"| ΣV = 1.951||align="center"| ΣM<sub>R</sub> = 8.231
|-
|-
|align="center"|V<sup>c</sup>||align="center"| DL+E||align="center"| EP+EQ||align="center"| 1.125||align="center"| 1.125||align="center"| 1.5
|align="center"| P<sub>AH</sub> ||align="center"| 0.633 ||align="center"| 1.653 ||align="center"| 1.045
|-
|-
|colspan="6"|<sup>'''a'''</sup> Load Case I should be checked with and without the vertical surcharge.
|align="center"| P<sub>P</sub>||align="center"|  0.656 ||align="center"| 1.06<sup>1</sup>||align="center"| -
|-
|-
|colspan="6"|<sup>'''b'''</sup> A 25% overstress is allowed on the heel pile in Load Case IV.
|colspan="4" align="right"|ΣM<sub>OT</sub> = 1.045
|-
|-
|colspan="6"|<sup>'''c'''</sup> The factors of safety for earthquake loading are 75% of that used in Load Case III. Battered piles are not recommended for use in seismic performance categories B, C, and D. Seismic design of retaining walls is not required in SPC A and B. Retaining walls in SPC B located under a bridge abutment shall be designed to AASHTO Specifications for SPC B.
|colspan="4"|<sup>'''1'''</sup> The passive pressure at the shear key is ignored in overturning checks.
|}
|}


::'''Pile Properties and Capacities'''
:'''Overturning'''


::For Load Cases I-IV in the table above, the allowable compressive pile force may be taken from the pile capacity table in the Piling Section of the Bridge Manual which is based in part on AASHTO 4.5.7.3. Alternatively, the allowable compressive pile capacity of a friction pile may be determined from the ultimate frictional and bearing capacity between the soil and pile divided by a safety factor of 3.5 (AASHTO Table 4.5.6.2.A). The maximum amount of tension allowed on a heel pile is 3 tons.
:<math>F.S. = \frac{\Sigma M_R}{\Sigma M_{OT}} = \frac{8.231(ft-k)}{1.045(ft-k)}</math> = 7.877 ≥ 2.0 <u>o.k.</u>


::For Load Case V in the table above, the allowable compressive pile force may be taken from the pile capacity table in the Piling Section of the Bridge Manual multiplied by the appropriate factor (2.0 for steel bearing piles, 1.5 for friction piles). Alternatively, the allowable compressive pile capacity of a friction pile may be determined from the ultimate frictional and bearing capacity between the soil and pile divided by a safety factor of 2.0. The allowable tension force on a bearing or friction pile will be equal to the ultimate friction capacity between the soil and pile divided by a safety factor of 2.0.
:'''Location of Resultant'''


::To calculate the ultimate compressive or tensile capacity between the soil and pile requires the boring data which includes the SPT blow counts, the friction angle, the water level, and the soil layer descriptions.
:MoDOT policy is that the resultant must be in the back half of the middle third of the footing when considering dead and earth loads:


::Assume the vertical load carried by battered piles is the same as it would be if the pile were vertical. The properties of piles may be found in the Piling Section of the Bridge Manual.
:<math>\Bigg[\frac{5.750 ft.}{2} = 2.875 ft.\Bigg] \le \bar{x} \le \Bigg[\Bigg(\frac{5.750 ft.}{2} + \frac{5.750 ft.}{6}\Bigg) = 3.833 ft.\Bigg] </math>


:::'''Neutral Axis of Pile Group'''
:<math>\bar{x} = \frac{M_{NET}}{\Sigma V} = \frac{8.231(ft-k) - 1.045(ft-k)}{1.951k}</math> = 3.683 ft. <u>o.k.</u>


:::Locate the neutral axis of the pile group in the repetitive strip from the toe of the footing at the bottom of the footing.
:'''Sliding'''


:::'''Moment of Inertia of Pile Group'''
:<math>F.S. = \frac{P_P + \Sigma V \Bigg[\Big(\frac{L_2}{L_1}\Big)tan\phi_{s-s} + \Big(\frac{L_3}{L_1}\Big)tan\phi_{s-c}\Bigg]}{P_{AH}}</math>


:::The moment of inertia of the pile group in the repetitive strip about the neutral axis of the section may be determined using the parallel axis theorem:
:where:  
::''φ<sub>s-s</sub>'' = angle of internal friction of soil


::::I = Σ(I<sub>A</sub>) + Σ(Ad<sup>2</sup>) where :
::''φ<sub>s-c</sub>'' = angle of friction between soil and concrete = (2/3)''φ<sub>s-s</sub>''


::::''I<sub>A</sub>'' = moment of inertia of a pile about its neutral axis
:<math>F.S. = \frac{0.656k +(1.951k)\Big[\Big(\frac{3.75 ft.}{5.75 ft.}\Big)tan 29^\circ + \Big(\frac{1 ft.}{5.75 ft.}\Big) tan\Big(\frac{2}{3}(29^\circ)\Big)\Big]}{0.633 k}</math> = 2.339 ≥ 1.5 <u>o.k.</u>


::::''A'' = area of a pile
:'''Footing Pressure'''


::::''d'' = distance from a pile's neutral axis to pile group's neutral axis
:<math>P = \frac{\Sigma V}{bL} \Big[1 \pm \frac{6e}{L}\Big]</math>


:::''I<sub>A</sub>'' may be neglected so the equation reduces to:
:<math>e = \bar{x} - \frac{L}{2} = 3.683 ft. - \frac{5.75 ft.}{2}</math> = 0.808 ft.


::::''I'' = Σ(Ad<sup>2</sup>)
:Heel: <math>P_H = \frac{1.951k}{(1 ft.)(5.75 ft.)}\Big[1 + \frac{6(0.808 ft.)}{5.75 ft.}\Big]</math> = 0.625 ksf < 3.0 ksf <u>o.k.</u>


::'''Resistance To Sliding'''
:Toe: <math>P_T = \frac{1.951k}{(1 ft.)(5.75 ft.)}\Big[1 - \frac{6(0.808 ft.)}{5.75 ft.}\Big]</math> = 0.053 ksf < 3.0 ksf <u>o.k.</u>


::Any frictional resistance to sliding shall be ignored, such as would occur between the bottom of the footing and the soil on a spread footing.
'''Dead Load, Earth Pressure, and Live Load - Stability and Pressure Checks'''


::'''Friction or Bearing Piles With Batter (Case 1)'''
Stability is not an issue because the live load resists overturning and increases the sliding friction force.


::Retaining walls using friction or bearing piles with batter should develop lateral strength (resistance to sliding) first from the batter component of the pile and second from the passive pressure against the shear key and the piles.
[[image:751.24.3.4 checks.jpg|center|250px]]


::'''Friction or Bearing Piles Without Batter (Case 2)'''
The live load will be distributed as:


::Retaining walls using friction or bearing piles without batter due to site constrictions should develop lateral strength first from the passive pressure against the shear key and second from the passive pressure against the pile below the bottom of footing. In this case, the shear key shall be placed at the front face of the footing.
<math> F_{LL} = \frac{LL_{WL}}{E}</math>


::'''Concrete Pedestal Piles or Drilled Shafts (Case 3)'''
:where E = 0.8X + 3.75


::Retaining walls using concrete pedestal piles should develop lateral strength first from passive pressure against the shear key and second from passive pressure against the pile below the bottom of the footing. In this case, the shear key shall be placed at the front of the footing. Do not batter concrete pedestal piles.
::X = distance in feet from the load to the front face of wall


[[image:751.24.3.2.2 cases.jpg|center|450px]]
The live load will be positioned as shown by the dashed lines above. The bearing pressure and resultant location will be determined for these two positions.


::'''Resistance Due to Passive Pressure Against Pile'''
:'''Live Load 1 ft From Stem Face'''


::The procedure below may be used to determine the passive pressure resistance developed in the soil against the piles. The procedure assumes that the piles develop a local failure plane.
::'''Resultant Eccentricity'''


:::''F'' = the lateral force due to passive pressure on pile
::X = 1 ft.


:::<math>F = \frac{1}{2}\gamma_s C_P H^2 B </math> , where: <math> C_P = tan^2\Big[45 + \frac{\phi}{2}\Big]</math>
::E = 0.8(1 ft.) + 3.75 = 4.55 ft.


:::<math>\boldsymbol{\gamma_s}</math> = unit weight of soil
::<math>F_{LL} = \frac{16k}{4.55 ft.} (1 ft.)</math> = 3.516k


:::''H'' = depth of pile considered for lateral resistance (H<sub>max</sub>= 6B)
::<math>\bar{x} = \frac{M_{NET}}{\Sigma V} = \frac{8.231(ft-k) + (3.516k)(3.917 ft.) - 1.045(ft-k)}{1.951k + 3.516k}</math> = 3.834 ft.


:::''C<sub>P</sub>'' = coefficient of active earth pressure
::<math>e = \bar{x} - \frac{L}{2} = 3.834 ft. - \frac{5.75 ft.}{2} = 0.959 ft. \le \frac{L}{6}</math> = 5.75 ft. <u>o.k.</u>


:::''B'' = width of pile
::'''Footing Pressure'''


:::<math>\boldsymbol{\phi}</math> = angle of internal friction of soil
::<math>P = \frac{\Sigma V}{bL} \Big[1 \pm \frac{6e}{L}\Big]</math>


[[image:751.24.3.2.2 resistance passive.jpg|center|450px]]
::Allowable Pressure = 3.0 ksf


::'''Resistance Due to Pile Batter'''
::Heel: <math>P_H = \frac{5.467k}{(1 ft.)(5.75 ft.)}\Big[1 + \frac{6(0.959 ft.)}{5.75 ft.}\Big]</math> = 1.902 ksf


::Use the horizontal component (due to pile batter) of the allowable pile load as the lateral resistance of the battered pile. (This presupposes that sufficient lateral movement of the wall can take place before failure to develop the ultimate strength of both elements.)
::Toe: <math>P_T = \frac{5.467k}{(1 ft.)(5.75 ft.)}\Big[1 - \frac{6(0.959 ft.)}{5.75 ft.}\Big]</math> = 0.000ksf


[[image:751.24.3.2.2 12.jpg|center|125px]]
:'''Live Load 1 ft From Toe'''


:::''b'' = the amount of batter per 12 inches.
::'''Resultant Eccentricity'''


:::<math> c = \sqrt{(12 in.)^2 + b^2}</math>
::X = 3.917 ft.


:::<math>P_{HBatter} = P_T \Big(\frac{b}{c}\Big)</math> (# of battered piles) where:
::E = 0.8(3.917 ft.) + 3.75 = 6.883 ft.


:::''P<sub>HBatter</sub>'' = the horizontal force due to the battered piles
::<math>F_{LL} = \frac{16k}{6.883 ft} (1 ft.)</math> = 2.324k


:::''P<sub>T</sub>'' = the allowable pile load
::<math>x = \frac{8.231(ft-k) + (2.324k)(1ft.) - 1.045(ft-k)}{1.951k + 2.324k}</math> = 2.225 ft.


::Maximum batter is 4" per 12".
::<math>e = \frac{L}{2} - \bar{x} = \frac{5.75 ft.}{2} - 2.225 ft. = 0.650 ft. \le \frac{L}{6} = \frac{5.75 ft.}{6}</math> = 0.958 ft. <u>o.k.</u>


::'''Resistance Due to Shear Keys'''
::'''Footing Pressure'''


::A shear key may be needed if the passive pressure against the piles and the horizontal force due to batter is not sufficient to attain the factor of safety against sliding. The passive pressure against the shear key on a pile footing is found in the same manner as for spread footings.
::Allowable Pressure = 3.0ksf


::'''Resistance to Overturning'''
::Heel: <math>P_H = \frac{4.275k}{(1 ft.)(5.75 ft.}\Big[1 - \frac{6 (0.650 ft.)}{5.75 ft.}\Big]</math> = 0.239ksf <u>o.k.</u>


::The resisting and overturning moments shall be computed at the centerline of the toe pile at a distance of 6B (where B is the width of the pile) below the bottom of the footing. A maximum of 3 tons of tension on each heel pile may be assumed to resist overturning. Any effects of passive pressure, either on the shear key or on the piles, which resist overturning, shall be ignored.
::Toe: <math>P_T = \frac{4.275k}{(1 ft.)(5.75 ft.}\Big[1 + \frac{6 (0.650 ft.)}{5.75 ft.}\Big]</math> = 1.248ksf <u>o.k.</u>


[[image:751.24.3.2.2 resistance overturning.jpg|center|450px]]
'''Dead Load, Earth Pressure, Collision Load, and Live Load - Stability and Pressure Checks'''


::'''Pile Properties'''
During a collision, the live load will be close to the wall so check this combination when the live load is one foot from the face of the stem. Sliding (in either direction) will not be an issue. Stability about the heel should be checked although it is unlikely to be a problem. There are no criteria for the location of the resultant, so long as the footing pressure does not exceed 125% of the allowable. It is assumed that the distributed collision force will develop an equal and opposite force on the fillface of the back wall unless it exceeds the passive pressure that can be developed by soil behind the wall.


:::'''Location of Resultant'''
''F<sub>LL</sub>'' = 3.516k


:::The location of the resultant shall be evaluated at the bottom of the footing and can be determined by the equation below:
[[image:751.24.3.4 collision.jpg|center|250px]]


::::<math>e = \frac{\Sigma M}{\Sigma V}</math> where:
''F<sub>COLL</sub>'' = <math>\frac{10k}{2(3 ft.)}(1 ft.)</math> = 1.667k


::::e = the distance between the resultant and the neutral axis of the pile group
<math>C_P = cos \delta \Bigg[\frac{cos \delta + \sqrt{cos^2 \delta - cos^2 \phi}}{cos \delta - \sqrt{cos^2 \delta - cos^2 \phi}}\Bigg]</math> = 1.867


::::''ΣM'' = the sum of the moments taken about the neutral axis of the pile group at the bottom of the footing
<math>P_{PH} = \frac{1}{2}\gamma_s C_P H^2 cos\delta = \frac{1}{2}(0.120kcf)(1.867)(4.958ft)^2 cos(21.801^\circ)</math>


::::''ΣV'' = the sum of the vertical loads used in calculating the moment
''P<sub>PH</sub>'' = 2.556k > ''F<sub>COLL</sub>''  Thus the soil will develop an equal but opp. force.


:::'''Pile Loads'''
:'''Overturning About the Heel'''


:::The loads on the pile can be determined as follows:
:F.S. = <math>\frac{(0.646k)(0.417 ft.) + (0.827k)(2.875 ft.) + (0.225k)(1.500 ft.) + (3.516k)(1.833 ft.) + (1.667k)\big(\frac{4.958 ft.}{3}\big)}{(1.667k)(3.958 ft.)}</math>


::::<math>P = \frac{\Sigma V}{A} \pm \frac{Mc}{I}</math> where:
:F.S. = <math>\frac{12.184(ft-k)}{6.598(ft-k)}</math> = 1.847 ≥ 1.2 <u>o.k.</u>


:::::''P'' = the force on the pile
:'''Footing Pressure'''


:::::''A'' = the areas of all the piles being considered
:<math>\bar{x} = \frac{12.184(ft-k) - 6.598(ft-k)}{1.951k + 3.516k}</math> = 1.022 ft. from heel


:::::''M'' = the moment of the resultant about the neutral axis
:''e'' = <math>\frac{5.75 ft.}{2} - 1.022 ft.</math> = 1.853 ft.


:::::''c'' = distance from the neutral axis to the centerline of the pile being investigated
:Allowable Pressure = (1.25)(3.0ksf) = 3.75ksf


:::::''I'' = the moment of inertia of the pile group
:Heel: <math> P_H =\frac {2(\Sigma V)}{3b[\frac{L}{2} - e]} = \frac {2(5.467k)}{3(1 ft.)\big[\frac{5.75 ft.}{2} - 1.853 ft.\big]}</math> = 3.566ksf <u>o.k.</u>
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|'''Additional Information'''
|-
|AASHTO 5.5.6.2
|}


:::'''Stem Design'''
'''Stem Design-Steel in Rear Face'''


:::The vertical stem (the wall portion) of a cantilever retaining wall shall be designed as a cantilever supported at the base.
[[image:751.24.3.4 steel in rear face.jpg|center|250px]]


:::'''Footing Design'''
''γ'' = 1.3


::::'''Toe'''
''β<sub>E</sub>'' = 1.3 (active lateral earth pressure)
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|'''Additional Information'''
|-
|AASHTO 5.5.6.1
|}


::::The toe of the base slab of a cantilever wall shall be designed as a cantilever supported by the wall. The critical section for bending moments shall be taken at the front face of the stem. The critical section for shear shall be taken at a distance d (d = effective depth) from the front face of the stem.
d = 10 in. − 2 in. (0.5 in./2) = 7.75 in.


::::'''Heel'''
<math>P_{AH} = \frac{1}{2}\gamma_s C_a H^2 cos\delta = \frac{1}{2}\Bigg[0.120 \frac{k}{ft^3}\Bigg](0.462)(4 ft.)^2(1 ft.) cos 21.801^\circ</math>
::::The top reinforcement in the rear projection (heel) of the base slab shall be designed to support the entire weight of the superimposed materials plus any tension load in the heel piles (neglect compression loads in the pile), unless a more exact method is used. The bottom reinforcement in the heel of the base slab shall be designed to support the maximum compression load in the pile neglecting the weight of the superimposed materials. The heel shall be designed as a cantilever supported by the wall. The critical sections for bending moments and shear shall be taken at the back face of the stem.


:::'''Shear Key Design'''
''P<sub>AH</sub>'' = 0.412k
:::The shear key shall be designed as a cantilever supported at the bottom of the footing.


=====751.40.8.15.4.3 Counterfort Walls=====
''M<sub>u</sub>'' = (1.333 ft.)(0.412k)(1.3)(1.3) = 0.928(ft−k)


'''Assumptions:'''
<math>R_n = \frac{M_u}{\phi b d^2} = \frac{0.928(ft-k)}{(0.9)(1 ft.)(7.75 in.)^2}\Big(1000\frac{lb}{k}\Big)</math> = 17.160psi


(1) Stability
<math>\rho = \frac{0.85f_c}{f_y}\Bigg[1 - \sqrt{1 - \frac{2R_n}{0.85 f_c}}\Bigg]</math>
The external stability of a counterfort retaining wall shall be determined in the same manner as described for cantilever retaining walls. Therefore refer to previous pages for the criteria for location of resultant, factor of safety for sliding and bearing pressures.
(2) Stem
[[image:751.24.3.2.3 counterfort.jpg|center|800px]]


:<math>P = C_a \boldsymbol \gamma_s</math>
<math>\rho = \frac{4000 psi}{60,000 psi}\Bigg[1 - \sqrt{1 - \frac{2(17.160 psi)}{0.85 (4000psi)}}\Bigg]</math> = 0.000287


:where:
<math>\rho_{min} = 1.7 \Bigg[\frac{h}{d}\Bigg]^2 \frac{\sqrt{f_c}}{f_y}</math>
::''C<sub>a</sub>'' = coefficient of active earth pressure


::<math>\boldsymbol \gamma_s</math> = unit weigt of soil
<math>\rho_{min} = 1.7 \Bigg[\frac{10 in.}{7.75 in.}\Bigg]^2 \frac{\sqrt{4000 psi}}{60000 psi}</math> = 0.00298


Design the wall to support horizontal load from the earth pressure and the liveload surcharge (if applicable) as outlined on the previous pages and as designated in AASHTD Section 3.20, except that maximum horizontal loads shall be the calculated equivalent fluid pressure at 3/4  height of wall [(0.75 H)P] which shall be considered applied uniformly from the lower quarter point to the bottom of wall.
Use ''ρ'' = (4/3)ρ = (4/3)(0.000287) = 0.000382


In addition, vertical steel In the fill face of the bottom quarter of the wall shall be that required by the vertical cantilever wall with the equivalent fluid pressure of that (0.25 H) height.
<math>A_{S_{Req}} = \rho bd = 0.000382(12 in.)(7.75 in.) = 0.036 \frac{in^2}{ft.}</math>


Maximum concrete stress shall be assumed as the greater of the two thus obtained.
One #4 bar has A<sub>S</sub> = 0.196 in<sup>2</sup>, so the required minimum of one #4 bar every 12 in. controls.
The application of these horizontal pressures shall be as follows:
[[image:751.24.3.2.3 counterfort wall.jpg|center|800px|thumb|<center>'''Counterfort Wall Section'''</center> <center>Moments are to be determined by analysis as a continuous beam.  The counterforts are to be spaced so as to produce approximately equal positive and negative moments.</center>]]


(3) Counterfort
<u>Use #4's @ 12 in. (min)</u>
Counterforts shall be designed as T-beams, of which the wall is the flange and the counterfort is the stem.  For this reason the concrete stresses ane normally low and will not control.


For the design of reinforcing steel in the back of the counterfort, the effective d shall be the perpendicular distance from the front face of the wall (at point that moment is considered), to center of reinforcing steel.
(These bars are also the bars in the bottom of the footing so the smaller of the two required spacings will be used.)


[[image:751.24.3.2.3 moment.jpg|center|500px]]
:'''Check Shear'''


(4) Footing
:<math>\frac{\nu_u}{\phi} \le V_n</math>


The footing of the counterfort walls shall be designed as a continuous beam of spans equal to the distance between the counterforts.
:<math>\frac{\nu_u}{\phi} = \frac{(1.3)(1.3)(0.412k)}{0.85(12 in.)(7.75 in.)}(1000\frac{lb}{k})</math>  = 8.8 psi


The rear projection or heel shall be designed to support the entire weight of the superimposed materials, unless a more exact method is used. Refer to AASHTD Section 5.5.6.
:<math>\nu_c = 2 \sqrt{f'_c}</math>


Divide footing (transversely) into four (4) equal sections for design footing pressures.
:<math>\nu_c = 2 \sqrt{4, 000 psi}</math> = 126.5 psi > 8.8 psi <u>o.k.</u>


Counterfort walls on pile are very rare and are to be treated as special cases.  See Structural Project Manager.
'''Stem Design-Steel in Front Face (Collision Loads)'''


(5)  Sign-Board type walls
[[image:751.24.3.4 steel in front face.jpg|center|300px]]


The Sign-Board type of retaining walls are a special case of the counterfort retaining walls.  This type of wall is used where the soiI conditions are such that the footings must be placed a great distance below the finished ground line.  For this situation, the wall is discontinued approximately 12 in. below the finished ground line or below the frost line.


Due to the large depth of the counterforts, it may be more economical to use a smaller number of counterforts than would otherwise be used.
The soil pressure on the back of the stem becomes passive soil pressure during a collision, however this pressure is ignored for reinforcement design.
All design assumptions that apply to counterfort walls will apply to sign-board walls with the exception of the application of horizontal forces for the stem (or wall design), and the footing design which shall be as follows:


:'''Wall'''
''γ'' = 1.3


[[image:751.24.3.2.3 load.jpg|center|550px]]
''β<sub>LL</sub>'' = 1.67


:'''Footing'''
<math>d = 10 in. - 1.5 in. - 0.5 in. - \frac{0.5 in.}{2}</math> = 7.75 in.


:The individual footings shall be designed transversely as cantilevers supported by the wall. Refer to AASHTO Section 5.
<math>F_{COLL} = \frac{10k}{2L} = \frac{10k}{(2)(3 ft.)}</math> = 1.667 k/ft.


==== 751.40.8.15.5 Example 1:  Spread Footing Cantilever Wall ====
''M<sub>u</sub>'' = 1.667k/ft. (1 ft.)(3 ft.)(1.3)(1.67) = 10.855(ft−k)


[[image:751.24.3.3.jpg|center|750px|thumb|<Center>'''Typical Section thru Wall</center><center>(Spread Footing)</center>''']]
<math>R_n = \frac{10.855(ft-k)}{0.9(1 ft.)(7.75 in.)^2} (1000\frac{lb}{k})</math> = 200.809 psi


:f'<sub>c</sub> = 3,000 psi  
<math>\rho = \frac{0.85(4000 psi)}{60,000 psi}\Bigg[1 - \sqrt{1 - \frac{2(200.809 psi)}{0.85(4000psi)}}\Bigg]</math> = 0.00345
:f<sub>y</sub> = 60,000 psi  
:''φ'' = 24 in.
:''γ<sub>s</sub>'' = 120 pcf (unit wgt of soil)
:Allowable soil pressure = 2 tsf
:''γ<sub>c</sub>'' = 150 pcf (unit wgt of concr.)
:Retaining wall is located in Seismic Performance Category (SPC) B.
:A = 0.1 (A = seismic acceleration coefficient)


{| style="margin: 1em auto 1em auto"
<math>\rho_{min} = 1.7\Bigg[\frac{10 in.}{7.75 in.}\Bigg]^2 \frac{\sqrt{4000 psi}}{60,000 psi}</math> = 0.00298
|-
|<math>P_a = \frac{1}{2}\gamma_s C_a H^2</math>||width=50| ||<math>P_p = \frac{1}{2}\gamma_s C_p H_2^2 - H_1^2</math>
|}


'''Assumptions'''
<math>A_{S_{Req}} = 0.00345 (12 in.)(7.75 in.) = 0.321 \frac{in.^2}{ft.}</math>


* Retaining wall is under an abutment or in a location where failure of the wall may affect the structural integrity of a bridge. Therefore, it must be designed for SPC B.
One #4 bar has A<sub>S</sub> = 0.196 in<sup>2</sup>.


* Design is for a unit length (1 ft.) of wall.
<math>\frac{s}{0.196 in.^2} = \frac{12 in.}{0.321 in.^2}</math>


* Sum moments about the toe at the bottom of the footing for overturning.
''s'' = 7.3 in.


*For Group Loads I-VI loading:
<u>Use #4's @ 7 in.</u>
:* F.S. for overturning ≥ 2.0 for footings on soil.
:* F.S. for sliding ≥ 1.5.
* Resultant to be within middle 1/3 of footing.


* For earthquake loading:
:'''Check Shear'''
:* F.S. for overturning ≥ 0.75(2.0) = 1.5.
:* F.S. for sliding ≥ 0.75(1.5) = 1.125.
:* Resultant to be within middle 1/2 of footing.


* Base of footing is below the frost line.
:<math>\frac{\nu_u}{\phi} = \frac{(1.3)(1.67)(1.667k)}{(0.85)(12 in.)(7.75 in.)} (1000\frac{lb}{k})</math> = 45.8 psi < 126.5 psi <u>o.k.</u>
 
'''Footing Design - Bottom Steel'''


* Neglect top one foot of fill over toe when determining passive pressure and soil weight.
It is not considered necessary to design footing reinforcement based upon a load case which includes collision loads.


* Use of a shear key shifts the failure plane to "B" where resistance to sliding is provided by passive pressure against the shear key, friction of soil along failure plane "B" in front of the key, and friction between soil and concrete along the footing behind the key.
:'''Dead Load and Earth Pressure Only'''


* Soil cohesion along failure plane is neglected.
[[image:751.24.3.4 dead load.jpg|center|250px]]


* Footings are designed as cantilevers supported by the wall.
:''Footing wt.'' = <math>\Big[\frac{11.5}{12}ft.\Big](4.917 ft.)\Big[0.150 \frac{k}{ft.^3}\Big](1 ft.)</math> = 0.707k
:* Critical sections for bending are at the front and back faces of the wall.
:* Critical sections for shear are at the back face of the wall for the heel and at a distance d (effective depth) from the front face for the toe.


* Neglect soil weight above toe of footing in design of the toe.
:''β<sub>E</sub>'' = 1.3 (lateral earth pressure)


* The wall is designed as a cantilever supported by the footing.
:''γ'' = 1.3


* Load factors for AASHTO Groups I - VI for design of concrete:
:Apply Load Factors:
:* ''γ'' = 1.3.
:* ''β<sub>E</sub>'' = 1.3 for horizontal earth pressure on retaining walls.
:* ''β<sub>E</sub>'' = 1.0 for vertical earth pressure.


* Load factor for earthquake loads = 1.0.
:''ΣV'' = 1.951k (1.3) = 2.536k


'''Lateral Pressures Without Earthquake'''
:''ΣM<sub>R</sub>'' = 8.231(ft−k)(1.3) = 10.700(ft−k)


:''C<sub>a</sub>'' = <math>\cos\delta\Bigg[\frac{\cos\delta - \sqrt{\cos^2\delta - \cos^2\phi}}{\cos\delta + \sqrt{\cos^2\delta - \cos^2\phi}}\Bigg]</math>
:''ΣM<sub>OT</sub>'' = 1.045(ft−k)(1.3)(1.3) = 1.766(ft−k)


:''C<sub>a</sub>'' = <math>\cos 18.435^\circ \Bigg[\frac{\cos\ 18.435^\circ - \sqrt{\cos^2\ 18.435^\circ - \cos^2\ 24^\circ }}{\cos\ 18.435^\circ  + \sqrt{\cos^2\ 18.435^\circ  - \cos^2\ 24^\circ }}\Bigg]</math> = 0.546
:''Footing wt.'' = 0.707k (1.3) = 0.919k


:<math>C_p = tan^2 \big( 45^\circ + \frac{\phi}{2}\big)  = tan^2 \big( 45^\circ + \frac{24^\circ}{2}\big) = 2.371</math>
:<math>\bar{x} = \frac{10.700(ft-k) - 1.766(ft-k)}{2.536k}</math> = 3.523 ft.


:<math>P_A = \frac{1}{2}\big[0.120\frac{k}{ft^3}\big](1 ft)(0.546)(10.667 ft)^2 = 3.726k</math>
:<math>e = 3.523 ft. - \frac{5.75ft}{2}</math> = 0.648 ft.


:<math>P_P = \frac{1}{2}\big[0.120\frac{k}{ft^3}\big](1 ft)(2.371)\big[(5.0)^2 - (2.5)^2\big] = 2.668k</math>
:<math>P_H = \frac{2.536k}{(1 ft.)(5.75 ft.)}\Bigg[1 + \frac{6(0.648 ft.)}{5.75 ft.}\Bigg]</math> = 0.739 ksf


:<math>P_{AV} = P_A (sin \delta) = 3.726k (sin 18.435^\circ ) = 1.178k</math>
:<math>P_T = \frac{2.536k}{(1 ft.)(5.75 ft.)}\Bigg[1 - \frac{6(0.648 ft.)}{5.75 ft.}\Bigg]</math> = 0.143ksf


:<math>P_{AH} = P_A (cos \delta) = 3.726k (cos 18.435^\circ ) = 3.534k</math>
:<math>P_W = 0.143 ksf + [0.739 ksf - 0.143 ksf]\Bigg[\frac{4.917 ft.}{5.75 ft.}\Bigg]</math> = 0.653 ksf


{| border="1" class="wikitable" style="margin: 1em auto 1em auto"
:Moment at Wall Face:
|+
!style="background:#BEBEBE" |Load !!style="background:#BEBEBE" |Area (ft<sup>2</sup>) !!style="background:#BEBEBE" |Force (k) = (Unit Wgt.)(Area) !!style="background:#BEBEBE" |Arm (ft.) !!style="background:#BEBEBE"|Moment (ft-k)
|-
|align="center"|(1)||align="center"| (0.5)(6.667ft)(2.222ft) = 7.407||align="center"| 0.889||align="center"| 7.278 ||align="center"|6.469
|-
|align="center"|(2)||align="center"| (6.667ft)(6.944ft) = 46.296||align="center"| 5.556||align="center"| 6.167||align="center"| 34.259
|-
|align="center"|(3) ||align="center"|(0.833ft)(8.000ft) + (0.5)(0.083ft)(8.000ft) = 7.000||align="center"|1.050||align="center"| 2.396||align="center"| 2.515
|-
|align="center"|(4) ||align="center"|(1.500ft)(9.500ft) = 14.250||align="center"| 2.138 ||align="center"|4.750 ||align="center"|10.153
|-
|align="center"|(5) ||align="center"|(2.500ft)(1.000ft) = 2.500||align="center"| 0.375||align="center"| 2.500||align="center"| 0.938
|-
|align="center"|(6) ||align="center"|(1.000ft)(1.917ft)+(0.5)(0.010ft)(1.000ft) = 1.922||align="center"|<u>0.231</u>||align="center"| 0.961||align="center"|<u>0.222</u>
|-
|align="center"|Σ ||align="center"| -  ||align="center"|ΣV = 10.239 ||align="center"| - ||align="center"|ΣM<sub>R</sub> = 54.556
|-
|align="center"|P<sub>AV</sub>||align="center"| -  ||align="center"|<u>1.178</u>||align="center"| 9.500 ||align="center"|<u>11.192</u>
|-
|align="center"|Σ resisting ||align="center"| - ||align="center"|ΣV = 11.417||align="center"| - ||align="center"| ΣM<sub>R</sub> = 65.748
|-
|align="center"|P<sub>AH</sub> ||align="center"| - ||align="center"|3.534 ||align="center"|3.556 ||align="center"|12.567
|-
|align="center"|P<sub>P</sub>||align="center"| -  ||align="center"|2.668 ||align="center"|1.389<sup>1</sup>||align="center"| -
|-
|colspan="5"|'''<sup>1</sup>''' The passive capacity at the shear key is ignored in overturning checks,since this capacity is considered in the factor of safety against sliding. It is assumed that a sliding and overturning failure will not occur simultaneously. The passive capacity at the shear key is developed only if the wall does slide.
|}


[[image:751.24.3.3 passive.jpg|right|150px]]
:<math>M_W = \Big[0.143\frac{k}{ft.}\Big]\Bigg[\frac{(4.917 ft.)^2}{2}\Bigg] + \frac{1}{3}(4.917 ft.)^2 \Bigg[0.653\frac{k}{ft.} - 0.143\frac{k}{ft.}\Bigg]\frac{1}{2} - 0.919k \Bigg[\frac{4.917 ft.}{2}\Bigg]</math> = 1.524(ft−k)
<math>\bar{y} = \frac{H_1y^2 + \frac{2}{3}y^3}{H_2^2 - H_1^2} = \frac{(2.5 ft)(2.5 ft)^2 + \frac{2}{3}(2.5 ft)^3}{(5.0 ft)^2 - (2.5 ft)^2}</math> = 1.389 ft.


:'''Overturning'''
:'''Dead Load, Earth Pressure, and Live Load'''


:F.S. = <math>\frac{M_R}{M_{OT}} = \frac{65.748(ft-k)}{12.567(ft-k)} = 5.232 \ge 2.0 </math> <u>o.k.</u>
::'''Live Load 1 ft. From Stem Face'''


:where: M<sub>OT</sub> = overturning moment; M<sub>R</sub> = resisting moment
[[image:751.24.3.4 live load.jpg|center|300px]]


:'''Resultant Eccentricity'''
::''β<sub>E</sub>'' = 1.3 (lateral earth pressure)


:<math>\bar{x} = \frac{(65.748 - 12.567)(ft-k)}{11.417k}</math> = 4.658 ft.
::''β<sub>LL</sub>'' = 1.67


:<math>e = \frac{9.500 ft}{2} - 4.658 ft. = 0.092 ft.</math>
::''γ'' = 1.3
:<math>\frac{L}{6} =\frac{9.500 ft}{6} = 1.583 ft > e</math> <u>o.k.</u>


:'''Sliding'''
::Apply Load Factors:


:Check if shear key is required for Group Loads I-VI:
::''F<sub>LL</sub>'' = 3.516k(1.3)(1.67) = 7.633k


:F.S. = <math>\frac{\Sigma V(tan\phi_{s-c})}{P_{AH}} = \frac{11.042k(tan \frac{2}{3}(24^\circ)}{3.534k} </math>= 0.896 <u>no good - shear key req'd</u>
::''ΣV'' = 7.633k + 1.951k(1.3) = 10.169k


:where: ''φ<sub>s-c</sub>'' = angle of friction between soil and concrete = (2/3)''φ<sub>s-s</sub>''
::''ΣM<sub>OT</sub>'' = 1.045(ft−k)(1.3)(1.3) = 1.766(ft−k)


:F.S. = <math>\frac{P_P + (\Sigma V) \Big(\frac{L_2}{L_1} tan \phi_{s-s}+\frac{L_3}{L_1} tan \phi_{s-c}\Big)}{P_{AH}}</math>
::''ΣM<sub>R</sub>'' = 8.231(ft−k)(1.3) + 3.917 ft.(7.633k) = 40.599(ft−k)


:where: ''φ<sub>s-s</sub>''  = angle of internal friction of soil
::<math>\bar{x} = \frac{40.599(ft-k) - 1.766(ft-k)}{10.169k}</math> = 3.819 ft.


:F.S. = <math>\frac{2.668k + (11.417k) \Big[\Big(\frac{2 ft}{9.50 ft}\Big) tan 24^\circ + \Big(\frac{7.50 ft}{9.50 ft} tan \Big(\frac{2}{3}(24^\circ)\Big)\Big]}{3.534 k}</math> = 1.789 ≥ 1.5  <u>o.k.</u>
::''e'' = 3.819 ft. (5.75 ft./2) = 0.944 ft.


:'''Footing Pressure'''
::<math>P_T = \Bigg[\frac{10.169k}{(1 ft.)(5.75 ft.)}\Bigg]\Bigg[{1 - \frac{ 6(0.944 ft.)}{5.75 ft.}}\Bigg]</math> = 0.026 ksf


:<math>P = \frac{\Sigma V}{bL} \Big[1 \pm \frac{6e}{L}\Big]</math>
::<math>P_H = \Bigg[\frac{10.169k}{(1 ft.)(5.75 ft.)}\Bigg]\Bigg[{1 + \frac{ 6(0.944 ft.)}{5.75 ft.}}\Bigg]</math> = 3.511 ksf


:P<sub>H</sub> = pressure at heel <math>P_H = \frac{11.417 k}{(1 ft)9.50 ft} \Big[1 - \frac{6 (0.092 ft)}{9.50 ft}\Big]</math> = 1.132 k/ft<sup>2</sup>
::<math>P_W = 0.026 ksf + [3.511 ksf - 0.026 ksf]\Big[\frac{4.917 ft.}{5.75 ft.}\Big]</math> = 3.006 ksf


:P<sub>T</sub> = pressure at toe <math>P_T = \frac{11.417 k}{(1 ft)9.50 ft} \Big[1 + \frac{6 (0.092 ft)}{9.50 ft}\Big]</math> = 1.272 k/ft<sup>2</sup>
::<math>P_{LL} = 0.026 ksf + [3.511 ksf - 0.026 ksf]\Bigg[\frac{3.917 ft.}{5.75 ft.}\Bigg] </math> = 2.400 ksf


:Allowable pressure = 2 tons/ft<sup>2</sup> = 4 k/ft<sup>2</sup> ≥ 1.272 k/ft<sup>2</sup> <u>o.k.</u>
::Footing wt. from face of wall to toe:


'''Lateral Pressures With Earthquake'''
::''Footing wt.'' = <math>1.3\Bigg[\frac{11.5}{12} ft.\Bigg](4.917 ft.)\Bigg[0.150 \frac{k}{ft^3}\Bigg](1 ft.)</math> = 0.919k


k<sub>h</sub> = 0.5A = 0.5 (0.1) = 0.05
::Footing wt. from LL<sub>WL</sub> to toe:


k<sub>v</sub> = 0
::''Footing wt.'' = <math>1.3\Bigg[\frac{11.5}{12} ft.\Bigg](3.917 ft.)\Bigg[0.150 \frac{k}{ft^3}\Bigg](1 ft.)</math> = 0.732k


<math>\theta = arctan \Big[\frac{k_h}{1 - k_v}\Big] = arctan \Big[\frac{0.05}{1 - 0}\Big] = 2.862^\circ</math>
::Moment at Wall Face:


:'''Active Pressure on Psuedo-Wall'''
::''M<sub>W</sub> = <math>0.026\frac{k}{ft} \frac{(4.917 ft.)^2}{2} - 7.633k (1 ft.) + \frac{1}{2}\Bigg[3.006\frac{k}{ft} - 0.026\frac{k}{ft}\Bigg](4.917 ft.)^2\Big[\frac{1}{3}\Big] - 0.919k\frac{(4.917 ft.)}{2}</math>


:''δ'' = ''φ'' = 24° (''δ'' is the angle of friction between the soil and the wall. In this case, ''δ'' = ''φ'' = because the soil wedge considered is next to the soil above the footing.)
::M<sub>W</sub> = 2.430(ft−k)


:''i'' = 18.435°
::Moment at LL<sub>WL</sub>:


:''β'' =
::''M<sub>LL</sub>'' = <math>0.026\frac{k}{ft} \frac{(3.917 ft.)^2}{2} - 0.732k \frac{(3.917 ft.)}{2} + \frac{1}{2}\Bigg[2.400\frac{k}{ft} - 0.026\frac{k}{ft}\Bigg](3.917 ft.)^2\Big[\frac{1}{3}\Big] </math> = 4.837(ft−k)


:<math>K_{AE} = \frac{cos^2(\phi - \theta - \beta)}{cos \theta cos^2 \beta cos(\delta + \beta + \theta)\Big(1 + \sqrt\frac{sin(\phi + \delta) sin (\phi - \theta - i)}{cos (\delta + \beta + \theta) cos(I - \beta)}\Big)^2}</math>
::'''Live Load 1 ft. From Toe'''


:<math>K_{AE} = \frac{cos^2(24^\circ - 2.862^\circ - 0^\circ)}{cos (2.862^\circ) cos^2 (0^\circ) cos(24^\circ + 0^\circ + 2.862^\circ)\Big(1 + \sqrt\frac{sin(24^\circ + 24^\circ) sin (24^\circ - 2.862^\circ - 18.435^\circ)}{cos (24^\circ + 0^\circ + 2.862^\circ) cos(18.435^\circ - 0^\circ)}\Big)^2}</math>
[[image:751.24.3.4 toe.jpg|center|250px]]


:K<sub>AE</sub> = 0.674
::Apply Load Factors:


:P<sub>AE</sub> = ½''γ<sub>s</sub>H<sup>2</sup>''(1 − ''k<sub>v</sub>'')''K<sub>AE</sub>''
::''F<sub>LL</sub>'' = 2.324k(1.3)(1.67) = 5.045k


:P<sub>AE</sub> = ½[0.120 k/ft<sup>3</sup>](10.667 ft)<sup>2</sup>(1 ft.)(1 - 0)(0.674) = 4.602k
::''ΣV'' = 5.045k + 1.951k(1.3) = 7.581k


:P<sub>AEV</sub> = P<sub>AE</sub>(sin''δ'') = 4.602k(sin24°) = 1.872k
::''ΣM<sub>OT</sub>'' = 1.045(ft−k)(1.3)(1.3) = 1.766(ft−k)


:P<sub>AEH</sub> = P<sub>AE</sub>(cos''δ'') = 4.602k(cos 24°) = 4.204k
::''ΣM<sub>R</sub>'' = 8.231(ft−k)(1.3) + 5.045k(1ft.) = 15.745(ft−k)


:P'<sub>AH</sub> = P<sub>AEH</sub> − P<sub>AH</sub> = 4.204k − 3.534k = 0.670k
::<math>\bar{x} = \frac{15.745(ft-k)- 1.766(ft-k)}{7.581k}</math> = 1.844 ft.


:P'<sub>AV</sub> = P<sub>AEV</sub> − P<sub>AV</sub> = 1.872k − 1.178k = 0.694k
::<math>e = \frac{5.75 ft.}{2} - 1.844 ft.</math> = 1.031 ft.


:where: P'<sub>AH</sub> and P'<sub>AV</sub> are the seismic components of the active force.
::''P<sub>H</sub>'' = 0 ksf


:'''Passive Pressure on Shear Key'''
::<math>P_T = \frac{2(7.581k)}{3(1 ft.)\big[\frac{5.75 ft.}{2} - 1.031 ft.\big]}</math> = 2.741 ksf


:''δ'' = ''φ'' = 24° (''δ'' = ''φ'' because the soil wedge considered is assumed to form in front of the footing.)
::''L<sub>1</sub>'' = 3[(L/2)− e]


:''i'' = 0
::''L<sub>1</sub>'' = 3[(5.75 ft./2)− 1.031 ft.] = 5.532 ft.


:''β'' = 0
::<math>P_W = 2.741 ksf \Big[\frac{0.615 ft.}{5.532 ft.}\Big]</math> = 0.305 ksf


:<math>K_{PE} = \frac{cos^2(\phi - \theta + \beta)}{cos \theta cos^2 \beta cos(\delta - \beta + \theta)\Big(1 - \sqrt\frac{sin(\phi - \delta) sin (\phi - \theta + i)}{cos (\delta - \beta + \theta) cos(I - \beta)}\Big)^2}</math>
::<math>P_{LL} = 2.741 ksf \Big[\frac{4.432 ft.}{5.532 ft.}\Big]</math> = 2.196 ksf


:<math>K_{PE} = \frac{cos^2(24^\circ - 2.862^\circ + 0^\circ)}{cos (2.862^\circ) cos^2 (0^\circ) cos(24^\circ - 0^\circ + 2.862^\circ)\Big(1 - \sqrt\frac{sin(24^\circ - 24^\circ) sin (24^\circ - 2.862^\circ + 0^\circ)}{cos (24^\circ - 0^\circ + 2.862^\circ) cos(0^\circ - 0^\circ)}\Big)^2}</math>
::Moment at Wall Face:


:K<sub>PE</sub> = 0.976
::''M<sub>W</sub>'' = <math> -5.045k (3.917 ft.) - 0.919k\Bigg[\frac{4.917 ft.}{2}\Bigg] + \frac{1}{2}(0.305\frac{k}{ft.})(4.917 ft.)^2 + \frac{1}{2}(4.917 ft.)^2 \Bigg[2.741\frac{k}{ft.} - 0.305\frac{k}{ft.}\Bigg]\Bigg[\frac{2}{3}\Bigg]</math> = 1.298(ft−k)


:P<sub>PE</sub> = ½''γ<sub>s</sub>H<sup>2</sup>''(1 − ''k<sub>v</sub>'')''K<sub>PE</sub>''
::Moment at LL<sub>WL</sub>:


:P<sub>PE</sub> = ½[0.120 k/ft<sup>3</sup>][(5.0 ft)<sup>2</sup> - (2.5 ft<sup>2</sup>)](1 ft.)(1 - 0)(0.976) = 1.098k
::''M<sub>LL</sub>'' = <math>-0.187k(0.5 ft.) + 2.196\frac{k}{ft.}\frac{(1 ft.)^2}{2} +\frac{1}{2}(1 ft.)\Bigg[2.741\frac{k}{ft.}  - 2.196\frac{k}{ft.}\Bigg]\Bigg[\frac{2}{3}\Bigg](1 ft.)</math> = 1.186(ft−k)


{| border="1" class="wikitable" style="margin: 1em auto 1em auto"
:'''Design Flexural Steel in Bottom of Footing'''
|+
!style="background:#BEBEBE" |Load !!style="background:#BEBEBE" |Force (k) !!style="background:#BEBEBE" |Arm (ft) !!style="background:#BEBEBE" |Moment (ft-k)
|-
|align="center"|Σ (1) thru (6) ||align="center"| 10.239||align="center"| - ||align="center"| 54.556
|-
|align="center"|P<sub>AV</sub>||align="center"| 1.178 ||align="center"|9.500||align="center"| 11.192
|-
|align="center"|P'<sub>AV</sub> ||align="center"|0.694 ||align="center"|9.500||align="center"| 6.593
|-
|align="center"|Σ<sub>resisting</sub> ||align="center"|ΣV = 12.111 ||align="center"| - ||align="center"|ΣM<sub>R</sub> = 72.341
|-
|align="center"|P<sub>AH</sub> ||align="center"|3.534 ||align="center"|3.556 ||align="center"|12.567
|-
|align="center"|P'<sub>AH</sub> ||align="center"|0.670||align="center"| 6.400<sup>a</sup>||align="center"| 4.288
|-
|align="center"|P<sub>PEV</sub> ||align="center"|0.447<sup>b</sup>||align="center"| 0.000||align="center"| 0.000
|-
|align="center"|P<sub>PEH</sub> ||align="center"|1.003<sup>b</sup> ||align="center"|1.389<sup>c</sup>||align="center"| <u>0.000</u>
|-
|align="center"| - ||align="center"| - ||align="center"| - ||align="center"|ΣM<sub>OT</sub> = 16.855
|-
|colspan="4"|<sup>'''a'''</sup> P'<sub>AH</sub> acts at 0.6H of the wedge face (1992 AASHTO Div. IA Commentary).
|-
|colspan="4"|<sup>'''b'''</sup> P<sub>PEH</sub> and P<sub>PEH</sub> are the components of P<sub>PE</sub> with respect to ''δ'' (the friction angle). P<sub>PE</sub> does not contribute to overturning.
|-
|colspan="4"|<sup>'''c'''</sup> The line of action of P<sub>PEH</sub> can be located as was done for P<sub>P</sub>.
|}


:'''Overturning'''
:''d'' = 11.5 in. − 4 in. = 7.500 in.


:<math>F.S._{OT} = \frac{72.341ft-k}{16.855ft-k} = 4.292 > 1.5</math> <u>o.k.</u>
:''M<sub>u</sub>'' = 4.837(ft−k) (controlling moment)


:'''Resultant Eccentricity'''
:<math>R_n = \frac{4.837(ft-k)}{0.9(1 ft.)(7.5 in.)^2}</math> = 0.096 ksi


:<math>\bar{x} = \frac{72.341ft-k - 16.855ft-k}{12.111k} = 4.581 ft.</math>
:<math>\rho = \frac{0.85(4000 psi)}{60,000 psi}\Bigg[1 - \sqrt{1 - \frac{2(0.096 ksi)}{0.85(4 ksi)}}\Bigg] </math> = 0.00162


:<math>e = \frac{9.5 ft.}{2}\ - 4.581 ft. = 0.169 ft.</math>
:<math>\rho_{min} = 1.7\Bigg[\frac{11.5 in.}{7.5 in.}\Bigg]^2\frac{\sqrt{4000 psi}}{60,000 psi}</math> = 0.00421


:<math>\frac{L}{4} = \frac{9.5 ft.}{4} = 2.375 ft. > e</math> <u>o.k.</u>
:Use ''ρ'' = (4/3)''ρ'' = (4/3)(0.00162) = 0.00216


:''A<sub>S<sub>Req</sub></sub>'' = 0.00216(12 in.)(7.5 in.) = 0.194 in<sup>2</sup>/ft.


:'''Sliding'''


:<math>F.S. = \frac{1.003k + 12.111k \Big[(\frac{2}{9.5})tan 24^\circ + (\frac{7.5}{9.5}) tan \Big( \frac{2}{3}(24^\circ) \Big)\Big]}{4.204 k} = 1.161 > 1.125</math> <u>o.k.</u>
:<math>\frac{s}{0.196 in^2} = \frac{12 in.}{0.194 in^2}</math>


:''s'' = 12.1 in.


:'''Footing Pressure'''
:<u>Use #4's @ 12 in. cts.</u> (Also use this spacing in the back of the stem.)


:for e ≤ L/6:
:'''Check Shear'''


:<math>P = \frac{\Sigma V}{bL} \Big[ 1 \pm \frac{6e}{L}\Big] </math>
::'''Dead Load and Earth Pressure Only'''


:<math>P_H = pressure\ at\ heel\ P_H = \frac{12.111 k}{(1 ft.)9.50 ft.} \Big[1 - \frac{6(0.169 ft.)}{9.50 ft}\Big]</math> = 1.139 k/ft<sup>2</sup>
::<math>V_W = 0.143\frac{k}{ft.}(4.917 ft.) + \frac{1}{2}(4.917 ft.)\Big[0.653\frac{k}{ft.} - 0.143\frac{k}{ft.}\Big] - 0.919k</math>


:<math>P_TH = pressure\ at\ toe\ P_T = \frac{12.111 k}{(1 ft.)9.50 ft.} \Big[1 + \frac{6(0.169 ft.)}{9.50 ft}\Big]</math> = 1.411 k/ft<sup>2</sup>
::''V<sub>W</sub>'' = 1.038k


:Allowable soil pressure for earthquake = 2 (allowable soil pressure)
::'''Live Load 1 ft. From Stem Face'''


:(2)[4 k/ft<sup>2</sup>] = 8 k/ft<sup>2</sup> > 1.411 k/ft<sup>2</sup> <u>o.k.</u>
::Shear at the wall can be neglected for this loading case.


'''Reinforcement-Stem'''
::<math>V_{LL} = 0.026\frac{k}{ft.}(3.917 ft.) + \frac{1}{2}(3.917 ft.)\Big[2.400\frac{k}{ft.} - 0.026\frac{k}{ft.}\Big] - 0.732k</math>


[[image:751.24.3.3 reinforcement stem.jpg|center|200px]]
::''V<sub>LL</sub>'' = 4.019k


d = 11" - 2" - (1/2)(0.5") = 8.75"
::'''Live Load 1 ft. From Toe'''


b = 12"
::<math>V_W = 0.305\frac{k}{ft.}(4.917 ft.) + \frac{1}{2}(4.917 ft.)\Big[2.741\frac{k}{ft.} - 0.305\frac{k}{ft.}\Big] - 0.919k - 5.045k</math>


f'<sub>c</sub> = 3,000 psi
::''V<sub>W</sub>'' = 1.525k


:'''Without Earthquake'''
::<math>V_{LL} = 2.196\frac{k}{ft.}(1ft) + \frac{1}{2}(1ft)\Big[2.741\frac{k}{ft.} - 2.196\frac{k}{ft.}\Big] - 0.187k</math>


:P<sub>AH</sub> = ½ [0.120 k/ft<sup>3</sup>](0.546)(6.944 ft.)<sup>2</sup>(1 ft.)(cos 18.435°) = 1.499k
::''V<sub>LL</sub>'' = 2.282k


:''γ'' = 1.3
:Use ''V<sub>U</sub>'' = 4.019k


:''β<sub>E</sub>'' = 1.3 (active lateral earth pressure)
:<math>\frac{\nu_u}{\phi} = \frac{4019(lbs)}{0.85(12 in.)(7.5 in.)} = 52.5 psi < 2\sqrt{4000 psi}</math> = 126.5 psi


:M<sub>u</sub> = (1.3)(1.3)(1.499k)(2.315ft) = 5.865 (ft-k)
'''Shear Key Design'''


:'''With Earthquake'''
[[image:751.24.3.4 shear key.jpg|center|300px]]


:k<sub>h</sub> = 0.05
For concrete cast against and permanently exposed to earth, minimum cover for reinforcement is 3 inches.


:k<sub>v</sub> = 0
<math>d = 12 in. - 3 in. - \frac{1}{2}\Big[\frac{1}{2}in.\Big]</math> = 8.75 in.
{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
|-
|'''Additional Information'''
|-
|1992 AASHTO Div. IA Commentary
|}


:''θ'' = 2.862°
<math>P_1 = 0.120\frac{k}{ft^3}(1 ft.)(2.882)\Big[\frac{11.5}{12}ft.\Big]</math> = 0.331 k/ft.


:''δ'' = ''φ''/2 = 24°/2 = 12° for angle of friction between soil and wall. This criteria is used only for seismic loading if the angle of friction is not known.
<math>P_2 = 0.120\frac{k}{ft^3}(1 ft.)(2.882)\Big[\frac{29.5}{12}ft.\Big]</math> = 0.850 k/ft.


:''φ'' = 24°
<math>M_u = (1.3)(1.3)\Bigg\{0.331\frac{k}{ft.}\frac{(1.5 ft.)^2}{2} + \frac{1}{2}(1.5 ft.)\Big[0.850\frac{k}{ft.} - 0.331\frac{k}{ft}\Big]\Big[\frac{2}{3}\Big](1.5 ft.)\Bigg\}</math>


:''i'' = 18.435°
''M<sub>u</sub>'' = 1.287(ft−k)


:''β'' =
<math>R_n = \frac{1.287(ft-k)}{0.9(1ft.)(8.75in.)^2}</math> = 0.0187 ksi


:K<sub>AE</sub> = 0.654
<math>\rho = \frac{0.85(4000psi)}{60,000psi}\Bigg[1 - \sqrt{1 - \frac{2(0.0187ksi)}{0.85(4ksi)}}\Bigg]</math> = 0.000312


:P<sub>AEH</sub> = 1/2 ''γ<sub>s''</sub>K<sub>AE</sub>H<sup>2</sup>cos''δ''
<math>\rho_{min} = 1.7\Big[\frac{12in.}{8.75in.}\Big]^2\frac{\sqrt{4000psi}}{60,000psi}</math> = 0.00337


:P<sub>AEH</sub> = 1/2 [0.120k/ft](0.654)(6.944 ft.)<sup>2</sup>(1 ft.) cos(12°) = 1.851k
Use ''ρ'' = (4/3)''ρ'' = (4/3)(0.000312) = 0.000416


:M<sub>u</sub> = (1.499k)(2.315 ft.) + (1.851k − 1.499k)(0.6(6.944 ft.)) = 4.936(ft−k)
''A<sub>S<sub>Req</sub></sub>'' = 0.000416 (12 in.)(8.75 in.) = 0.0437 in<sup>2</sup>/ft.


:The moment without earthquake controls:


:<math>R_n = \frac{M_u}{\phi bd^2} = \frac{5.865(ft-k)}{0.9(1 ft.)(8.75 in.)^2}\Big(1000 \frac{lb}{k}\Big)</math> = 85.116 psi
<math>\frac{s}{0.196 in.^2} = \frac{12in.}{0.0437in.^2}</math>


:''ρ'' = <math>\frac{0.85f'_c}{f_y} \Big[1 - \sqrt{1 - \frac{2R_n}{0.85f'_c}}\Big]</math>
''s'' = 53.8 in.


:''ρ'' = <math>\frac{0.85 (3.000 psi}{60,000 psi} \Bigg[1 - \sqrt{1 - \frac{2 (85.116 psi}{0.85 (3000 psi)}}\Bigg]</math> = 0.00144
<u>Use #4's @ 18 in. cts. (min)</u>


{|style="padding: 0.3em; margin-left:5px; border:2px solid #a9a9a9; text-align:center; font-size: 95%; background:#f5f5f5" width="160px" align="right"
:'''Check Shear'''
|-
|'''Additional Information'''
|-
|AASHTO 8.17.1.1 & 8.15.2.1.1
|}


:''ρ<sub>min</sub>'' = <math> 1.7 \Bigg[\frac{h}{d}\Bigg]^2 \frac{\sqrt{f'_c}}{f_y} = 1.7 \Bigg[\frac{11 in.}{8.75 in.}^2 \frac{\sqrt{3000 psi}}{60,000 psi}\Bigg]</math> = 0.00245
:''V'' = 0.886k


:Use ''ρ'' = 4/3 ''ρ'' = 4/3 (0.00144) = 0.00192
:<math>\frac{\nu_u}{\phi} = \frac{(1.3)(1.3)(886 lbs)}{0.85(12 in.)(8.75 in.)}</math> = 16.8 psi < 126.5 psi <u>o.k.</u>


:''A<sub>S<sub>Req</sub></sub>'' = ''ρbd'' = 0.00192 (12 in.)(8.75 in.) = 0.202 in.<sup>2</sup>/ft
'''Reinforcement Summary'''


:One #4 bar has A<sub>S</sub> = 0.196 in<sup>2</sup>
[[image:751.24.3.4 summary.jpg|center|400px]]


:<math>\frac{s}{0.196 in.^2} = \frac{12 in.}{0.202 in.^2}</math>
==== 751.40.8.15.7 Example 3: Pile Footing Cantilever Wall ====


:''s'' = 11.64 in.
[[image:751.24.3.5.jpg|center|850px]]


:<u>Use #4's @ 10" cts.</u>
''f’<sub>c</sub>'' = 3,000 psi


:'''Check Shear'''
''f<sub>y</sub>'' = 60,000 psi


:V<sub>u</sub> ≥ ''φ'' V<sub>n</sub>
''φ'' = 27°


::'''Without Earthquake'''
''γ<sub>s</sub>'' = 120 pcf


::V<sub>u,</sub> = (1.3)(1.3)(1.499k) = 2.533k
Pile type: HP 10 x 42


::'''With Earthquake'''
Allowable pile bearing = 56 tons


::V<sub>u</sub> = 1.851k
Pile width = 10 inches


:The shear force without earthquake controls.
Toe pile batter = 1:3


:<math>\frac{\nu_u}{\phi} = \frac{2.533k}{0.85(12 in.)(8.75 in.)} (1000 lb/k)</math> = 28.4 psi
See [[751.12 Barriers, Railings, Curbs and Fences|EPG 751.12 Barriers, Railings, Curbs and Fences]] for weight and centroid of barrier.  


:<math>\nu_c = 2 \sqrt{3,000 psi}</math> = 109.5 psi > 28.4 psi <u>o.k.</u>
'''Assumptions'''


'''Reinforcement-Footing-Heel'''
:* Retaining wall is located such that traffic can come within half of the wall height to the plane where earth pressure is applied.


[[image:751.24.3.3 heel.jpg|center|250px]]
:* Reinforcement design is for one foot of wall length.


Note: Earthquake will not control and will not be checked.
:* Sum moments about the centerline of the toe pile at a distance of 6B (where B is the pile width) below the bottom of the footing for overturning.


''β<sub>E</sub>'' = 1.0 (vertical earth pressure)
:* Neglect top one foot of fill over toe in determining soil weight and passive pressure on shear key.


d = 18" - 3" - (1/2)(0.750") = 14.625"
:* Neglect all fill over toe in designing stem reinforcement.


b = 12"
:* The wall is designed as a cantilever supported by the footing.


''f'<sub>c</sub>'' = 3,000 psi
:* Footing is designed as a cantilever supported by the wall.


''M<sub>u</sub>'' = 1.3 [(5.556k + 1.500k)(3.333ft) + 0.889k(4.444ft) + 1.178k(6.667ft)]
:* Critical sections for bending are at the front and back faces of the wall.


''M<sub>u</sub>'' = 45.919(ft−k)
:* Critical sections for shear are at the back face of the wall for the heel and at a distance d (effective depth) from the front face for the toe.


<math>R_n = \frac{45.919(ft-k)}{0.9(1 ft.)(14.625 in.)^2}(1000\frac{lb}{k})</math> = 238.5 psi
:* For load factors for design of concrete, see [[#Group Loads|EPG 751.24.1.2 Group Loads]].


''ρ'' = <math>\frac{0.85(3000)psi}{60,000 psi} \Bigg[ 1 - \sqrt{1 - \frac{2(238.5 psi)}{0.85(3000psi)}}\Bigg]</math> = 0.00418
<math>C_A = cos\delta\Bigg[\frac{cos\delta - \sqrt{cos^2\delta - cos^2\phi}}{cos\delta + \sqrt{cos^2\delta - cos^2\phi}}\Bigg]</math>


''ρ<sub>min</sub>'' = <math> 1.7 \Big[\frac{18 in.}{14.625 in.}\Big]^2 \frac{\sqrt{3000 psi}}{60,000 psi}</math> = 0.00235
''δ'' = 0, ''ϕ'' = 27° so ''C<sub>A</sub>'' reduces to:


''A<sub>S<sub>Req</sub></sub>'' = 0.00418 (12 in.) (14.625 in.) = 0.734 in<sup>2</sup>/ft.
<math>C_A = \frac{1 - sin\phi}{1 + sin\phi} = \frac{1 - sin 27^\circ}{1 + sin 27^\circ}</math> = 0.376
<math>C_P = tan^2\Bigg[45^\circ + \frac{\phi}{2}\Bigg] = tan^2\Bigg[ 45^\circ + \frac{27^\circ}{2}\Bigg]</math> = 2.663


Table 751.24.3.5.1 is for stability check (moments taken about C.L. of toe pile at a depth of 6B below the bottom of the footing).


<u>Use #6's @ 7" cts.</u>
{| border="1" class="wikitable" style="margin: 1em auto 1em auto" style="text-align:center"
 
|+ '''''Table 751.24.3.5.1'''''
:'''Check Shear'''
! style="background:#BEBEBE" colspan="2"|Load !! style="background:#BEBEBE"|Force (kips/ft) !! style="background:#BEBEBE"|Arm about C.L. of toe pile at 6B below footing (ft.) !! style="background:#BEBEBE"|Moment (ft-kips) per foot of wall length
 
|-
:Shear shall be checked at back face of stem.
|rowspan="5"|'''Dead Load'''||(1)|| 0.340|| 2.542|| 0.864
 
|-
:''V<sub>u</sub>'' = 1.3 (5.556k + 1.500k + 0.889k + 1.178k) = 11.860k
|(2)|| (1.333 ft.)(7.000 ft.)(0.150k/ft<sup>3</sup>) = 1.400 ||2.833|| 3.966
 
|-
:<math>\frac{\nu_u}{\phi} = \frac{11.860k}{0.85(12 in.)(14.625 in.)}(1000 \frac{lb}{k} ) = 79.5 psi < 2 \sqrt{3,000 psi}</math> = 109.5 psi  o.k.
|(3)|| (3.000 ft.)(8.500 ft.)(0.150k/ft<sup>3</sup>) = 3.825|| 4.417|| 16.895
 
|-
'''Reinforcement-Footing-Toe'''
|(4)|| (1.000 ft.)(1.750 ft.)(0.150k/ft<sup>3</sup>) = <u>0.263</u>|| 4.417|| <u>1.162</u>
|-
|Σ||ΣV = 5.828 || - ||ΣM<sub>R</sub> = 22.887
|-
|rowspan="3"|'''Earth Load'''||(5)|| (7.000 ft.)(5.167 ft.)(0.120k/ft<sup>3</sup>) = 4.340|| 6.083|| 26.400
|-
|(6)|| (2.000 ft.)(2.000 ft.)(0.120k/ft<sup>3</sup>) = <u>0.480</u>|| 1.167|| <u>0.560</u>
|-
|Σ ||ΣV = 4.820|| - ||ΣM<sub>R</sub> = 26.960
|-
|rowspan="2"|'''Live Load Surcharge'''||P<sub>SV</sub>|| (2.000 ft.)(5.167 ft.)(0.120k/ft<sub>3</sub>) = 1.240|| 6.083|| M<sub>R</sub> = 7.543
|-
|P<sub>SH</sub>||(2.000 ft.)(0.376)(10.000 ft.)(0.120k/ft<sup>3</sup>) = 0.902||10.000|| M<sub>OT</sub> = 9.020
|-
|rowspan="2"|'''Earth Pressure'''||P<sub>A</sub>||2.256<sup>'''1'''</sup>|| 8.333|| M<sub>OT</sub> = 18.799
|-
|P<sub>P</sub>|| 3.285<sup>'''2'''</sup> || - || -
|-
|colspan="2"|'''Collision Force''' (F<sub>COL</sub>)||(10.000k)/[2(7.000 ft.)] = 0.714|| 18.000 ||M<sub>OT</sub> = 12.852
|-
|colspan="2"|'''Heel Pile Tension''' (P<sub>HV</sub>)||(3.000 tons)(2 k/ton)(1 pile)/(12.000 ft.) = 0.500|| 7.167|| M<sub>R</sub> = 3.584
|-
|colspan="2"|'''Toe Pile Batter''' (P<sub>BH</sub>)|| 5.903<sup>'''3'''</sup>|| - || -
|-
|colspan="2"|'''Passive Pile Pressure''' (P<sub>pp</sub>)|| 0.832<sup>'''4'''</sup>|| - || -
|-
|colspan="5" align="left"|<sup>'''1'''</sup> <math>P_A = \frac{1}{2}\gamma_S C_A H^2 = \frac{1}{2}\Bigg[0.120\frac{k}{ft^3}\Bigg](0.376)(10 ft.)^3 = 2.256\frac{k}{ft}</math>
|-
|colspan="5" align="left"|<sup>'''2'''</sup> <math>P_P = \frac{1}{2}\gamma_S C_A\Big[H_2^2 - H_1^2\Big] = \frac{1}{2}\Bigg[0.120\frac{k}{ft^3}\Bigg](2.663)[(6.75 ft.)^2 - (5 ft.)^2] = 3.285\frac{k}{ft}</math>
|-
|colspan="5" align="left"|<sup>'''3'''</sup> <math>P_{BH} = \Big(56 \frac{tons}{pile}\Big)\Big( 2 \frac{k}{ton}\Big)(2 piles)\Bigg(\frac{4 in.}{\sqrt{(12 in.)^2 + (4 in.)^2}}\Bigg)\Big(\frac{1}{12 ft.}\Big) = 5.903 \frac{k}{ft}</math>
|-
|colspan="5" align="left"|<sup>'''4'''</sup> <math>P_{PP} = \frac{1}{2}(2.663)(5 ft.)^2\Big(0.120 \frac{k}{ft^3}\Big)(0.833 ft.)(3 piles)\Big(\frac{1}{12 ft.}\Big) = 0.832\frac{k}{ft}</math>
|}


[[image:751.24.3.3. toe.jpg|center|350px]]


d = 18" - 4" = 14"
Table 751.24.3.5.2 is for bearing pressure checks (moments taken about C.L of toe pile at the bottom of the footing).


b = 12"
{| border="1" class="wikitable" style="margin: 1em auto 1em auto" style="text-align:center"
 
|+ '''''Table 751.24.3.5.2'''''
:'''Without Earthquake'''
! style="background:#BEBEBE" colspan="2"|Load !! style="background:#BEBEBE"|Force (kips/ft) !! style="background:#BEBEBE"|Arm about C.L. of toe pile at 6B below footing (ft.) !! style="background:#BEBEBE"|Moment (ft-kips) per foot of wall length
|-
|rowspan="5"|'''Dead Load'''||(1)|| 0.340|| 0.875|| 0.298
|-
|(2)|| (1.333 ft.)(7.000 ft.)(0.150k/ft<sup>3</sup>) = 1.400 ||1.167|| 1.634
|-
|(3)|| (3.000 ft.)(8.500 ft.)(0.150k/ft<sup>3</sup>) = 3.825|| 2.750|| 10.519
|-
|(4)|| (1.000 ft.)(1.750 ft.)(0.150k/ft<sup>3</sup>) = <u>0.263</u>|| 2.750|| <u>0.723</u>
|-
|Σ||ΣV = 5.828 || - ||ΣM<sub>R</sub> = 13.174
|-
|rowspan="3"|'''Earth Load'''||(5)|| (7.000 ft.)(5.167 ft.)(0.120k/ft<sup>3</sup>) = 4.340|| 4.417|| 19.170
|-
|(6)|| (2.000 ft.)(2.000 ft.)(0.120k/ft<sup>3</sup>) = <u>0.480</u>|| -0.500|| <u>-0.240</u>
|-
|Σ ||ΣV = 4.820|| - ||ΣM<sub>R</sub> = 18.930
|-
|rowspan="2"|'''Live Load Surcharge'''||P<sub>SV</sub>|| (2.000 ft.)(5.167 ft.)(0.120k/ft<sub>3</sub>) = 1.240|| 4.417|| M<sub>R</sub> = 5.477
|-
|P<sub>SH</sub>||(2.000 ft.)(0.376)(10.000 ft.)(0.120k/ft<sup>3</sup>) = 0.902||5.000|| M<sub>OT</sub> = 4.510
|-
|rowspan="2"|'''Earth Pressure'''||P<sub>A</sub>||2.256|| 3.333|| M<sub>OT</sub> = 7.519
|-
|P<sub>P</sub>|| 3.285 || - || -
|-
|colspan="2"|'''Collision Force''' (F<sub>COL</sub>)||(10.000k)/[2(7.000 ft.)] = 0.714|| 13.000 ||M<sub>OT</sub> = 9.282
|-
|colspan="2"|'''Heel Pile Tension''' (P<sub>HV</sub>)||(3.000 tons)(2 k/ton)(1 pile)/(12.000 ft.) = 0.500|| 5.500|| M<sub>R</sub> = 2.750
|-
|colspan="2"|'''Toe Pile Batter''' (P<sub>BH</sub>)|| 5.903|| - || -
|-
|colspan="2"|'''Passive Pile Pressure''' (P<sub>pp</sub>)|| 0.832|| - || -
|}


::'''Apply Load Factors'''
Investigate a representative 12 ft. strip. This will include one heel pile and two toe piles. The assumption is made that the stiffness of a batter pile in the vertical direction is the same as that of a vertical pile.


::load 4 (weight) = 0.431k(1.3)(1.0) = 0.560k
Neutral Axis Location = [2piles(1.5 ft.) + 1pile(7 ft.)] / (3 piles) = 3.333 ft. from the toe.


::''β<sub>E</sub>'' = 1.3 for lateral earth pressure for retaining walls.
[[image:751.24.3.5 neutral axis.jpg|center|350px]]


::''β<sub>E</sub>'' = 1.0 for vertical earth pressure.
''I ''= Ad<sup>2</sup>


::''ΣM<sub>OT</sub>'' = 12.567(ft−k)(1.3)(1.3) = 21.238(ft−k)
For repetitive 12 ft. strip:


::''ΣM<sub>R</sub>'' = [54.556(ft−k) + 11.192(ft−k)](1.3)(1.0) = 85.472(ft−k)
:Total pile area = 3A


::''ΣV'' = 11.417k(1.3)(1.0) = 14.842k
:''I ''= 2A(1.833 ft.)<sup>2</sup> + A(3.667 ft.)<sup>2</sup> = 20.167(A)ft.<sup>2</sup>


:<math>\bar{x} = \frac{85.472(ft-k) - 21.238(ft-k)}{14.842k}</math> = 4.328 ft.
For a 1 ft. unit strip:


:''e'' = (9.5 ft./2) − 4.328 ft. = 0.422 ft.
:<math>I = \frac{20.167(A)ft.^2}{12 ft.} = 1.681(A)ft.^2</math>


:<math>P_H = \frac{14.842k}{(1 ft.)(9.5 ft.)} \Big[1 - \frac{6(0.422 ft.)}{9.5 ft.}\Big]</math> = 1.146k/ft<sup>2</sup>
:Total pile area = (3A/12 ft.) = 0.250A


:<math>P_T = \frac{14.842k}{(1 ft.)(9.5 ft.)} \Big[1 + \frac{6(0.422 ft.)}{9.5 ft.}\Big]</math> = 1.979k/ft<sup>2</sup>
:'''Case I'''


:<math>P =\Bigg[\frac{1.979 \frac{k}{ft.} - 1.146 \frac{k}{ft.}}{9.5 ft.}\Bigg](7.583 ft.) + 1.146\frac{k}{ft.}</math> = 1.811k/ft.
:F.S. for overturning ≥ 1.5


:<math>M_u = 1.811\frac{k}{ft.}\frac{(1.917 ft.)^2}{2} + \frac{1}{2}(1.917 ft.)^2\Big[1.979\frac{k}{ft.} - 1.811\frac{k}{ft.}\Big]\frac{2}{3} - 0.560k(0.958 ft.)</math>
:F.S. for sliding ≥ 1.5


:''M<sub>u</sub>'' = 2.997(ft−k)
::'''Check Overturning'''


:'''With Earthquake'''
::Neglect resisting moment due to P<sub>SV</sub> for this check.


:''P<sub>H</sub>'' = 1.139 k/ft
::''ΣM<sub>R</sub>'' = 22.887(ft−k) + 26.960(ft−k) + 3.584(ft−k)


:''P<sub>T</sub>'' = 1.411 k/ft
::''ΣM<sub>R</sub>'' = 53.431(ft−k)


:<math>P = \Bigg[\frac{1.411\frac{k}{ft.} - 1.139\frac{k}{ft.}}{9.5 ft.}\Bigg](7.583 ft.) + 1.139\frac{k}{ft.}</math> = 1.356 k/ft
::''ΣM<sub>OT</sub>'' = 9.020(ft−k) + 18.799(ft−k) = 27.819(ft−k)


:<math>M_u = 1.356\frac{k}{ft.}\frac{(1.917 ft.)^2}{2} + \frac{1}{2}(1.917 ft.)^2 \Bigg[1.411\frac{k}{ft.} - 1.356\frac{k}{ft.}\Bigg]\frac{2}{3} - 0.431k (0.958 ft.)</math>
::''F.S.<sub>OT</sub>'' = <math>\frac{\Sigma M_R}{\Sigma M_{OT}} = \frac{53.431(ft-k)}{27.819(ft-k)}</math> = 1.921 > 1.5 <u>o.k.</u>


:''M<sub>u</sub>'' = 2.146(ft−k)
::'''Check Pile Bearing'''


:The moment without earthquake controls.
::Without P<sub>SV</sub> :


:<math>R_n = \frac{2.997(ft-k)}{0.9(1 ft.)(14.0 in.)^2}(1000\frac{lb}{k})</math> = 16.990 psi
::''ΣV'' = 5.828k + 4.820k = 10.648k


:''ρ'' = <math>\frac{0.85(3000 psi)}{60,000 psi}\Bigg[1 - \sqrt{1 - \frac{2(16.990 psi)}{0.85(3000psi)}}\Bigg]</math> = 0.000284
::''e'' = <math>\frac{\Sigma M}{\Sigma V} = \frac{(13.174 + 18.930)(ft-k) - (4.510 + 7.519)(ft-k)}{10.648k}</math> = 1.885 ft.


:''ρ<sub>min</sub>'' = <math>1.7\Big[\frac{18 in.}{14.0 in.}\Big]^2 \frac{\sqrt{3,000 psi}}{60,000 psi}</math> = 0.00257
::Moment arm = 1.885 ft. - 1.833 ft. = 0.052 ft.


:Use ''ρ'' = 4/3 ''ρ'' = <math>\frac{4}{3}(0.000284)</math> = 0.000379
::<math>P_T = \frac{\Sigma V}{A} - \frac{M_c}{I} = \frac{10.648k}{0.250A} - \frac{10.648k(0.052 ft.)(1.833 ft.)}{1.681(A)ft^2}</math>


:''A<sub>S<sub>Req</sub></sub>'' = 0.000379 (12 in.)(14.0 in.) = 0.064 in.<sup>2</sup>/ft.
::<math>P_T = \frac{41.988}{A} k</math>


::<math>P_H = \frac{10.648k}{0.250A} + \frac{10.648k(0.052 ft.)(3.667 ft.)}{1.681(A)ft^2}</math>


:<math>\frac{12 in.}{0.064 in.^2} = \frac{s}{0.196 in.^2}</math>
::<math>P_H = \frac{43.800}{A} k</math>


:''s'' = 36.8 in.
::Allowable pile load = 56 tons/pile. Each pile has area A, so:


:Minimum is # 4 bars at 12 inches. These will be the same bars that are in the back of the stem. Use the smaller of the two spacings.
::<math>P_T = 41.988\frac{k}{pile} = 20.944\frac{tons}{pile} </math> <u> o.k.</u>


:<u>Use # 4's @ 10" cts.</u>
::<math>P_H = 43.800\frac{k}{pile} = 21.900\frac{tons}{pile} </math> <u> o.k.</u>


:'''Check Shear'''
::With P<sub>SV</sub>:


:Shear shall be checked at a distance "d" from the face of the stem.
::''ΣV'' = 5.828k + 4.820k + 1.240k = 11.888k


::'''Without Earthquake'''
::<math>e = \frac{(13.174 + 18.930 + 5.477)(ft-k) - (4.510 + 7.519)(ft-k)}{11.888k}</math> = 2.149 ft.


::<math>P_d =\Bigg[\frac{1.979\frac{k}{ft.} - 1.146\frac{k}{ft.}}{9.5 ft.}\Bigg](8.750 ft.) + 1.146\frac{k}{ft.}</math> = 1.913k/ft.
::Moment arm = 2.149 ft. - 1.833 ft. = 0.316 ft.


::<math>V_u =\frac{1.979\frac{k}{ft.} + 1.913\frac{k}{ft.}}{2}(0.750 ft.) - 1.3\Big[0.225\frac{k}{ft.}\Big](0.750 ft.)</math> = 1.240k
::<math>P_T = \frac{11.888k}{0.250A} - \frac{11.888k(0.316 ft.)(1.833 ft.)}{1.681(A)ft^2} = 43.456k = 21.728\frac{tons}{pile}</math> <u> o.k.</u>


::'''With Earthquake'''
::<math>P_H = \frac{11.888k}{0.250A} + \frac{11.888k(0.316 ft.)(3.667 ft.)}{1.681(A)ft^2} = 55.747k = 27.874\frac{tons}{pile}</math> <u> o.k.</u>


::<math>P_d =\Bigg[\frac{1.411\frac{k}{ft.} - 1.139\frac{k}{ft.}}{9.5 ft.}\Bigg](8.750 ft.) + 1.139\frac{k}{ft.}</math> = 1390k/ft.
::'''Check Sliding'''


::<math>V_u =\frac{1.411\frac{k}{ft.} + 1.139\frac{k}{ft.}}{2}(0.750 ft.) - \Big[0.225\frac{k}{ft.}\Big](0.750 ft.)</math> = 0.788k
::<math>F.S._{Sliding} = \frac{3.285k + 5.903k + 0.832k}{0.902 k + 2.256k}</math> = 3.173 ≥ 1.5 <u> o.k.</u>


:Shear without earthquake controls.
:'''Case II'''


:<math>\frac{\nu_u}{\phi} = \frac{1.240k}{0.85(12 in.)(14.0 in.)}(1000\frac{lb}{k} ) = 8.7 psi < 2\sqrt{3000 psi}</math> = 109.5 psi <u>o.k.</u>
:F.S. for overturning ≥ 1.2


'''Reinforcement-Shear Key'''
:F.S. for sliding ≥ 1.2


[[image:751.24.3.3 shear key.jpg|center|250px]]
::'''Check Overturning'''


The passive pressure is higher without earthquake loads.
::''ΣM<sub>R</sub> ''= (22.887 + 26.960 + 7.543 + 3.584)(ft−k) = 60.974(ft−k)


''γ'' = 1.3
::''ΣM<sub>OT</sub>'' = (9.020 + 18.799 + 12.852)(ft−k) = 40.671(ft−k)


''β<sub>E</sub>'' = 1.3 (lateral earth pressure)
::<math>F.S._{OT} = \frac{\Sigma M_R}{\Sigma M_{OT}} = \frac{60.974(ft-k)}{40.671(ft-k)}</math> = 1.499 ≥ 1.2  <u> o.k.</u>


d = 12"-3"-(1/2)(0.5") = 8.75"
::'''Check Pile Bearing'''


b = 12"
::<math>e = \frac{\Sigma M}{\Sigma V} = \frac{(13.174 + 18.930 + 5.477)(ft-k) - (4.510 + 7.519 + 9.282)(ft-k)}{(5.828 + 4.820 + 1.240)k}</math> = 1.369 ft.


''M<sub>u</sub> = (3.379k)(1.360 ft.)(1.3)(1.3) = 7.764(ft−k)
::Moment arm = 1.833 ft. - 1.369 ft. = 0.464 ft.


<math>R_n = \frac{7.764(ft-k)}{0.9(1 ft.)(8.75 in.)^2} (1000\frac{lb}{k})</math> = 112.677 psi
::<math>P_T = \frac{\Sigma V}{A} + \frac{M_c}{I} = \frac{11.888k}{0.250A} + \frac{11.888k(0.464 ft.)(1.833 ft.)}{1.681(A)ft^2}</math>


''ρ'' = <math>\frac{0.85(3000 psi)}{60,000 psi}\Bigg[1 - \sqrt{1 - \frac{2(112.677 psi)}{0.85(3000psi)}}\Bigg]</math> = 0.00192
::<math>P_T = 53.567\frac{k}{pile} = 26.783\frac{tons}{pile} \le 56\frac{tons}{pile}</math> <u> o.k.</u>


''ρ<sub>min</sub> = <math>1.7\Big[\frac{12 in.}{8.75 in.}\Big]^2 \frac{\sqrt{3000 psi}}{60,000 psi}</math> = 0.00292
::<math>P_H = \frac{11.888k}{0.250A} - \frac{11.888k(0.464 ft.)(3.667 ft.)}{1.681(A)ft^2}</math> = 35.519k


Use ''ρ'' = 4/3 ''ρ'' = 4/3 (0.00192) = 0.00256
::<math>P_H = 17.760\frac{tons}{pile} \le 56\frac{tons}{pile} </math> <u> o.k.</u>


A<sub>S<sub>Req</sub></sub> = 0.00256(12 in.)(8.75 in.) = 0.269 in.<sup>2</sup>/ft.
::'''Check Sliding'''


::<math>F.S._{Sliding} = \frac{3.285k + 5.903k + 0.832k}{0.902k + 2.256k + 0.714k}</math> = 2.588 ≥ 1.2 <u> o.k.</u>


<u>Use # 4 @ 8.5 in cts.</u>
:'''Case III'''


Check Shear
:F.S. for overturning ≥ 1.5


:<math>\frac{\nu_u}{\phi} = \frac{1.3(3.379k)(1.3)}{0.85(12 in.)(8.75.)}(1000\frac{lb}{k} ) = 64.0 psi < 2\sqrt{3000 psi}</math> = 109.5 psi <u>o.k.</u>
:F.S. for sliding ≥ 1.5


'''Reinforcement Summary'''
::'''Check Overturning'''


[[Image:751.24.3.3 summary.jpg|500px|center]]
::''ΣM<sub>R</sub>'' = (22.887 + 26.960 + 3.584)(ft−k) = 53.431(ft−k)


==== 751.40.8.15.6 Example 2: L-Shaped Cantilever Wall ====
::''ΣM<sub>OT</sub>'' = 18.799(ft−k)


[[image:751.24.3.4.jpg|center|650px|thumb|<center>'''Typical Section thru Wall</center><center>(Spread Footing)</center>''']]
::<math>F.S._{OT} = \frac{\Sigma M_R}{\Sigma M_{OT}} = \frac{53.431(ft-k)}{18.799(ft-k)}</math> = 2.842 ≥ 1.5 <u> o.k.</u>


''f'<sub>c</sub>'' = 4000 psi
::'''Check Pile Bearing'''


''f<sub>y</sub>'' = 60,000 psi
::<math>e = \frac{\Sigma M}{\Sigma V} = \frac{(13.174 + 18.930)(ft-k) - 7.519(ft-k)}{(5.828 + 4.820)k}</math> = 2.309 ft.


''φ'' = 29°
::Moment arm = 2.309 ft. - 1.833 ft. = 0.476 ft.


''γ<sub>s</sub> = 120 pcf
::<math>P_T = \frac{10.648k}{0.250A} - \frac{10.648k(0.476 ft.)(1.833 ft.)}{1.681(A)ft^2}</math> = 37.065k


Allowable soil pressure = 1.5 tsf = 3.0 ksf
::<math>P_T = 18.532\frac{tons}{pile} \le 56\frac{tons}{pile}</math> <u> o.k.</u>


Retaining wall is located in Seismic Performance Category (SPC) A.
::<math>P_H = \frac{10.648k}{0.250A} + \frac{10.648k(0.476 ft.)(3.667 ft.)}{1.681(A)ft^2}</math> = 53.649k


<math>\delta = tan^{-1}\frac{1}{2.5}</math> = 21.801°
::<math>P_H = 26.825\frac{tons}{pile} \le 56\frac{tons}{pile} </math> <u> o.k.</u>


<math>C_a = cos \delta\Bigg[\frac{cos \delta - \sqrt{cos^2\delta - cos^2\phi}}{cos \delta + \sqrt{cos^2\delta - cos^2\phi}}\Bigg]</math> = 0.462
::'''Check Sliding'''


<math>C_p = tan^2\Big[45 + \frac{\phi}{2}\Big]</math> = 2.882
::<math>F.S._{Sliding} = \frac{3.285k+5.903k+0.832k}{2.256k}</math> = 4.441 ≥ 1.5 <u> o.k.</u>


''P<sub>A</sub>'' = 1/2 ''γ<sub>s</sub>'' C<sub>a</sub>H<sup>2</sup> = 1/2 (0.120 k/ft<sup>3</sup>)(0.462)(4.958 ft.)<sup>2</sup> = 0.681k
:'''Case IV'''


For sliding, P<sub>P</sub> is assumed to act only on the portion of key below the frost line that is set at an 18 in. depth on the southern border.
::'''Check Pile Bearing'''


''P<sub>P</sub>'' = 1/2 (0.120 k/ft<sup>3</sup>)(2.882)[(2.458 ft.)<sup>2</sup> − (1.500 ft.)<sup>2</sup>] = 0.656k
::<math>e = \frac{\Sigma M}{\Sigma V} = \frac{(13.174 + 18.930)(ft-k)}{5.828k + 4.820k}</math> = 3.015 ft.


'''Assumptions'''
::Moment arm = 3.015 ft. - 1.833 ft. = 1.182 ft.


* Design is for a unit length (1 ft.) of wall.
::<math>P_H = \frac{\Sigma V}{A} + \frac{M_c}{I} = \frac{10.648k}{0.250A} + \frac{10.648k(1.182 ft.)(3.667 ft.)}{1.681(A)ft^2}</math>


* Sum moments about the toe at the bottom of the footing for overturning.
::<math>P_H = 70.047k = 35.024 \frac{tons}{pile}</math>


* F.S. for overturning ≥ 2.0 for footings on soil.
::25% overstress is allowed on the heel pile:


* F.S. for sliding ≥ 1.5 for footings on soil.
::<math>P_H = 35.024\frac{tons}{pile} \le 1.25 (56\frac{tons}{pile}) = 70 \frac{tons}{pile}</math> <u> o.k.</u>


* Resultant of dead load and earth pressure to be in back half of the middle third of the footing if subjected to frost heave.
::<math>P_T = \frac{10.648k}{0.250A} - \frac{10.648k(1.182 ft.)(1.833 ft.)}{1.681(A)ft^2}</math> = 28.868k


* For all loading combinations the resultant must be in the middle third of the footing except for collision loads.
::<math>P_T = 14.434\frac{tons}{pile} \le 56\frac{tons}{pile} </math> <u> o.k.</u>


* The top 12 in. of the soil is not neglected in determining the passive pressure because the soil there will be maintained.
:'''Reinforcement - Stem'''


* Frost line is set at 18 in. at the south border for Missouri.
[[image:751.24.3.5 reinforcement stem.jpg|300px|center]]


* Portions of shear key which are above the frost line are assumed not to resist sliding by passive pressure.
:b = 12 in.


* Use of a shear key shifts the failure plane to "B" where resistance to sliding is also provided by friction of soil along the failure plane in front of the shear key. Friction between the soil and concrete behind the shear key will be neglected.
:cover = 2 in.


* Soil cohesion along the failure plane is neglected.
:h = 16 in.


* Live loads can move to within 1 ft. of the stem face and 1 ft. from the toe.
:d = 16 in. - 2 in. - 0.5(0.625 in.) = 13.688 in.
 
:''F<sub>Collision</sub>'' = 0.714k/ft
 
::<math>P_{LL} = \gamma_s C_A H(2.000 ft.) = (2.000 ft.)(0.376)(7.000 ft.)(0.120 \frac{k}{ft^3}) = 0.632\frac{k}{ft}</math>
 
::<math>P_{A_{Stem}} = \frac{1}{2} \gamma_s C_A H^2 = \frac{1}{2}\Big[0.120 \frac{k}{ft^3}\Big](0.376)(7.000 ft.)^2 = 1.105\frac{k}{ft} </math>
 
:::'''Apply Load Factors'''
 
:::''F<sub>Col.</sub>'' = ''γβ<sub>LL</sub>''(0.714k) = (1.3)(1.67)(0.714k) = 1.550k


* The wall is designed as a cantilever supported by the footing.
:::''P<sub>LL</sub>'' = ''γβ<sub>E</sub>'' (0.632k) = (1.3)(1.67)(0.632k) = 1.372k


* Footing is designed as a cantilever supported by the wall. Critical sections for bending and shear will be taken at the face of the wall.
:::''P<sub>A<sub>Stem</sub></sub>'' = ''γβ<sub>E</sub>'' (1.105k) = (1.3)(1.3)(1.105k) = 1.867k


* Load factors for AASHTO Groups I-VI for design of concrete are:
::''M<sub>u</sub>'' = (10.00 ft.)(1.550k) + (3.500 ft.)(1.372k) + (2.333 ft.)(1.867k)


::*''γ'' = 1.3.
::''M<sub>u</sub>'' = 24.658(ft−k)


::*''β<sub>E</sub>'' = 1.3 for horizontal earth pressure on retaining walls.
::<math>R_n = \frac{M_u}{\phi b d^2} = \frac{24.658(ft-k)}{(0.9)(1 ft.)(13.688 in.)^2}</math> = 0.146ksi


::*''β<sub>E</sub>'' = 1.0 for vertical earth pressure.
::<math>\rho = \frac{0.85f'_c}{f_y}\Bigg[1 - \sqrt{1 - \frac{2R_n}{0.85f'_c}}\Bigg] =  
\frac{0.85(3 ksi)}{60 ksi}\Bigg[1 - \sqrt{1 - \frac{2(0.146 ksi)}{0.85(3 ksi)}}\Bigg]</math> = 0.00251


::*''β<sub>LL</sub>'' = 1.67 for live loads and collision loads.
::<math>\rho_{min} = 1.7\Big[\frac{h}{d}\Big]^2 \frac{\sqrt{f'_c}}{f_y} = 1.7\Big[\frac{16 in.}{13.688 in.}\Big]^2 \frac{\sqrt{3000 psi}}{60,000 psi}</math> = 0.00212


'''Dead Load and Earth Pressure - Stabilty and Pressure Checks'''
::''ρ'' = 0.00251


{| border="1" class="wikitable" style="margin: 1em auto 1em auto"
::<math>A_{S_{Req.}} = \rho bd = (0.00251)(12 in.)(13.688 in.) = 0.412 \frac{in^2}{ft.}</math>
|+
|-
!colspan="4" style="background:#BEBEBE" |Dead Load and Earth Pressure - Stabilty and Pressure Checks
|-
!style="background:#BEBEBE" |Load !!style="background:#BEBEBE" |Force (k) !!style="background:#BEBEBE" |Arm (in.) !!style="background:#BEBEBE"|Moment (ft-k)
|-
|align="center"|(1)||align="center"| (0.833 ft.)(5.167 ft.)(0.150k/ft<sup>3</sup>) = 0.646||align="center"| 5.333||align="center"| 3.444
|-
|align="center"|(2)||align="center"| (0.958ft)(5.750ft)(0.150k/ft3) = 0.827||align="center"| 2.875||align="center"| 2.376
|-
|align="center"| (3)||align="center"|  (1.000ft)(1.500ft)(0.150k/ft3) = 0.22534.259||align="center"| 4.250 ||align="center"| 0.956
|-
|align="center" colspan="3"|ΣV = 1.698 ||align="center"| ΣM<sub>R</sub> = 6.776
|-
|align="center"| P<sub>AV</sub>||align="center"|  0.253 ||align="center"| 5.750 ||align="center"| 1.455
|-
|align="center" colspan="3"| ΣV = 1.951||align="center"|  ΣM<sub>R</sub> = 8.231
|-
|align="center"| P<sub>AH</sub> ||align="center"| 0.633 ||align="center"| 1.653 ||align="center"| 1.045
|-
|align="center"| P<sub>P</sub>||align="center"|  0.656 ||align="center"| 1.06<sup>1</sup>||align="center"| -
|-
|colspan="4" align="right"|ΣM<sub>OT</sub> = 1.045
|-
|colspan="4"|<sup>'''1'''</sup> The passive pressure at the shear key is ignored in overturning checks.
|}


:'''Overturning'''
::One #5 bar has A<sub>S</sub> = 0.307 in<sup>2</sup>


:<math>F.S. = \frac{\Sigma M_R}{\Sigma M_{OT}} = \frac{8.231(ft-k)}{1.045(ft-k)}</math> = 7.877 ≥ 2.0 <u>o.k.</u>
::<math>\frac{s}{0.307 in^2} = \frac{12 in.}{0.412 in^2}</math>


:'''Location of Resultant'''
::''s'' = 8.9 in.


:MoDOT policy is that the resultant must be in the back half of the middle third of the footing when considering dead and earth loads:
::<u>Use # 5 bars @ 8.5 in. cts.</u>


:<math>\Bigg[\frac{5.750 ft.}{2} = 2.875 ft.\Bigg] \le \bar{x} \le \Bigg[\Bigg(\frac{5.750 ft.}{2} + \frac{5.750 ft.}{6}\Bigg) = 3.833 ft.\Bigg] </math>
:::'''Check Shear'''


:<math>\bar{x} = \frac{M_{NET}}{\Sigma V} = \frac{8.231(ft-k) - 1.045(ft-k)}{1.951k}</math> = 3.683 ft. <u>o.k.</u>
:::''V<sub>u</sub>'' ≤ ''φV<sub>n</sub>''


:'''Sliding'''
:::''V<sub>u</sub>'' = ''F<sub>Collision</sub>'' + ''P<sub>LL</sub>'' + ''P<sub>A<sub>Stem</sub></sub>'' = 1.550k + 1.372k + 1.867k = 4.789k


:<math>F.S. = \frac{P_P + \Sigma V \Bigg[\Big(\frac{L_2}{L_1}\Big)tan\phi_{s-s} + \Big(\frac{L_3}{L_1}\Big)tan\phi_{s-c}\Bigg]}{P_{AH}}</math>


:where:  
:::<math>\frac{\nu_u}{\phi} = \frac{v_u}{\phi bd} = \frac{4789 lbs}{0.85(12 in.)(13.688 in.)}</math> = 34.301 psi
::''φ<sub>s-s</sub>'' = angle of internal friction of soil


::''φ<sub>s-c</sub>'' = angle of friction between soil and concrete = (2/3)''φ<sub>s-s</sub>''
:::<math> \nu_n = \nu_c = 2\sqrt{f'_c} = 2\sqrt{3000psi}</math> = 109.5 psi > 34.3 psi <u>o.k.</u>


:<math>F.S. = \frac{0.656k +(1.951k)\Big[\Big(\frac{3.75 ft.}{5.75 ft.}\Big)tan 29^\circ + \Big(\frac{1 ft.}{5.75 ft.}\Big) tan\Big(\frac{2}{3}(29^\circ)\Big)\Big]}{0.633 k}</math> = 2.339 ≥ 1.5 <u>o.k.</u>
::'''Reinforcement - Footing - Top Steel'''


:'''Footing Pressure'''
[[image:751.24.3.5 footing.jpg|300px|center]]


:<math>P = \frac{\Sigma V}{bL} \Big[1 \pm \frac{6e}{L}\Big]</math>
::b = 12 in.


:<math>e = \bar{x} - \frac{L}{2} = 3.683 ft. - \frac{5.75 ft.}{2}</math> = 0.808 ft.
::cover = 3 in.


:Heel: <math>P_H = \frac{1.951k}{(1 ft.)(5.75 ft.)}\Big[1 + \frac{6(0.808 ft.)}{5.75 ft.}\Big]</math> = 0.625 ksf < 3.0 ksf <u>o.k.</u>
::h = 36 in.


:Toe: <math>P_T = \frac{1.951k}{(1 ft.)(5.75 ft.)}\Big[1 - \frac{6(0.808 ft.)}{5.75 ft.}\Big]</math> = 0.053 ksf < 3.0 ksf <u>o.k.</u>
::d = 36 in. - 3 in. - 0.5(0.5 in.) = 32.750 in.


'''Dead Load, Earth Pressure, and Live Load - Stability and Pressure Checks'''
::Design the heel to support the entire weight of the superimposed materials.


Stability is not an issue because the live load resists overturning and increases the sliding friction force.
::Soil(1) = 4.340k/ft.


[[image:751.24.3.4 checks.jpg|center|250px]]
::LL<sub>s</sub> = 1.240k/ft.


The live load will be distributed as:
::<math>Slab \ wt. = (3.000 ft.)\Big[0.150 \frac{k}{ft^3}\Big](5.167 ft.)</math> = 2.325k/ft.


<math> F_{LL} = \frac{LL_{WL}}{E}</math>
:::'''Apply Load Factors'''


:where E = 0.8X + 3.75
:::Soil(1) = ''γβ<sub>E</sub>''(4.340k) = (1.3)(1.0)(4.340k) = 5.642k


::X = distance in feet from the load to the front face of wall
:::''LL<sub>s</sub>'' = ''γβ<sub>E</sub>''(1.240k) = (1.3)(1.67)(1.240k) = 2.692k


The live load will be positioned as shown by the dashed lines above. The bearing pressure and resultant location will be determined for these two positions.
:::Slab wt. = ''γβ<sub>D</sub>''(2.325k) = (1.3)(1.0)(2.325k) = 3.023k


:'''Live Load 1 ft From Stem Face'''
::''M<sub>u</sub>'' = (2.583 ft.)(5.642k + 2.692k + 3.023k) = 29.335(ft−k)


::'''Resultant Eccentricity'''
::<math>R_n = \frac{M_u}{\phi bd^2} = \frac{29.335(ft-k)}{(0.9)(1 ft.)(32.750 in.)^2}</math> = 0.0304 ksi
::<math>\rho = \frac{0.85(3ksi)}{60ksi}\Bigg[1 - \sqrt{1 - \frac{2(0.0304ksi)}{0.85(3ksi)}}\Bigg]</math> = 0.000510


::X = 1 ft.
::<math>\rho_{min} = 1.7\Big[\frac{36 in.}{32.750 in.}\Big]^2 \frac{\sqrt{3000 psi}}{60,000psi}</math> = 0.00188


::E = 0.8(1 ft.) + 3.75 = 4.55 ft.
::Use ''ρ'' = 4/3 ''ρ'' = 4/3 (0.000510) = 0.000680


::<math>F_{LL} = \frac{16k}{4.55 ft.} (1 ft.)</math> = 3.516k
::<math>A_{S_{Req}} = \rho bd = (0.000680)(12 in.)(32.750 in.) = 0.267\frac{in^2}{ft.}</math>


::<math>\bar{x} = \frac{M_{NET}}{\Sigma V} = \frac{8.231(ft-k) + (3.516k)(3.917 ft.) - 1.045(ft-k)}{1.951k + 3.516k}</math> = 3.834 ft.
::One #4 bar has A<sub>s</sub> = 0.196 in.<sup>2</sup>


::<math>e = \bar{x} - \frac{L}{2} = 3.834 ft. - \frac{5.75 ft.}{2} = 0.959 ft. \le \frac{L}{6}</math> = 5.75 ft. <u>o.k.</u>
::<math>\frac{s}{0.196 in^2} = \frac{12 in}{0.267 in.^2}</math>


::'''Footing Pressure'''
::''s'' = 8.8 in.


::<math>P = \frac{\Sigma V}{bL} \Big[1 \pm \frac{6e}{L}\Big]</math>
::<u>Use #4 bars @ 8.5 in. cts.</u>


::Allowable Pressure = 3.0 ksf
:::'''Check Shear'''


::Heel: <math>P_H = \frac{5.467k}{(1 ft.)(5.75 ft.)}\Big[1 + \frac{6(0.959 ft.)}{5.75 ft.}\Big]</math> = 1.902 ksf
:::<math>V_u = Soil(1) + LL_s + Slab \ wt. = 5.642k + 2.692k + 3.023k = 11.357k</math>


::Toe: <math>P_T = \frac{5.467k}{(1 ft.)(5.75 ft.)}\Big[1 - \frac{6(0.959 ft.)}{5.75 ft.}\Big]</math> = 0.000ksf
:::<math>\frac{\nu_u}{\phi} = \frac{V_u}{\phi bd} = \frac{11357 lbs}{(0.85)(12 in.)(32.750 in.)}</math> = 33.998 psi ≤ 109.5 psi = ''ν<sub>c</sub>''  <u>o.k.</u>


:'''Live Load 1 ft From Toe'''
::'''Reinforcement - Footing - Bottom Steel'''


::'''Resultant Eccentricity'''
::Design the flexural steel in the bottom of the footing to resist the largest moment that the heel pile could exert on the footing. The largest heel pile bearing force was in Case IV. The heel pile will cause a larger moment about the stem face than the toe pile (even though there are two toe piles for every one heel pile) because it has a much longer moment arm about the stem face.


::X = 3.917 ft.
[[image: 751.24.3.5 heel pile.jpg|center|300px]]


::E = 0.8(3.917 ft.) + 3.75 = 6.883 ft.
::Pile is embedded into footing 12 inches.


::<math>F_{LL} = \frac{16k}{6.883 ft} (1 ft.)</math> = 2.324k
::''b'' = 12 in.


::<math>x = \frac{8.231(ft-k) + (2.324k)(1ft.) - 1.045(ft-k)}{1.951k + 2.324k}</math> = 2.225 ft.  
::''h'' = 36 in.


::<math>e = \frac{L}{2} - \bar{x} = \frac{5.75 ft.}{2} - 2.225 ft. = 0.650 ft. \le \frac{L}{6} = \frac{5.75 ft.}{6}</math> = 0.958 ft. <u>o.k.</u>
::''d'' = 36 in. - 4 in. = 32 in.


::'''Footing Pressure'''
:::'''Apply Load Factors to Case IV Loads'''


::Allowable Pressure = 3.0ksf
:::<math>\Sigma V = \gamma \beta_D\Big[5.828 \frac{k}{ft.}\Big] + \gamma \beta_E \Big[4.820 \frac{k}{ft.}\Big]</math>


::Heel: <math>P_H = \frac{4.275k}{(1 ft.)(5.75 ft.}\Big[1 - \frac{6 (0.650 ft.)}{5.75 ft.}\Big]</math> = 0.239ksf <u>o.k.</u>
:::<math>\Sigma V = 1.3(1.0)\Big[5.828\frac{k}{ft.}\Big] + 1.3(1.0)\Big[4.820\frac{k}{ft.}\Big]</math>


::Toe: <math>P_T = \frac{4.275k}{(1 ft.)(5.75 ft.}\Big[1 + \frac{6 (0.650 ft.)}{5.75 ft.}\Big]</math> = 1.248ksf <u>o.k.</u>
:::''ΣV'' = 13.842 k/ft.


'''Dead Load, Earth Pressure, Collision Load, and Live Load - Stability and Pressure Checks'''
:::<math>\Sigma M = \gamma \beta_D\Big[13.174\frac{(ft-k)}{ft.}\Big] + \gamma \beta_E\Big[18.930\frac{(ft-k)}{ft.}\Big]</math>


During a collision, the live load will be close to the wall so check this combination when the live load is one foot from the face of the stem. Sliding (in either direction) will not be an issue. Stability about the heel should be checked although it is unlikely to be a problem. There are no criteria for the location of the resultant, so long as the footing pressure does not exceed 125% of the allowable. It is assumed that the distributed collision force will develop an equal and opposite force on the fillface of the back wall unless it exceeds the passive pressure that can be developed by soil behind the wall.
:::<math>\Sigma M = (1.3)(1.0)\Big[13.174\frac{(ft-k)}{ft.}\Big] + (1.3)(1.0)\Big[18.930\frac{(ft-k)}{ft.}\Big]</math>


''F<sub>LL</sub>'' = 3.516k
:::''ΣM'' = 41.735 (ft−k)/ft.


[[image:751.24.3.4 collision.jpg|center|250px]]
::e = <math>\frac{\Sigma M}{\Sigma V} = \frac{41.735 (ft-k)}{13.842k}</math> = 3.015 ft.


''F<sub>COLL</sub>'' = <math>\frac{10k}{2(3 ft.)}(1 ft.)</math> = 1.667k
::Moment arm = 3.015 ft. - 1.833 ft. = 1.182 ft.


<math>C_P = cos \delta \Bigg[\frac{cos \delta + \sqrt{cos^2 \delta - cos^2 \phi}}{cos \delta - \sqrt{cos^2 \delta - cos^2 \phi}}\Bigg]</math> = 1.867
::<math>P_H = \frac{\Sigma V}{A} + \frac{M_c}{I} = \frac{13.842k}{0.250A} + \frac{13.842k (1.182 ft.)(3.667 ft.)}{1.681(A)ft^2}</math>


<math>P_{PH} = \frac{1}{2}\gamma_s C_P H^2 cos\delta = \frac{1}{2}(0.120kcf)(1.867)(4.958ft)^2 cos(21.801^\circ)</math>
::<math>P_H = 91.059 \frac{k}{pile}\Big(\frac{1}{12 ft.}\Big)</math> = 7.588 k/ft.


''P<sub>PH</sub>'' = 2.556k > ''F<sub>COLL</sub>''  Thus the soil will develop an equal but opp. force.
::<math>M_u = \Big(7.588\frac{k}{ft.}\Big)(3.667 ft.)</math> = 27.825(ft−k)/ft.


:'''Overturning About the Heel'''
::<math>R_n = \frac{M_u}{\phi bd^2} = \frac{27.825(ft-k)}{(0.9)(1 ft.)(32 in.)^2}</math> = 0.0301 ksi


:F.S. = <math>\frac{(0.646k)(0.417 ft.) + (0.827k)(2.875 ft.) + (0.225k)(1.500 ft.) + (3.516k)(1.833 ft.) + (1.667k)\big(\frac{4.958 ft.}{3}\big)}{(1.667k)(3.958 ft.)}</math>
::<math>\rho = \frac{0.85(3 ksi)}{60ksi}\Bigg[1 - \sqrt{1 - \frac{2(0.0301 ksi)}{0.85(3 ksi)}}\Bigg]</math> = 0.000505


:F.S. = <math>\frac{12.184(ft-k)}{6.598(ft-k)}</math> = 1.847 ≥ 1.2 <u>o.k.</u>
::<math>\rho_{min} = 1.7\Big[\frac{36 in.}{32 in.}\Big]^2 \frac{\sqrt{3000 psi}}{60,000 psi}</math> = 0.00196


:'''Footing Pressure'''
::Use ''ρ'' = 4/3 ''ρ'' = 4/3 (0.000505) = 0.000673


:<math>\bar{x} = \frac{12.184(ft-k) - 6.598(ft-k)}{1.951k + 3.516k}</math> = 1.022 ft. from heel
::''A<sub>S<sub>Req</sub></sub> = ρbd'' = (0.000673)(12 in.)(32 in.) = 0.258 in<sup>2</sup>/ft.''


:''e'' = <math>\frac{5.75 ft.}{2} - 1.022 ft.</math> = 1.853 ft.


:Allowable Pressure = (1.25)(3.0ksf) = 3.75ksf
::One #4 bar has A<sub>s</sub> = 0.196 in<sup>2</sup>.


:Heel: <math> P_H =\frac {2(\Sigma V)}{3b[\frac{L}{2} - e]} = \frac {2(5.467k)}{3(1 ft.)\big[\frac{5.75 ft.}{2} - 1.853 ft.\big]}</math> = 3.566ksf <u>o.k.</u>
::<math>\frac{s}{0.196 in.^2} = \frac{12 in.}{0.258 in.^2}</math>


'''Stem Design-Steel in Rear Face'''
::''s'' = 9.1 in.


[[image:751.24.3.4 steel in rear face.jpg|center|250px]]
::<u>Use #4 bars @ 9 in. cts.</u>


''γ'' = 1.3
:::'''Check Shear'''


''β<sub>E</sub>'' = 1.3 (active lateral earth pressure)
:::The critical section for shear for the toe is at a distance d = 21.75 inches from the face of the stem. The toe pile is 6 inches from the stem face so the toe pile shear does not affect the shear at the critical section. The critical section for shear is at the stem face for the heel so all of the force of the heel pile affects the shear at the critical section. The worst case for shear is Case IV.


d = 10 in. − 2 in. − (0.5 in./2) = 7.75 in.
:::''V<sub>u</sub>'' = 7.588k


<math>P_{AH} = \frac{1}{2}\gamma_s C_a H^2 cos\delta = \frac{1}{2}\Bigg[0.120 \frac{k}{ft^3}\Bigg](0.462)(4 ft.)^2(1 ft.) cos 21.801^\circ</math>
:::<math>\frac{\nu_u}{\phi} = \frac{V_u}{\phi bd} = {7588 lbs}{0.85(12 in.)(32 in.)}</math> = 23.248 psi ≤ 109.5 psi = ''ν<sub>c</sub>'' <u>o.k.</u>


''P<sub>AH</sub>'' = 0.412k
::'''Reinforcement - Shear Key'''


''M<sub>u</sub>'' = (1.333 ft.)(0.412k)(1.3)(1.3) = 0.928(ft−k)
::''b'' = 12 in.


<math>R_n = \frac{M_u}{\phi b d^2} = \frac{0.928(ft-k)}{(0.9)(1 ft.)(7.75 in.)^2}\Big(1000\frac{lb}{k}\Big)</math> = 17.160psi
::''h'' = 12 in.


<math>\rho = \frac{0.85f_c}{f_y}\Bigg[1 - \sqrt{1 - \frac{2R_n}{0.85 f_c}}\Bigg]</math>
::cover = 3 in.


<math>\rho = \frac{4000 psi}{60,000 psi}\Bigg[1 - \sqrt{1 - \frac{2(17.160 psi)}{0.85 (4000psi)}}\Bigg]</math> = 0.000287
::''d'' = 12 in. - 3 in. - 0.5(0.5 in.) = 8.75 in.


<math>\rho_{min} = 1.7 \Bigg[\frac{h}{d}\Bigg]^2 \frac{\sqrt{f_c}}{f_y}</math>
:::'''Apply Load Factors'''


<math>\rho_{min} = 1.7 \Bigg[\frac{10 in.}{7.75 in.}\Bigg]^2 \frac{\sqrt{4000 psi}}{60000 psi}</math> = 0.00298
:::''P<sub>P</sub> = γβ<sub>E</sub>'' (3.845k) = (1.3)(1.3)(3.845k) = 6.498k


Use ''ρ'' = (4/3)ρ = (4/3)(0.000287) = 0.000382
::''M<sub>u</sub>'' = (0.912 ft.)(6.498k) = 5.926(ft−k)


<math>A_{S_{Req}} = \rho bd = 0.000382(12 in.)(7.75 in.) = 0.036 \frac{in^2}{ft.}</math>
::<math>R_n = \frac{M_u}{\phi bd^2} = \frac{5.926(ft-k)}{(0.9)(1 ft.)(8.75 in.)^2}</math> = 0.0860 ksi


One #4 bar has A<sub>S</sub> = 0.196 in<sup>2</sup>, so the required minimum of one #4 bar every 12 in. controls.
::<math>\rho = \frac{0.85(3ksi)}{60ksi}\Bigg[1 - \sqrt{1 - \frac{2(0.0860ksi)}{0.85(3ksi)}}\Bigg]</math> = 0.00146


<u>Use #4's @ 12 in. (min)</u>
::<math>\rho_{min} = 1.7\Big[\frac{12 in.}{8.75 in}\Big]^2\frac{\sqrt{3000 psi}}{60,000 psi}</math> = 0.00292


(These bars are also the bars in the bottom of the footing so the smaller of the two required spacings will be used.)
::Use ''ρ'' = 4/3 ''ρ'' = 4/3(0.00146) = 0.00195


:'''Check Shear'''
::''A<sub>S<sub>Req</sub></sub> = ρbd'' = (0.00195)(12 in.)(8.75 in.) = 0.205 in.<sup>2</sup>/ft.


:<math>\frac{\nu_u}{\phi} \le V_n</math>


:<math>\frac{\nu_u}{\phi} = \frac{(1.3)(1.3)(0.412k)}{0.85(12 in.)(7.75 in.)}(1000\frac{lb}{k})</math> = 8.8 psi
::One #4 bar has A<sub>s</sub> = 0.196 in<sup>2</sup>


:<math>\nu_c = 2 \sqrt{f'_c}</math>


:<math>\nu_c = 2 \sqrt{4, 000 psi}</math> = 126.5 psi > 8.8 psi <u>o.k.</u>
::<math>\frac{s}{0.196 in.^2} = \frac{12 in.}{0.205 in.^2}</math>


'''Stem Design-Steel in Front Face (Collision Loads)'''
::''s'' = 11.5 in.


[[image:751.24.3.4 steel in front face.jpg|center|300px]]
::<u>Use #4 bars @ 11 in. cts.</u>


:::'''Check Shear'''


The soil pressure on the back of the stem becomes passive soil pressure during a collision, however this pressure is ignored for reinforcement design.
:::<math>\frac{\nu_u}{\phi} = \frac{V_u}{\phi bd} = \frac{6498 lbs}{0.85(12 in.)(8.75 in.)}</math> = 72.807 psi < 109.5 psi = ''ν<Sub>c</sub>''


''γ'' = 1.3
::'''Reinforcement Summary'''


''β<sub>LL</sub>'' = 1.67
[[image:751.24.3.5 summary.jpg|center|350px]]


<math>d = 10 in. - 1.5 in. - 0.5 in. - \frac{0.5 in.}{2}</math> = 7.75 in.
==== 751.40.8.15.8 Dimensions ====
'''Cantilever Walls'''
Each section of wall shall be in increments of 4 ft. with a maximum length of 28'-0".
[[image:751.24.3.6 friction or bearing piles.jpg|center|800px]]


<math>F_{COLL} = \frac{10k}{2L} = \frac{10k}{(2)(3 ft.)}</math> = 1.667 k/ft.


''M<sub>u</sub>'' = 1.667k/ft. (1 ft.)(3 ft.)(1.3)(1.67) = 10.855(ft−k)
Each section of wall shall be in increments of 4 ft. with a maximum length of 28'-0".
[[image:751.24.3.6 pile footing.jpg|center|800px]]


<math>R_n = \frac{10.855(ft-k)}{0.9(1 ft.)(7.75 in.)^2} (1000\frac{lb}{k})</math> = 200.809 psi


<math>\rho = \frac{0.85(4000 psi)}{60,000 psi}\Bigg[1 - \sqrt{1 - \frac{2(200.809 psi)}{0.85(4000psi)}}\Bigg]</math> = 0.00345
'''Cantilever Walls - L-Shaped'''


<math>\rho_{min} = 1.7\Bigg[\frac{10 in.}{7.75 in.}\Bigg]^2 \frac{\sqrt{4000 psi}}{60,000 psi}</math> = 0.00298
Each section of wall shall be in increments of 4 ft. with a maximum length of 28'-0".
[[image:751.24.3.6 L shaped.jpg|center|800px]]


<math>A_{S_{Req}} = 0.00345 (12 in.)(7.75 in.) = 0.321 \frac{in.^2}{ft.}</math>


One #4 bar has A<sub>S</sub> = 0.196 in<sup>2</sup>.
'''Counterfort Walls'''
[[image:751.24.3.6 counterfort part elev.jpg|center|800px|thumb|
{| style="margin: 1em auto 1em auto style="text-align:left""
|-
|'''Notes:'''
|-
|'''Dimension "A"'''
|-
|• Maximum length = 28'-0".
|-
|• Each section to be in 4'-0" increments.
|-
|• (See [[#Rustication Recess|rustication recess details]].)
|-
|'''Dimensions "B" & "C"'''
|-
|• As required by the design to balance the negative and positive moments. (See the design assumptions).
|}]]


<math>\frac{s}{0.196 in.^2} = \frac{12 in.}{0.321 in.^2}</math>
[[image:751.24.3.6 counterfort typ section.jpg|center|800px|thumb|
 
{| style="margin: 1em auto 1em auto style="text-align:left""
''s'' = 7.3 in.
|-
 
|'''Notes:'''
<u>Use #4's @ 7 in.</u>
|-
 
|'''Batter  "D":'''
:'''Check Shear'''
|-
|* As required to maintain 9" minimum at the top of the counterfort and 12" minimum edge distance at the top of the footing, between counterfort and footing edge.
|-
|* Batter to be given an eighth of an inch per foot of counterfort height.
|-
|'''Dimension "L":'''
|-
|* As required for stability.
|-
|* As an estimate, use "L" equal to 1/2 the height of "H".
|}]]


:<math>\frac{\nu_u}{\phi} = \frac{(1.3)(1.67)(1.667k)}{(0.85)(12 in.)(7.75 in.)} (1000\frac{lb}{k})</math> = 45.8 psi < 126.5 psi <u>o.k.</u>
'''Sign-Board Type Counterfort Walls'''
[[image:751.24.3.6 sign board part elev.jpg|center|800px|thumb|
{| style="margin: 1em auto 1em auto style="text-align:left""
|-
|'''Notes:'''
|-
|'''Dimension "A"'''
|-
|* Maximum length = 28'-0".
|-
|* Each section to be in 4'-0" increments.
|-
|* (See [[#Rustication Recess|rustication recess details]].)
|-
|'''Dimensions "B" & "C"'''
|-
|* As required by the design to balance the negative and positive moments. (See the design assumptions).
|-
|'''Dimension "E"'''
|-
|* (Sign-board type only)
|-
|* As required to maintain footing pressure within the allowable for existing foundation material. 12" minimum.


'''Footing Design - Bottom Steel'''
|}]]


It is not considered necessary to design footing reinforcement based upon a load case which includes collision loads.
[[image:751.24.3.6 sign board typ section.jpg|center|800px|thumb|
{| style="margin: 1em auto 1em auto style="text-align:left""
|-
|'''Notes:'''
|-
|'''Batter  "D":'''
|-
|* As required to maintain 9" minimum at the top of the counterfort and 12" minimum edge distance at the top of the footing, between counterfort and footing edge.
|-
|* Batter to be given an eighth of an inch per foot of counterfort height.
|-
|'''Dimension "L":'''
|-
|* As required for stability.
|-
|* As an estimate, use "L" equal to 1/2 the height of "H".
|}]]


:'''Dead Load and Earth Pressure Only'''
==== 751.40.8.15.9 Reinforcement ====
'''Cantilever Walls'''
[[image:751.24.3.7 friction.jpg|center|800px|thumb|
{| style="margin: 1em auto 1em auto"
|-
|'''(*)''' Alternate long and short bars at equal spaces.
|-
|'''(**)''' If collision forces are assumed, use #4 @ 12" cts. min. and extend at least development length into footing.  (See [[751.5 Structural Detailing Guidelines#751.5.9.2.8.1 Development and Lap Splice General|EPG 751.5.9.2.8.1 Development and Lap Splice General]].)
|-
|'''(***)''' Theo. cut-off for bending + development length.  (Wall height over 10' only.)
|}
]]


[[image:751.24.3.4 dead load.jpg|center|250px]]
[[image:751.24.3.7 pile footing.jpg|center|800px|thumb|
{| style="margin: 1em auto 1em auto"
|-
|'''(*)''' Alternate long and short bars at equal spaces.
|-
|'''(**)''' If collision forces are assumed, use #4 @ 12" cts. min. and extend at least development length into footing.  (See [[751.5 Structural Detailing Guidelines#751.5.9.2.8.1 Development and Lap Splice General|EPG 751.5.9.2.8.1 Development and Lap Splice General]].)
|-
|'''(***)''' Theo. cut-off for bending + development length.  (Wall height over 10' only.)
|-
|'''(****)''' Due to site constriction.
|}
]]


:''Footing wt.'' = <math>\Big[\frac{11.5}{12}ft.\Big](4.917 ft.)\Big[0.150 \frac{k}{ft.^3}\Big](1 ft.)</math> = 0.707k
'''Cantilever Walls - L-Shaped'''  


:''β<sub>E</sub>'' = 1.3 (lateral earth pressure)
[[image:751.24.3.7 L shaped.jpg|center|800px|thumb|
{| style="margin: 1em auto 1em auto"
|-
|'''(*)''' Do not splice stress bars in the fill face at top of footing.
|-
|'''(**)''' If collision forces are assumed, use #4 @ 12" cts. min. and extend at least development length into footing.  (See [[751.5 Structural Detailing Guidelines#751.5.9.2.8.1 Development and Lap Splice General|EPG 751.5.9.2.8.1 Development and Lap Splice General]].)
|}
]]


:''γ'' = 1.3
'''Counterfort Walls'''
:'''Wall and Stem'''
[[image:751.24.3.7 counterfort.jpg|center|800px|thumb|
{| style="margin: 1em auto 1em auto"
|-
|<center>(For footing reinforcement, see the "Footing" diagram, below)</center>
|-
|'''(*)''' Use development length or standard hook in accordance with [[751.5 Structural Detailing Guidelines#751.5.9.2.8.1 Development and Lap Splice General|EPG 751.5.9.2.8.1 Development and Lap Splice General]].
|-
|'''(**)''' See lap splices Class B.  (See [[751.5 Structural Detailing Guidelines#751.5.9.2.8.1 Development and Lap Splice General|EPG 751.5.9.2.8.1 Development and Lap Splice General]].)
|}
]]


:Apply Load Factors:
:'''Footing'''
[[image:751.24.3.7 footing.jpg|center|800px|thumb|
{| style="margin: 1em auto 1em auto"
|-
|'''(*)''' By design for loads and footing pressures on section under consideration.  (#5 @ 12" cts. is the minimum.)
|}
]]


:''ΣV'' = 1.951k (1.3) = 2.536k
'''Counterfort Walls - Sign-Board Type'''
:'''Wall and Stem'''
:Refer to "Counterfort Walls, Wall and Stem", above.


:''ΣM<sub>R</sub>'' = 8.231(ft−k)(1.3) = 10.700(ft−k)
:'''Spread Footing'''
[[image:751.24.3.7 sign board.jpg|center|800px]]


:''ΣM<sub>OT</sub>'' = 1.045(ft−k)(1.3)(1.3) = 1.766(ft−k)
:If the shear line is within the counterfort projected (longitudinally or transversely), the footing may be considered satisfactory for all conditions. If outside of the counterfort projected, the footing must be analyzed and reinforced for bending and checked for bond stress and for diagonal tension stress.


:''Footing wt.'' = 0.707k (1.3) = 0.919k
[[image:751.24.3.7 sign board footing.jpg|center|800px]]


:<math>\bar{x} = \frac{10.700(ft-k) - 1.766(ft-k)}{2.536k}</math> = 3.523 ft.
==== 751.40.8.15.10 Details ====
'''Non-Keyed Joints'''


:<math>e = 3.523 ft. - \frac{5.75ft}{2}</math> = 0.648 ft.
Each section of wall shall be in increments of 4 ft. with a maximum length of 28'-0".
[[image:751.24.3.8 nonkeyed.jpg|center|800px]]
<center>See [[751.50 Standard Detailing Notes|EPG 751.50 Standard Detailing Notes]] for appropriate notes.</center>


:<math>P_H = \frac{2.536k}{(1 ft.)(5.75 ft.)}\Bigg[1 + \frac{6(0.648 ft.)}{5.75 ft.}\Bigg]</math> = 0.739 ksf
'''Keyed Joints'''
[[image:751.24.3.8 keyed.jpg|center|800px]]
<center>See [[751.50 Standard Detailing Notes|EPG 751.50 Standard Detailing Notes]] for appropriate notes.</center>


:<math>P_T = \frac{2.536k}{(1 ft.)(5.75 ft.)}\Bigg[1 - \frac{6(0.648 ft.)}{5.75 ft.}\Bigg]</math> = 0.143ksf


:<math>P_W = 0.143 ksf + [0.739 ksf - 0.143 ksf]\Bigg[\frac{4.917 ft.}{5.75 ft.}\Bigg]</math> = 0.653 ksf
<div id="Rustication Recess"></div>
'''Rustication Recess'''
[[image:751.24.3.8 rustication.jpg|center|800px]]


:Moment at Wall Face:


:<math>M_W = \Big[0.143\frac{k}{ft.}\Big]\Bigg[\frac{(4.917 ft.)^2}{2}\Bigg] + \frac{1}{3}(4.917 ft.)^2 \Bigg[0.653\frac{k}{ft.} - 0.143\frac{k}{ft.}\Bigg]\frac{1}{2} -  0.919k \Bigg[\frac{4.917 ft.}{2}\Bigg]</math> = 1.524(ft−k)
'''Drains'''
[[image:751.24.3.8 drains.jpg|center|800px]]
<center>Note: French drains shall be used on all retaining walls, unless otherwise specified on the Design Layout.</center>


:'''Dead Load, Earth Pressure, and Live Load'''
[[image:751.24.3.8 drop inlet.jpg|center|800px]]


::'''Live Load 1 ft. From Stem Face'''


[[image:751.24.3.4 live load.jpg|center|300px]]
'''Construction Joint Keys:
:'''Cantilever Walls'''
[[image:751.24.3.8 cantilever.jpg|center|800px]]


::''β<sub>E</sub>'' = 1.3 (lateral earth pressure)


::''β<sub>LL</sub>'' = 1.67
:'''Counterfort Walls'''
[[image:751.24.3.8 counterfort.jpg|center|800px]]


::''γ'' = 1.3


::Apply Load Factors:
::Key length: Divide the length "A" into an odd number of spaces of equal lengths.  Each space shall not exceed a length of 24 inches.  Use as few spaces as possible with the minimum number of spaces equal to three (or one key).


::''F<sub>LL</sub>'' = 3.516k(1.3)(1.67) = 7.633k
::Key width = Counterfort width/3 (to the nearest inch)


::''ΣV'' = 7.633k + 1.951k(1.3) = 10.169k
::Key depth = 2" (nominal)


::''ΣM<sub>OT</sub>'' = 1.045(ft−k)(1.3)(1.3) = 1.766(ft−k)
:'''Sign-Board Walls'''
[[image:751.24.3.8 sign board.jpg|center|800px]]


::''ΣM<sub>R</sub>'' = 8.231(ft−k)(1.3) + 3.917 ft.(7.633k) = 40.599(ft−k)
::Key length = divide length "A" or "B" into an odd number of spaces of equal lengths.  Each space length shall not exceed 24 inches. Use as few spaces as possible with the minimum number of spaces equal to three (or one key).
 
::<math>\bar{x} = \frac{40.599(ft-k) - 1.766(ft-k)}{10.169k}</math> = 3.819 ft.
 
::''e'' = 3.819 ft. − (5.75 ft./2) = 0.944 ft.
 
::<math>P_T = \Bigg[\frac{10.169k}{(1 ft.)(5.75 ft.)}\Bigg]\Bigg[{1 - \frac{ 6(0.944 ft.)}{5.75 ft.}}\Bigg]</math> = 0.026 ksf
 
::<math>P_H = \Bigg[\frac{10.169k}{(1 ft.)(5.75 ft.)}\Bigg]\Bigg[{1 + \frac{ 6(0.944 ft.)}{5.75 ft.}}\Bigg]</math> = 3.511 ksf
 
::<math>P_W = 0.026 ksf + [3.511 ksf - 0.026 ksf]\Big[\frac{4.917 ft.}{5.75 ft.}\Big]</math> = 3.006 ksf
 
::<math>P_{LL} = 0.026 ksf + [3.511 ksf - 0.026 ksf]\Bigg[\frac{3.917 ft.}{5.75 ft.}\Bigg] </math> = 2.400 ksf
 
::Footing wt. from face of wall to toe:
 
::''Footing wt.'' = <math>1.3\Bigg[\frac{11.5}{12} ft.\Bigg](4.917 ft.)\Bigg[0.150 \frac{k}{ft^3}\Bigg](1 ft.)</math> = 0.919k
 
::Footing wt. from LL<sub>WL</sub> to toe:
 
::''Footing wt.'' = <math>1.3\Bigg[\frac{11.5}{12} ft.\Bigg](3.917 ft.)\Bigg[0.150 \frac{k}{ft^3}\Bigg](1 ft.)</math> = 0.732k
 
::Moment at Wall Face:
 
::''M<sub>W</sub> = <math>0.026\frac{k}{ft} \frac{(4.917 ft.)^2}{2} - 7.633k (1 ft.) + \frac{1}{2}\Bigg[3.006\frac{k}{ft} - 0.026\frac{k}{ft}\Bigg](4.917 ft.)^2\Big[\frac{1}{3}\Big] - 0.919k\frac{(4.917 ft.)}{2}</math>
 
::M<sub>W</sub> = 2.430(ft−k)
 
::Moment at LL<sub>WL</sub>:
 
::''M<sub>LL</sub>'' = <math>0.026\frac{k}{ft} \frac{(3.917 ft.)^2}{2} - 0.732k \frac{(3.917 ft.)}{2} + \frac{1}{2}\Bigg[2.400\frac{k}{ft} - 0.026\frac{k}{ft}\Bigg](3.917 ft.)^2\Big[\frac{1}{3}\Big] </math> = 4.837(ft−k)
 
::'''Live Load 1 ft. From Toe'''
 
[[image:751.24.3.4 toe.jpg|center|250px]]
 
::Apply Load Factors:
 
::''F<sub>LL</sub>'' = 2.324k(1.3)(1.67) = 5.045k
 
::''ΣV'' = 5.045k + 1.951k(1.3) = 7.581k
 
::''ΣM<sub>OT</sub>'' = 1.045(ft−k)(1.3)(1.3) = 1.766(ft−k)
 
::''ΣM<sub>R</sub>'' = 8.231(ft−k)(1.3) + 5.045k(1ft.) = 15.745(ft−k)
 
::<math>\bar{x} = \frac{15.745(ft-k)- 1.766(ft-k)}{7.581k}</math> = 1.844 ft.
 
::<math>e = \frac{5.75 ft.}{2} - 1.844 ft.</math> = 1.031 ft.
 
::''P<sub>H</sub>'' = 0 ksf
 
::<math>P_T = \frac{2(7.581k)}{3(1 ft.)\big[\frac{5.75 ft.}{2} - 1.031 ft.\big]}</math> = 2.741 ksf
 
::''L<sub>1</sub>'' = 3[(L/2)− e]
 
::''L<sub>1</sub>'' = 3[(5.75 ft./2)− 1.031 ft.] = 5.532 ft.
 
::<math>P_W = 2.741 ksf \Big[\frac{0.615 ft.}{5.532 ft.}\Big]</math> = 0.305 ksf
 
::<math>P_{LL} = 2.741 ksf \Big[\frac{4.432 ft.}{5.532 ft.}\Big]</math> = 2.196 ksf
 
::Moment at Wall Face:
 
::''M<sub>W</sub>'' = <math> -5.045k (3.917 ft.) - 0.919k\Bigg[\frac{4.917 ft.}{2}\Bigg] + \frac{1}{2}(0.305\frac{k}{ft.})(4.917 ft.)^2 + \frac{1}{2}(4.917 ft.)^2 \Bigg[2.741\frac{k}{ft.} - 0.305\frac{k}{ft.}\Bigg]\Bigg[\frac{2}{3}\Bigg]</math> = 1.298(ft−k)
 
::Moment at LL<sub>WL</sub>:
 
::''M<sub>LL</sub>'' = <math>-0.187k(0.5 ft.) + 2.196\frac{k}{ft.}\frac{(1 ft.)^2}{2} +\frac{1}{2}(1 ft.)\Bigg[2.741\frac{k}{ft.}  - 2.196\frac{k}{ft.}\Bigg]\Bigg[\frac{2}{3}\Bigg](1 ft.)</math> = 1.186(ft−k)
 
:'''Design Flexural Steel in Bottom of Footing'''
 
:''d'' = 11.5 in. − 4 in. = 7.500 in.
 
:''M<sub>u</sub>'' = 4.837(ft−k) (controlling moment)
 
:<math>R_n = \frac{4.837(ft-k)}{0.9(1 ft.)(7.5 in.)^2}</math> = 0.096 ksi
 
:<math>\rho = \frac{0.85(4000 psi)}{60,000 psi}\Bigg[1 - \sqrt{1 - \frac{2(0.096 ksi)}{0.85(4 ksi)}}\Bigg] </math> = 0.00162
 
:<math>\rho_{min} = 1.7\Bigg[\frac{11.5 in.}{7.5 in.}\Bigg]^2\frac{\sqrt{4000 psi}}{60,000 psi}</math> = 0.00421
 
:Use ''ρ'' = (4/3)''ρ'' = (4/3)(0.00162) = 0.00216
 
:''A<sub>S<sub>Req</sub></sub>'' = 0.00216(12 in.)(7.5 in.) = 0.194 in<sup>2</sup>/ft.
 
 
:<math>\frac{s}{0.196 in^2} = \frac{12 in.}{0.194 in^2}</math>
 
:''s'' = 12.1 in.
 
:<u>Use #4's @ 12 in. cts.</u> (Also use this spacing in the back of the stem.)
 
:'''Check Shear'''
 
::'''Dead Load and Earth Pressure Only'''
 
::<math>V_W = 0.143\frac{k}{ft.}(4.917 ft.) + \frac{1}{2}(4.917 ft.)\Big[0.653\frac{k}{ft.} - 0.143\frac{k}{ft.}\Big] - 0.919k</math>
 
::''V<sub>W</sub>'' = 1.038k
 
::'''Live Load 1 ft. From Stem Face'''
 
::Shear at the wall can be neglected for this loading case.
 
::<math>V_{LL} = 0.026\frac{k}{ft.}(3.917 ft.) + \frac{1}{2}(3.917 ft.)\Big[2.400\frac{k}{ft.} - 0.026\frac{k}{ft.}\Big] - 0.732k</math>
 
::''V<sub>LL</sub>'' = 4.019k
 
::'''Live Load 1 ft. From Toe'''
 
::<math>V_W = 0.305\frac{k}{ft.}(4.917 ft.) + \frac{1}{2}(4.917 ft.)\Big[2.741\frac{k}{ft.} - 0.305\frac{k}{ft.}\Big] - 0.919k - 5.045k</math>
 
::''V<sub>W</sub>'' = 1.525k
 
::<math>V_{LL} = 2.196\frac{k}{ft.}(1ft) + \frac{1}{2}(1ft)\Big[2.741\frac{k}{ft.} - 2.196\frac{k}{ft.}\Big] - 0.187k</math>
 
::''V<sub>LL</sub>'' = 2.282k
 
:Use ''V<sub>U</sub>'' = 4.019k
 
:<math>\frac{\nu_u}{\phi} = \frac{4019(lbs)}{0.85(12 in.)(7.5 in.)} = 52.5 psi < 2\sqrt{4000 psi}</math> = 126.5 psi
 
'''Shear Key Design'''
 
[[image:751.24.3.4 shear key.jpg|center|300px]]
 
For concrete cast against and permanently exposed to earth, minimum cover for reinforcement is 3 inches.
 
<math>d = 12 in. - 3 in. - \frac{1}{2}\Big[\frac{1}{2}in.\Big]</math> = 8.75 in.
 
<math>P_1 = 0.120\frac{k}{ft^3}(1 ft.)(2.882)\Big[\frac{11.5}{12}ft.\Big]</math> = 0.331 k/ft.
 
<math>P_2 = 0.120\frac{k}{ft^3}(1 ft.)(2.882)\Big[\frac{29.5}{12}ft.\Big]</math> = 0.850 k/ft.
 
<math>M_u = (1.3)(1.3)\Bigg\{0.331\frac{k}{ft.}\frac{(1.5 ft.)^2}{2} + \frac{1}{2}(1.5 ft.)\Big[0.850\frac{k}{ft.} - 0.331\frac{k}{ft}\Big]\Big[\frac{2}{3}\Big](1.5 ft.)\Bigg\}</math>
 
''M<sub>u</sub>'' = 1.287(ft−k)
 
<math>R_n = \frac{1.287(ft-k)}{0.9(1ft.)(8.75in.)^2}</math> = 0.0187 ksi
 
<math>\rho = \frac{0.85(4000psi)}{60,000psi}\Bigg[1 - \sqrt{1 - \frac{2(0.0187ksi)}{0.85(4ksi)}}\Bigg]</math> = 0.000312
 
<math>\rho_{min} = 1.7\Big[\frac{12in.}{8.75in.}\Big]^2\frac{\sqrt{4000psi}}{60,000psi}</math> = 0.00337
 
Use ''ρ'' = (4/3)''ρ'' = (4/3)(0.000312) = 0.000416
 
''A<sub>S<sub>Req</sub></sub>'' = 0.000416 (12 in.)(8.75 in.) = 0.0437 in<sup>2</sup>/ft.
 
 
<math>\frac{s}{0.196 in.^2} = \frac{12in.}{0.0437in.^2}</math>
 
''s'' = 53.8 in.
 
<u>Use #4's @ 18 in. cts. (min)</u>
 
:'''Check Shear'''
 
:''V'' = 0.886k
 
:<math>\frac{\nu_u}{\phi} = \frac{(1.3)(1.3)(886 lbs)}{0.85(12 in.)(8.75 in.)}</math> = 16.8 psi < 126.5 psi <u>o.k.</u>
 
'''Reinforcement Summary'''
 
[[image:751.24.3.4 summary.jpg|center|400px]]
 
==== 751.40.8.15.7 Example 3: Pile Footing Cantilever Wall ====
 
[[image:751.24.3.5.jpg|center|850px]]
 
''f’<sub>c</sub>'' = 3,000 psi
 
''f<sub>y</sub>'' = 60,000 psi
 
''φ'' = 27°
 
''γ<sub>s</sub>'' = 120 pcf
 
Pile type: HP 10 x 42
 
Allowable pile bearing = 56 tons
 
Pile width = 10 inches
 
Toe pile batter = 1:3
 
See [[751.12 Barriers, Railings, Curbs and Fences|EPG 751.12 Barriers, Railings, Curbs and Fences]] for weight and centroid of barrier.
 
'''Assumptions'''
 
:* Retaining wall is located such that traffic can come within half of the wall height to the plane where earth pressure is applied.
 
:* Reinforcement design is for one foot of wall length.
 
:* Sum moments about the centerline of the toe pile at a distance of 6B (where B is the pile width) below the bottom of the footing for overturning.
 
:* Neglect top one foot of fill over toe in determining soil weight and passive pressure on shear key.
 
:* Neglect all fill over toe in designing stem reinforcement.
 
:* The wall is designed as a cantilever supported by the footing.
 
:* Footing is designed as a cantilever supported by the wall.
 
:* Critical sections for bending are at the front and back faces of the wall.
 
:* Critical sections for shear are at the back face of the wall for the heel and at a distance d (effective depth) from the front face for the toe.
 
:* For load factors for design of concrete, see [[#Group Loads|EPG 751.24.1.2 Group Loads]].
 
<math>C_A = cos\delta\Bigg[\frac{cos\delta - \sqrt{cos^2\delta - cos^2\phi}}{cos\delta + \sqrt{cos^2\delta - cos^2\phi}}\Bigg]</math>
 
''δ'' = 0, ''ϕ'' = 27° so ''C<sub>A</sub>'' reduces to:
 
<math>C_A = \frac{1 - sin\phi}{1 + sin\phi} = \frac{1 - sin 27^\circ}{1 + sin 27^\circ}</math> = 0.376
<math>C_P = tan^2\Bigg[45^\circ + \frac{\phi}{2}\Bigg] = tan^2\Bigg[ 45^\circ + \frac{27^\circ}{2}\Bigg]</math> = 2.663
 
Table 751.24.3.5.1 is for stability check (moments taken about C.L. of toe pile at a depth of 6B below the bottom of the footing).
 
{| border="1" class="wikitable" style="margin: 1em auto 1em auto" style="text-align:center"
|+ '''''Table 751.24.3.5.1'''''
! style="background:#BEBEBE" colspan="2"|Load !! style="background:#BEBEBE"|Force (kips/ft) !! style="background:#BEBEBE"|Arm about C.L. of toe pile at 6B below footing (ft.) !! style="background:#BEBEBE"|Moment (ft-kips) per foot of wall length
|-
|rowspan="5"|'''Dead Load'''||(1)|| 0.340|| 2.542|| 0.864
|-
|(2)|| (1.333 ft.)(7.000 ft.)(0.150k/ft<sup>3</sup>) = 1.400 ||2.833|| 3.966
|-
|(3)|| (3.000 ft.)(8.500 ft.)(0.150k/ft<sup>3</sup>) = 3.825|| 4.417|| 16.895
|-
|(4)|| (1.000 ft.)(1.750 ft.)(0.150k/ft<sup>3</sup>) = <u>0.263</u>|| 4.417|| <u>1.162</u>
|-
|Σ||ΣV = 5.828 || - ||ΣM<sub>R</sub> = 22.887
|-
|rowspan="3"|'''Earth Load'''||(5)|| (7.000 ft.)(5.167 ft.)(0.120k/ft<sup>3</sup>) = 4.340|| 6.083|| 26.400
|-
|(6)|| (2.000 ft.)(2.000 ft.)(0.120k/ft<sup>3</sup>) = <u>0.480</u>|| 1.167|| <u>0.560</u>
|-
|Σ ||ΣV = 4.820|| - ||ΣM<sub>R</sub> = 26.960
|-
|rowspan="2"|'''Live Load Surcharge'''||P<sub>SV</sub>|| (2.000 ft.)(5.167 ft.)(0.120k/ft<sub>3</sub>) = 1.240|| 6.083|| M<sub>R</sub> = 7.543
|-
|P<sub>SH</sub>||(2.000 ft.)(0.376)(10.000 ft.)(0.120k/ft<sup>3</sup>) = 0.902||10.000|| M<sub>OT</sub> = 9.020
|-
|rowspan="2"|'''Earth Pressure'''||P<sub>A</sub>||2.256<sup>'''1'''</sup>|| 8.333|| M<sub>OT</sub> = 18.799
|-
|P<sub>P</sub>|| 3.285<sup>'''2'''</sup> || - || -
|-
|colspan="2"|'''Collision Force''' (F<sub>COL</sub>)||(10.000k)/[2(7.000 ft.)] = 0.714|| 18.000 ||M<sub>OT</sub> = 12.852
|-
|colspan="2"|'''Heel Pile Tension''' (P<sub>HV</sub>)||(3.000 tons)(2 k/ton)(1 pile)/(12.000 ft.) = 0.500|| 7.167|| M<sub>R</sub> = 3.584
|-
|colspan="2"|'''Toe Pile Batter''' (P<sub>BH</sub>)|| 5.903<sup>'''3'''</sup>|| - || -
|-
|colspan="2"|'''Passive Pile Pressure''' (P<sub>pp</sub>)|| 0.832<sup>'''4'''</sup>|| - || -
|-
|colspan="5" align="left"|<sup>'''1'''</sup> <math>P_A = \frac{1}{2}\gamma_S C_A H^2 = \frac{1}{2}\Bigg[0.120\frac{k}{ft^3}\Bigg](0.376)(10 ft.)^3 = 2.256\frac{k}{ft}</math>
|-
|colspan="5" align="left"|<sup>'''2'''</sup> <math>P_P = \frac{1}{2}\gamma_S C_A\Big[H_2^2 - H_1^2\Big] = \frac{1}{2}\Bigg[0.120\frac{k}{ft^3}\Bigg](2.663)[(6.75 ft.)^2 - (5 ft.)^2] = 3.285\frac{k}{ft}</math>
|-
|colspan="5" align="left"|<sup>'''3'''</sup> <math>P_{BH} = \Big(56 \frac{tons}{pile}\Big)\Big( 2 \frac{k}{ton}\Big)(2 piles)\Bigg(\frac{4 in.}{\sqrt{(12 in.)^2 + (4 in.)^2}}\Bigg)\Big(\frac{1}{12 ft.}\Big) = 5.903 \frac{k}{ft}</math>
|-
|colspan="5" align="left"|<sup>'''4'''</sup> <math>P_{PP} = \frac{1}{2}(2.663)(5 ft.)^2\Big(0.120 \frac{k}{ft^3}\Big)(0.833 ft.)(3 piles)\Big(\frac{1}{12 ft.}\Big) = 0.832\frac{k}{ft}</math>
|}
 
 
Table 751.24.3.5.2 is for bearing pressure checks (moments taken about C.L of toe pile at the bottom of the footing).
 
{| border="1" class="wikitable" style="margin: 1em auto 1em auto" style="text-align:center"
|+ '''''Table 751.24.3.5.2'''''
! style="background:#BEBEBE" colspan="2"|Load !! style="background:#BEBEBE"|Force (kips/ft) !! style="background:#BEBEBE"|Arm about C.L. of toe pile at 6B below footing (ft.) !! style="background:#BEBEBE"|Moment (ft-kips) per foot of wall length
|-
|rowspan="5"|'''Dead Load'''||(1)|| 0.340|| 0.875|| 0.298
|-
|(2)|| (1.333 ft.)(7.000 ft.)(0.150k/ft<sup>3</sup>) = 1.400 ||1.167|| 1.634
|-
|(3)|| (3.000 ft.)(8.500 ft.)(0.150k/ft<sup>3</sup>) = 3.825|| 2.750|| 10.519
|-
|(4)|| (1.000 ft.)(1.750 ft.)(0.150k/ft<sup>3</sup>) = <u>0.263</u>|| 2.750|| <u>0.723</u>
|-
|Σ||ΣV = 5.828 || - ||ΣM<sub>R</sub> = 13.174
|-
|rowspan="3"|'''Earth Load'''||(5)|| (7.000 ft.)(5.167 ft.)(0.120k/ft<sup>3</sup>) = 4.340|| 4.417|| 19.170
|-
|(6)|| (2.000 ft.)(2.000 ft.)(0.120k/ft<sup>3</sup>) = <u>0.480</u>|| -0.500|| <u>-0.240</u>
|-
|Σ ||ΣV = 4.820|| - ||ΣM<sub>R</sub> = 18.930
|-
|rowspan="2"|'''Live Load Surcharge'''||P<sub>SV</sub>|| (2.000 ft.)(5.167 ft.)(0.120k/ft<sub>3</sub>) = 1.240|| 4.417|| M<sub>R</sub> = 5.477
|-
|P<sub>SH</sub>||(2.000 ft.)(0.376)(10.000 ft.)(0.120k/ft<sup>3</sup>) = 0.902||5.000|| M<sub>OT</sub> = 4.510
|-
|rowspan="2"|'''Earth Pressure'''||P<sub>A</sub>||2.256|| 3.333|| M<sub>OT</sub> = 7.519
|-
|P<sub>P</sub>|| 3.285 || - || -
|-
|colspan="2"|'''Collision Force''' (F<sub>COL</sub>)||(10.000k)/[2(7.000 ft.)] = 0.714|| 13.000 ||M<sub>OT</sub> = 9.282
|-
|colspan="2"|'''Heel Pile Tension''' (P<sub>HV</sub>)||(3.000 tons)(2 k/ton)(1 pile)/(12.000 ft.) = 0.500|| 5.500|| M<sub>R</sub> = 2.750
|-
|colspan="2"|'''Toe Pile Batter''' (P<sub>BH</sub>)|| 5.903|| - || -
|-
|colspan="2"|'''Passive Pile Pressure''' (P<sub>pp</sub>)|| 0.832|| - || -
|}
 
Investigate a representative 12 ft. strip. This will include one heel pile and two toe piles. The assumption is made that the stiffness of a batter pile in the vertical direction is the same as that of a vertical pile.
 
Neutral Axis Location = [2piles(1.5 ft.) + 1pile(7 ft.)] / (3 piles) = 3.333 ft. from the toe.
 
[[image:751.24.3.5 neutral axis.jpg|center|350px]]
 
''I ''= Ad<sup>2</sup>
 
For repetitive 12 ft. strip:
 
:Total pile area = 3A
 
:''I ''= 2A(1.833 ft.)<sup>2</sup> + A(3.667 ft.)<sup>2</sup> = 20.167(A)ft.<sup>2</sup>
 
For a 1 ft. unit strip:
 
:<math>I = \frac{20.167(A)ft.^2}{12 ft.} = 1.681(A)ft.^2</math>
 
:Total pile area = (3A/12 ft.) = 0.250A
 
:'''Case I'''
 
:F.S. for overturning ≥ 1.5
 
:F.S. for sliding ≥ 1.5
 
::'''Check Overturning'''
 
::Neglect resisting moment due to P<sub>SV</sub> for this check.
 
::''ΣM<sub>R</sub>'' = 22.887(ft−k) + 26.960(ft−k) + 3.584(ft−k)
 
::''ΣM<sub>R</sub>'' = 53.431(ft−k)
 
::''ΣM<sub>OT</sub>'' = 9.020(ft−k) + 18.799(ft−k) = 27.819(ft−k)
 
::''F.S.<sub>OT</sub>'' = <math>\frac{\Sigma M_R}{\Sigma M_{OT}} = \frac{53.431(ft-k)}{27.819(ft-k)}</math> = 1.921 > 1.5 <u>o.k.</u>
 
::'''Check Pile Bearing'''
 
::Without P<sub>SV</sub> :
 
::''ΣV'' = 5.828k + 4.820k = 10.648k
 
::''e'' = <math>\frac{\Sigma M}{\Sigma V} = \frac{(13.174 + 18.930)(ft-k) - (4.510 + 7.519)(ft-k)}{10.648k}</math> = 1.885 ft.
 
::Moment arm = 1.885 ft. - 1.833 ft. = 0.052 ft.
 
::<math>P_T = \frac{\Sigma V}{A} - \frac{M_c}{I} = \frac{10.648k}{0.250A} - \frac{10.648k(0.052 ft.)(1.833 ft.)}{1.681(A)ft^2}</math>
 
::<math>P_T = \frac{41.988}{A} k</math>
 
::<math>P_H = \frac{10.648k}{0.250A} + \frac{10.648k(0.052 ft.)(3.667 ft.)}{1.681(A)ft^2}</math>
 
::<math>P_H = \frac{43.800}{A} k</math>
 
::Allowable pile load = 56 tons/pile. Each pile has area A, so:
 
::<math>P_T = 41.988\frac{k}{pile} = 20.944\frac{tons}{pile} </math> <u> o.k.</u>
 
::<math>P_H = 43.800\frac{k}{pile} = 21.900\frac{tons}{pile} </math> <u> o.k.</u>
 
::With P<sub>SV</sub>:
 
::''ΣV'' = 5.828k + 4.820k + 1.240k = 11.888k
 
::<math>e = \frac{(13.174 + 18.930 + 5.477)(ft-k) - (4.510 + 7.519)(ft-k)}{11.888k}</math> = 2.149 ft.
 
::Moment arm = 2.149 ft. - 1.833 ft. = 0.316 ft.
 
::<math>P_T = \frac{11.888k}{0.250A} - \frac{11.888k(0.316 ft.)(1.833 ft.)}{1.681(A)ft^2} = 43.456k = 21.728\frac{tons}{pile}</math> <u> o.k.</u>
 
::<math>P_H = \frac{11.888k}{0.250A} + \frac{11.888k(0.316 ft.)(3.667 ft.)}{1.681(A)ft^2} = 55.747k = 27.874\frac{tons}{pile}</math> <u> o.k.</u>
 
::'''Check Sliding'''
 
::<math>F.S._{Sliding} = \frac{3.285k + 5.903k + 0.832k}{0.902 k + 2.256k}</math> = 3.173 ≥ 1.5 <u> o.k.</u>
 
:'''Case II'''
 
:F.S. for overturning ≥ 1.2
 
:F.S. for sliding ≥ 1.2
 
::'''Check Overturning'''
 
::''ΣM<sub>R</sub> ''= (22.887 + 26.960 + 7.543 + 3.584)(ft−k) = 60.974(ft−k)
 
::''ΣM<sub>OT</sub>'' = (9.020 + 18.799 + 12.852)(ft−k) = 40.671(ft−k)
 
::<math>F.S._{OT} = \frac{\Sigma M_R}{\Sigma M_{OT}} = \frac{60.974(ft-k)}{40.671(ft-k)}</math> = 1.499 ≥ 1.2  <u> o.k.</u>
 
::'''Check Pile Bearing'''
 
::<math>e = \frac{\Sigma M}{\Sigma V} = \frac{(13.174 + 18.930 + 5.477)(ft-k) - (4.510 + 7.519 + 9.282)(ft-k)}{(5.828 + 4.820 + 1.240)k}</math> = 1.369 ft.
 
::Moment arm = 1.833 ft. - 1.369 ft. = 0.464 ft.
 
::<math>P_T = \frac{\Sigma V}{A} + \frac{M_c}{I} = \frac{11.888k}{0.250A} + \frac{11.888k(0.464 ft.)(1.833 ft.)}{1.681(A)ft^2}</math>
 
::<math>P_T = 53.567\frac{k}{pile} = 26.783\frac{tons}{pile} \le 56\frac{tons}{pile}</math> <u> o.k.</u>
 
::<math>P_H = \frac{11.888k}{0.250A} - \frac{11.888k(0.464 ft.)(3.667 ft.)}{1.681(A)ft^2}</math> = 35.519k
 
::<math>P_H = 17.760\frac{tons}{pile} \le 56\frac{tons}{pile} </math> <u> o.k.</u>
 
::'''Check Sliding'''
 
::<math>F.S._{Sliding} = \frac{3.285k + 5.903k + 0.832k}{0.902k + 2.256k + 0.714k}</math> = 2.588 ≥ 1.2 <u> o.k.</u>
 
:'''Case III'''
 
:F.S. for overturning ≥ 1.5
 
:F.S. for sliding ≥ 1.5
 
::'''Check Overturning'''
 
::''ΣM<sub>R</sub>'' = (22.887 + 26.960 + 3.584)(ft−k) = 53.431(ft−k)
 
::''ΣM<sub>OT</sub>'' = 18.799(ft−k)
 
::<math>F.S._{OT} = \frac{\Sigma M_R}{\Sigma M_{OT}} = \frac{53.431(ft-k)}{18.799(ft-k)}</math> = 2.842 ≥ 1.5 <u> o.k.</u>
 
::'''Check Pile Bearing'''
 
::<math>e = \frac{\Sigma M}{\Sigma V} = \frac{(13.174 + 18.930)(ft-k) - 7.519(ft-k)}{(5.828 + 4.820)k}</math> = 2.309 ft.
 
::Moment arm = 2.309 ft. - 1.833 ft. = 0.476 ft.
 
::<math>P_T = \frac{10.648k}{0.250A} - \frac{10.648k(0.476 ft.)(1.833 ft.)}{1.681(A)ft^2}</math> = 37.065k
 
::<math>P_T = 18.532\frac{tons}{pile} \le 56\frac{tons}{pile}</math> <u> o.k.</u>
 
::<math>P_H = \frac{10.648k}{0.250A} + \frac{10.648k(0.476 ft.)(3.667 ft.)}{1.681(A)ft^2}</math> = 53.649k
 
::<math>P_H = 26.825\frac{tons}{pile} \le 56\frac{tons}{pile} </math> <u> o.k.</u>
 
::'''Check Sliding'''
 
::<math>F.S._{Sliding} = \frac{3.285k+5.903k+0.832k}{2.256k}</math> = 4.441 ≥ 1.5 <u> o.k.</u>
 
:'''Case IV'''
 
::'''Check Pile Bearing'''
 
::<math>e = \frac{\Sigma M}{\Sigma V} = \frac{(13.174 + 18.930)(ft-k)}{5.828k + 4.820k}</math> = 3.015 ft.
 
::Moment arm = 3.015 ft. - 1.833 ft. = 1.182 ft.
 
::<math>P_H = \frac{\Sigma V}{A} + \frac{M_c}{I} = \frac{10.648k}{0.250A} + \frac{10.648k(1.182 ft.)(3.667 ft.)}{1.681(A)ft^2}</math>
 
::<math>P_H = 70.047k = 35.024 \frac{tons}{pile}</math>
 
::25% overstress is allowed on the heel pile:
 
::<math>P_H = 35.024\frac{tons}{pile} \le 1.25 (56\frac{tons}{pile}) = 70 \frac{tons}{pile}</math> <u> o.k.</u>
 
::<math>P_T = \frac{10.648k}{0.250A} - \frac{10.648k(1.182 ft.)(1.833 ft.)}{1.681(A)ft^2}</math> = 28.868k
 
::<math>P_T = 14.434\frac{tons}{pile} \le 56\frac{tons}{pile} </math> <u> o.k.</u>
 
:'''Reinforcement - Stem'''
 
[[image:751.24.3.5 reinforcement stem.jpg|300px|center]]
 
:b = 12 in.
 
:cover = 2 in.
 
:h = 16 in.
 
:d = 16 in. - 2 in. - 0.5(0.625 in.) = 13.688 in.
 
:''F<sub>Collision</sub>'' = 0.714k/ft
 
::<math>P_{LL} = \gamma_s C_A H(2.000 ft.) = (2.000 ft.)(0.376)(7.000 ft.)(0.120 \frac{k}{ft^3}) = 0.632\frac{k}{ft}</math>
 
::<math>P_{A_{Stem}} = \frac{1}{2} \gamma_s C_A H^2 = \frac{1}{2}\Big[0.120 \frac{k}{ft^3}\Big](0.376)(7.000 ft.)^2 = 1.105\frac{k}{ft} </math>
 
:::'''Apply Load Factors'''
 
:::''F<sub>Col.</sub>'' = ''γβ<sub>LL</sub>''(0.714k) = (1.3)(1.67)(0.714k) = 1.550k
 
:::''P<sub>LL</sub>'' = ''γβ<sub>E</sub>'' (0.632k) = (1.3)(1.67)(0.632k) = 1.372k
 
:::''P<sub>A<sub>Stem</sub></sub>'' = ''γβ<sub>E</sub>'' (1.105k) = (1.3)(1.3)(1.105k) = 1.867k
 
::''M<sub>u</sub>'' = (10.00 ft.)(1.550k) + (3.500 ft.)(1.372k) + (2.333 ft.)(1.867k)
 
::''M<sub>u</sub>''  = 24.658(ft−k)
 
::<math>R_n = \frac{M_u}{\phi b d^2} = \frac{24.658(ft-k)}{(0.9)(1 ft.)(13.688 in.)^2}</math> = 0.146ksi
 
::<math>\rho = \frac{0.85f'_c}{f_y}\Bigg[1 - \sqrt{1 - \frac{2R_n}{0.85f'_c}}\Bigg] =
\frac{0.85(3 ksi)}{60 ksi}\Bigg[1 - \sqrt{1 - \frac{2(0.146 ksi)}{0.85(3 ksi)}}\Bigg]</math> = 0.00251
 
::<math>\rho_{min} = 1.7\Big[\frac{h}{d}\Big]^2 \frac{\sqrt{f'_c}}{f_y} = 1.7\Big[\frac{16 in.}{13.688 in.}\Big]^2 \frac{\sqrt{3000 psi}}{60,000 psi}</math> = 0.00212
 
::''ρ'' = 0.00251
 
::<math>A_{S_{Req.}} = \rho bd = (0.00251)(12 in.)(13.688 in.) = 0.412 \frac{in^2}{ft.}</math>
 
::One #5 bar has A<sub>S</sub> = 0.307 in<sup>2</sup>
 
::<math>\frac{s}{0.307 in^2} = \frac{12 in.}{0.412 in^2}</math>
 
::''s'' = 8.9 in.
 
::<u>Use # 5 bars @ 8.5 in. cts.</u>
 
:::'''Check Shear'''
 
:::''V<sub>u</sub>'' ≤ ''φV<sub>n</sub>''
 
:::''V<sub>u</sub>'' = ''F<sub>Collision</sub>'' + ''P<sub>LL</sub>'' + ''P<sub>A<sub>Stem</sub></sub>'' = 1.550k + 1.372k + 1.867k = 4.789k
 
 
:::<math>\frac{\nu_u}{\phi} = \frac{v_u}{\phi bd} = \frac{4789 lbs}{0.85(12 in.)(13.688 in.)}</math> = 34.301 psi
 
:::<math> \nu_n = \nu_c = 2\sqrt{f'_c} = 2\sqrt{3000psi}</math> = 109.5 psi > 34.3 psi <u>o.k.</u>
 
::'''Reinforcement - Footing - Top Steel'''
 
[[image:751.24.3.5 footing.jpg|300px|center]]
 
::b = 12 in.
 
::cover = 3 in.
 
::h = 36 in.
 
::d = 36 in. - 3 in. - 0.5(0.5 in.) = 32.750 in.
 
::Design the heel to support the entire weight of the superimposed materials.
 
::Soil(1) = 4.340k/ft.
 
::LL<sub>s</sub> = 1.240k/ft.
 
::<math>Slab \ wt. = (3.000 ft.)\Big[0.150 \frac{k}{ft^3}\Big](5.167 ft.)</math> = 2.325k/ft.
 
:::'''Apply Load Factors'''
 
:::Soil(1) = ''γβ<sub>E</sub>''(4.340k) = (1.3)(1.0)(4.340k) = 5.642k
 
:::''LL<sub>s</sub>'' = ''γβ<sub>E</sub>''(1.240k) = (1.3)(1.67)(1.240k) = 2.692k
 
:::Slab wt. = ''γβ<sub>D</sub>''(2.325k) = (1.3)(1.0)(2.325k) = 3.023k
 
::''M<sub>u</sub>'' = (2.583 ft.)(5.642k + 2.692k + 3.023k) = 29.335(ft−k)
 
::<math>R_n = \frac{M_u}{\phi bd^2} = \frac{29.335(ft-k)}{(0.9)(1 ft.)(32.750 in.)^2}</math> = 0.0304 ksi
::<math>\rho = \frac{0.85(3ksi)}{60ksi}\Bigg[1 - \sqrt{1 - \frac{2(0.0304ksi)}{0.85(3ksi)}}\Bigg]</math> = 0.000510
 
::<math>\rho_{min} = 1.7\Big[\frac{36 in.}{32.750 in.}\Big]^2 \frac{\sqrt{3000 psi}}{60,000psi}</math> = 0.00188
 
::Use ''ρ'' = 4/3 ''ρ'' = 4/3 (0.000510) = 0.000680
 
::<math>A_{S_{Req}} = \rho bd = (0.000680)(12 in.)(32.750 in.) = 0.267\frac{in^2}{ft.}</math>
 
::One #4 bar has A<sub>s</sub> = 0.196 in.<sup>2</sup>
 
::<math>\frac{s}{0.196 in^2} = \frac{12 in}{0.267 in.^2}</math>
 
::''s'' = 8.8 in.
 
::<u>Use #4 bars @ 8.5 in. cts.</u>
 
:::'''Check Shear'''
 
:::<math>V_u = Soil(1) + LL_s + Slab \ wt. = 5.642k + 2.692k + 3.023k = 11.357k</math>
 
:::<math>\frac{\nu_u}{\phi} = \frac{V_u}{\phi bd} = \frac{11357 lbs}{(0.85)(12 in.)(32.750 in.)}</math> = 33.998 psi ≤ 109.5 psi = ''ν<sub>c</sub>''  <u>o.k.</u>
 
::'''Reinforcement - Footing - Bottom Steel'''
 
::Design the flexural steel in the bottom of the footing to resist the largest moment that the heel pile could exert on the footing. The largest heel pile bearing force was in Case IV. The heel pile will cause a larger moment about the stem face than the toe pile (even though there are two toe piles for every one heel pile) because it has a much longer moment arm about the stem face.
 
[[image: 751.24.3.5 heel pile.jpg|center|300px]]
 
::Pile is embedded into footing 12 inches.
 
::''b'' = 12 in.
 
::''h'' = 36 in.
 
::''d'' = 36 in. - 4 in. = 32 in.
 
:::'''Apply Load Factors to Case IV Loads'''
 
:::<math>\Sigma V = \gamma \beta_D\Big[5.828 \frac{k}{ft.}\Big] + \gamma \beta_E \Big[4.820 \frac{k}{ft.}\Big]</math>
 
:::<math>\Sigma V = 1.3(1.0)\Big[5.828\frac{k}{ft.}\Big] + 1.3(1.0)\Big[4.820\frac{k}{ft.}\Big]</math>
 
:::''ΣV'' = 13.842 k/ft.
 
:::<math>\Sigma M = \gamma \beta_D\Big[13.174\frac{(ft-k)}{ft.}\Big] + \gamma \beta_E\Big[18.930\frac{(ft-k)}{ft.}\Big]</math>
 
:::<math>\Sigma M = (1.3)(1.0)\Big[13.174\frac{(ft-k)}{ft.}\Big] + (1.3)(1.0)\Big[18.930\frac{(ft-k)}{ft.}\Big]</math>
 
:::''ΣM'' = 41.735 (ft−k)/ft.
 
::e = <math>\frac{\Sigma M}{\Sigma V} = \frac{41.735 (ft-k)}{13.842k}</math> = 3.015 ft.
 
::Moment arm = 3.015 ft. - 1.833 ft. = 1.182 ft.
 
::<math>P_H = \frac{\Sigma V}{A} + \frac{M_c}{I} = \frac{13.842k}{0.250A} + \frac{13.842k (1.182 ft.)(3.667 ft.)}{1.681(A)ft^2}</math>
 
::<math>P_H = 91.059 \frac{k}{pile}\Big(\frac{1}{12 ft.}\Big)</math> = 7.588 k/ft.
 
::<math>M_u = \Big(7.588\frac{k}{ft.}\Big)(3.667 ft.)</math> = 27.825(ft−k)/ft.
 
::<math>R_n = \frac{M_u}{\phi bd^2} = \frac{27.825(ft-k)}{(0.9)(1 ft.)(32 in.)^2}</math> = 0.0301 ksi
 
::<math>\rho = \frac{0.85(3 ksi)}{60ksi}\Bigg[1 - \sqrt{1 - \frac{2(0.0301 ksi)}{0.85(3 ksi)}}\Bigg]</math> = 0.000505
 
::<math>\rho_{min} = 1.7\Big[\frac{36 in.}{32 in.}\Big]^2 \frac{\sqrt{3000 psi}}{60,000 psi}</math> = 0.00196
 
::Use ''ρ'' = 4/3 ''ρ'' = 4/3 (0.000505) = 0.000673
 
::''A<sub>S<sub>Req</sub></sub> = ρbd'' = (0.000673)(12 in.)(32 in.) = 0.258 in<sup>2</sup>/ft.''
 
 
::One #4 bar has A<sub>s</sub> = 0.196 in<sup>2</sup>.
 
::<math>\frac{s}{0.196 in.^2} = \frac{12 in.}{0.258 in.^2}</math>
 
::''s'' = 9.1 in.
 
::<u>Use #4 bars @ 9 in. cts.</u>
 
:::'''Check Shear'''
 
:::The critical section for shear for the toe is at a distance d = 21.75 inches from the face of the stem. The toe pile is 6 inches from the stem face so the toe pile shear does not affect the shear at the critical section. The critical section for shear is at the stem face for the heel so all of the force of the heel pile affects the shear at the critical section. The worst case for shear is Case IV.
 
:::''V<sub>u</sub>'' = 7.588k
 
:::<math>\frac{\nu_u}{\phi} = \frac{V_u}{\phi bd} = {7588 lbs}{0.85(12 in.)(32 in.)}</math> = 23.248 psi ≤ 109.5 psi = ''ν<sub>c</sub>'' <u>o.k.</u>
 
::'''Reinforcement - Shear Key'''
 
::''b'' = 12 in.
 
::''h'' = 12 in.
 
::cover = 3 in.
 
::''d'' = 12 in. - 3 in. - 0.5(0.5 in.) = 8.75 in.
 
:::'''Apply Load Factors'''
 
:::''P<sub>P</sub> = γβ<sub>E</sub>'' (3.845k) = (1.3)(1.3)(3.845k) = 6.498k
 
::''M<sub>u</sub>'' = (0.912 ft.)(6.498k) = 5.926(ft−k)
 
::<math>R_n = \frac{M_u}{\phi bd^2} = \frac{5.926(ft-k)}{(0.9)(1 ft.)(8.75 in.)^2}</math> = 0.0860 ksi
 
::<math>\rho = \frac{0.85(3ksi)}{60ksi}\Bigg[1 - \sqrt{1 - \frac{2(0.0860ksi)}{0.85(3ksi)}}\Bigg]</math> = 0.00146
 
::<math>\rho_{min} = 1.7\Big[\frac{12 in.}{8.75 in}\Big]^2\frac{\sqrt{3000 psi}}{60,000 psi}</math> = 0.00292
 
::Use ''ρ'' = 4/3 ''ρ'' = 4/3(0.00146) = 0.00195
 
::''A<sub>S<sub>Req</sub></sub> = ρbd'' = (0.00195)(12 in.)(8.75 in.) = 0.205 in.<sup>2</sup>/ft.
 
 
::One #4 bar has A<sub>s</sub> = 0.196 in<sup>2</sup>
 
 
::<math>\frac{s}{0.196 in.^2} = \frac{12 in.}{0.205 in.^2}</math>
 
::''s'' = 11.5 in.
 
::<u>Use #4 bars @ 11 in. cts.</u>
 
:::'''Check Shear'''
 
:::<math>\frac{\nu_u}{\phi} = \frac{V_u}{\phi bd} = \frac{6498 lbs}{0.85(12 in.)(8.75 in.)}</math> = 72.807 psi < 109.5 psi = ''ν<Sub>c</sub>''
 
::'''Reinforcement Summary'''
 
[[image:751.24.3.5 summary.jpg|center|350px]]
 
==== 751.40.8.15.8 Dimensions ====
'''Cantilever Walls'''
   
Each section of wall shall be in increments of 4 ft. with a maximum length of 28'-0".
[[image:751.24.3.6 friction or bearing piles.jpg|center|800px]]
 
 
Each section of wall shall be in increments of 4 ft. with a maximum length of 28'-0".
[[image:751.24.3.6 pile footing.jpg|center|800px]]
 
 
'''Cantilever Walls - L-Shaped'''
 
Each section of wall shall be in increments of 4 ft. with a maximum length of 28'-0".
[[image:751.24.3.6 L shaped.jpg|center|800px]]
 
 
'''Counterfort Walls'''
[[image:751.24.3.6 counterfort part elev.jpg|center|800px|thumb|
{| style="margin: 1em auto 1em auto style="text-align:left""
|-
|'''Notes:'''
|-
|'''Dimension "A"'''
|-
|• Maximum length = 28'-0".
|-
|• Each section to be in 4'-0" increments.
|-
|• (See [[#Rustication Recess|rustication recess details]].)
|-
|'''Dimensions "B" & "C"'''
|-
|• As required by the design to balance the negative and positive moments. (See the design assumptions).
|}]]
 
[[image:751.24.3.6 counterfort typ section.jpg|center|800px|thumb|
{| style="margin: 1em auto 1em auto style="text-align:left""
|-
|'''Notes:'''
|-
|'''Batter  "D":'''
|-
|* As required to maintain 9" minimum at the top of the counterfort and 12" minimum edge distance at the top of the footing, between counterfort and footing edge.
|-
|* Batter to be given an eighth of an inch per foot of counterfort height.
|-
|'''Dimension "L":'''
|-
|* As required for stability.
|-
|* As an estimate, use "L" equal to 1/2 the height of "H".
|}]]
 
'''Sign-Board Type Counterfort Walls'''
[[image:751.24.3.6 sign board part elev.jpg|center|800px|thumb|
{| style="margin: 1em auto 1em auto style="text-align:left""
|-
|'''Notes:'''
|-
|'''Dimension "A"'''
|-
|* Maximum length = 28'-0".
|-
|* Each section to be in 4'-0" increments.
|-
|* (See [[#Rustication Recess|rustication recess details]].)
|-
|'''Dimensions "B" & "C"'''
|-
|* As required by the design to balance the negative and positive moments. (See the design assumptions).
|-
|'''Dimension "E"'''
|-
|* (Sign-board type only)
|-
|* As required to maintain footing pressure within the allowable for existing foundation material.  12" minimum.
 
|}]]
 
[[image:751.24.3.6 sign board typ section.jpg|center|800px|thumb|
{| style="margin: 1em auto 1em auto style="text-align:left""
|-
|'''Notes:'''
|-
|'''Batter  "D":'''
|-
|* As required to maintain 9" minimum at the top of the counterfort and 12" minimum edge distance at the top of the footing, between counterfort and footing edge.
|-
|* Batter to be given an eighth of an inch per foot of counterfort height.
|-
|'''Dimension "L":'''
|-
|* As required for stability.
|-
|* As an estimate, use "L" equal to 1/2 the height of "H".
|}]]
 
==== 751.40.8.15.9 Reinforcement ====
'''Cantilever Walls'''
[[image:751.24.3.7 friction.jpg|center|800px|thumb|
{| style="margin: 1em auto 1em auto"
|-
|'''(*)''' Alternate long and short bars at equal spaces.
|-
|'''(**)''' If collision forces are assumed, use #4 @ 12" cts. min. and extend at least development length into footing.  (See [[751.5 Structural Detailing Guidelines#751.5.9.2.8.1 Development and Lap Splice General|EPG 751.5.9.2.8.1 Development and Lap Splice General]].)
|-
|'''(***)''' Theo. cut-off for bending + development length.  (Wall height over 10' only.)
|}
]]
 
[[image:751.24.3.7 pile footing.jpg|center|800px|thumb|
{| style="margin: 1em auto 1em auto"
|-
|'''(*)''' Alternate long and short bars at equal spaces.
|-
|'''(**)''' If collision forces are assumed, use #4 @ 12" cts. min. and extend at least development length into footing.  (See [[751.5 Structural Detailing Guidelines#751.5.9.2.8.1 Development and Lap Splice General|EPG 751.5.9.2.8.1 Development and Lap Splice General]].)
|-
|'''(***)''' Theo. cut-off for bending + development length.  (Wall height over 10' only.)
|-
|'''(****)''' Due to site constriction.
|}
]]
 
'''Cantilever Walls - L-Shaped'''
 
[[image:751.24.3.7 L shaped.jpg|center|800px|thumb|
{| style="margin: 1em auto 1em auto"
|-
|'''(*)''' Do not splice stress bars in the fill face at top of footing.
|-
|'''(**)''' If collision forces are assumed, use #4 @ 12" cts. min. and extend at least development length into footing.  (See [[751.5 Structural Detailing Guidelines#751.5.9.2.8.1 Development and Lap Splice General|EPG 751.5.9.2.8.1 Development and Lap Splice General]].)
|}
]]
 
'''Counterfort Walls'''
:'''Wall and Stem'''
[[image:751.24.3.7 counterfort.jpg|center|800px|thumb|
{| style="margin: 1em auto 1em auto"
|-
|<center>(For footing reinforcement, see the "Footing" diagram, below)</center>
|-
|'''(*)''' Use development length or standard hook in accordance with [[751.5 Structural Detailing Guidelines#751.5.9.2.8.1 Development and Lap Splice General|EPG 751.5.9.2.8.1 Development and Lap Splice General]].
|-
|'''(**)''' See lap splices Class B.  (See [[751.5 Structural Detailing Guidelines#751.5.9.2.8.1 Development and Lap Splice General|EPG 751.5.9.2.8.1 Development and Lap Splice General]].)
|}
]]
 
:'''Footing'''
[[image:751.24.3.7 footing.jpg|center|800px|thumb|
{| style="margin: 1em auto 1em auto"
|-
|'''(*)''' By design for loads and footing pressures on section under consideration.  (#5 @ 12" cts. is the minimum.)
|}
]]
 
'''Counterfort Walls - Sign-Board Type'''
:'''Wall and Stem'''
:Refer to "Counterfort Walls, Wall and Stem", above.
 
:'''Spread Footing'''
[[image:751.24.3.7 sign board.jpg|center|800px]]
 
:If the shear line is within the counterfort projected (longitudinally or transversely), the footing may be considered satisfactory for all conditions.  If outside of the counterfort projected, the footing must be analyzed and reinforced for bending and checked for bond stress and for diagonal tension stress.
 
[[image:751.24.3.7 sign board footing.jpg|center|800px]]
 
==== 751.40.8.15.10 Details ====
'''Non-Keyed Joints'''


Each section of wall shall be in increments of 4 ft. with a maximum length of 28'-0".
[[image:751.24.3.8 nonkeyed.jpg|center|800px]]
<center>See [[751.50 Standard Detailing Notes|EPG 751.50 Standard Detailing Notes]] for appropriate notes.</center>


'''Keyed Joints'''
[[Category:751 LRFD Bridge Design Guidelines]]
[[image:751.24.3.8 keyed.jpg|center|800px]]
<center>See [[751.50 Standard Detailing Notes|EPG 751.50 Standard Detailing Notes]] for appropriate notes.</center>
 
 
<div id="Rustication Recess"></div>
'''Rustication Recess'''
[[image:751.24.3.8 rustication.jpg|center|800px]]
 
 
'''Drains'''
[[image:751.24.3.8 drains.jpg|center|800px]]
<center>Note: French drains shall be used on all retaining walls, unless otherwise specified on the Design Layout.</center>
 
[[image:751.24.3.8 drop inlet.jpg|center|800px]]
 
 
'''Construction Joint Keys:
:'''Cantilever Walls'''
[[image:751.24.3.8 cantilever.jpg|center|800px]]
 
 
:'''Counterfort Walls'''
[[image:751.24.3.8 counterfort.jpg|center|800px]]
 
 
::Key length:  Divide the length "A" into an odd number of spaces of equal lengths.  Each space shall not exceed a length of 24 inches.  Use as few spaces as possible with the minimum number of spaces equal to three (or one key).
 
::Key width = Counterfort width/3 (to the nearest inch)
 
::Key depth = 2" (nominal)
 
:'''Sign-Board Walls'''
[[image:751.24.3.8 sign board.jpg|center|800px]]
 
::Key length = divide length "A" or "B" into an odd number of spaces of equal lengths.  Each space length shall not exceed 24 inches.  Use as few spaces as possible with the minimum number of spaces equal to three (or one key).

Latest revision as of 15:33, 15 January 2026

751.40.8.12 Concrete Pile Cap Intermediate Bents

751.40.8.12.1 Design

751.40.8.12.1.1 Unit Stresses
(1) Reinforced Concrete
  Class B Concrete (Substructure) fc = 1,200 psi f'c = 3,000 psi
  Reinforcing Steel (Grade 60 fs = 24,000 psi fy = 60,000 psi
  n = 10
  Ec=3,122ksi(Ec=W1.5×33f'c,Ec=57,000fc
 
(2) Structural Steel
  Structural Carbon Steel (ASTM A709 Grade 36) fs = 20,000 psi fy = 36,000 psi
 
(3) Piling
 
(4) Overstress
  The allowable overstresses as specified in AASHTO Article 3.22 shall be used where applicable for service loads.
751.40.8.12.1.2 Loads
(1) Dead Loads
 
(2) Live Load
  As specified on Bridge Memorandum.
  Impact of 30% is to be used for design of the beam. No impact is to be used for design of any other portion of bent including the piles.
 
(3) Temperature, Wind and Frictional Loads
751.40.8.12.1.3 Distribution of Loads
(1) Dead Loads
  Loads from stringers, girders, etc. shall be concentrated loads applied at the intersection of centerline of stringer and centerline of bearing. Loads from concrete slab spans shall be applied as uniformly, distributed loads along the centerline of bearing.
 
(2) Live Load
  Loads from stringers, girders, etc. shall be applied as concentrated loads at the intersection of centerline of stringer and centerline of bearing. For concrete slab spans distribute two wheel lines over 10'-0" (normal to centerline of roadway) of substructure beam. This distribution shall be positioned on the beam on the same basis as used for wheel lines in Traffic Lanes for Substructure Design.
 
(3) Temperature, Wind and Frictional Loads
751.40.8.12.1.4 Design Assumptions

LOADINGS

(1) Beam
  The beam shall be assumed continuous over supports at centerline of piles.
  Intermediate bent beam caps shall be designed so that service dead load moments do not exceed the cracking moment of the beam cap (AASHTO Article 8.13.3, Eq. 8-2).
 
(2) Piles
  (a) Bending
  Stresses in the piles due to bending need not be considered in design calculations for Seismic Performance Category A.
  (b) Dead Loads, etc.
  Dead load of superstructure and substructure will be distributed equally to all piles which are under the main portion of the bent.

751.40.8.12.2 Reinforcement

751.40.8.12.2.1 General

PRESTRESS DOUBLE-TEE STRUCTURES


BENTS WITH 3" THRU 6" CROWN


SECTION A-A SECTION B-B


(*) Channel shear connectors are to be used in Seismic Performance Categories B, C & D. For details not shown, see EPG 751.9 Bridge Seismic Design.
(**) 2'-6" Min. for Seismic Performance Category A.
2'-9" Min. for Seismic Performance Categories, B, C & D.
Note: Use square ends on Prestress Double-Tee Structures.


BENTS WITH CROWN OVER 6"


SECTION A-A SECTION B-B


(*) Channel shear connectors are to be used in Seismic Performance Categories B, C & D.
(**) 2'-6" Min. for Seismic Performance Category A.
2'-9" Min. for Seismic Performance Categories, B, C & D.
Note: Use square ends on Prestress Double-Tee Structures.
751.40.8.12.2.2 Anchorage of Piles for Seismic Performance Categories B, C & D

STEEL PILE


PART ELEVATION SECTION THRU BEAM
PART PLAN


CAST-IN-PLACE PILE


PART ELEVATION SECTION THRU BEAM
PART PLAN
751.40.8.12.2.3 Beam Reinforcement Special Cases

SPECIAL CASE I


If centerline bearing is 12" or less on either side of centerline piles, for all piles (as shown above), use 4-#6 top and bottom and #4 at 12" cts. (stirrups), regardless of pile size.



SPECIAL CASE II


When beam reinforcement is to be designed assuming piles to take equal force, design for negative moment in the beam over the interior piles.



(*) Dimensions shown are for illustration purposes only.

751.40.8.12.3 Details

751.40.8.12.3.1 Sway Bracing

Refer to EPG 751.32.3.2.1 Sway Bracing.

751.40.8.12.3.2 Miscellaneous Details for Prestressed Girder

PRESTRESSED GIRDERS (INTEGRAL INT. BENT)



DETAIL OF JOINT FILLER AT INT. BENTS
(Continuous Spans - No Longitudinal Beam Steps)


(*) ¼ Joint Filler for a P/S Double Tee Structure
  ½ Joint Filler for a P/S I-Girder Structure


PRESTRESSED GIRDERS (NON-INTEGRAL INT. BENT)



DETAIL OF JOINT FILLER AT INT. BENTS
Longitudinal Beam Step and Shear Blocks shown)


DETAILS OF CONST. JOINT KEY

PART ELEVATION PART SECTION THRU KEYS
(P/S I-GIRDERS)
PART SECTION THRU KEYS
(P/S DOUBLE TEE GIRDERS)


751.40.8.13 Concrete Pile Cap Non-Integral End Bents

751.40.8.13.1 Design

751.40.8.13.1.1 Unit Stresses
(1) Reinforced Concrete
  Class B Concrete (Substructure) fc = 1,200 psi f'c = 3,000 psi
  Reinforcing Steel (Grade 60) fs = 24,000 psi fy = 60,000 psi
  n = 10
  Ec=W1.5×33f'c AASHTO Article 8.7.1) (*)
 
(2) Structural Steel
  Structural Carbon Steel (ASTM A709 Grade 36) fs = 20,000 psi fy = 36,000 psi
 
(3) Piling
 
(4) Overstress
  The allowable overstresses as specified in AASHTO Article 3.22 shall be used where applicable for Service Loads design method.
(*) Ec=57,000fcW = 145 pcf., Ec=60,625fc for W = 150 pcf.
751.40.8.13.1.2 Loads
(1) Dead Loads
 
(2) Live Load
  As specified on the Bridge Memorandum
  Impact of 30% is to be used for design of the beam. No impact is to be used for design of any other portion of bent including the piles.
 
(3) Temperature, Wind and Frictional Loads
  Wind and temperature forces can be calculated based on longitudinal force distribution.
751.40.8.13.1.3 Distribution of Loads
(1) Dead Loads
  Loads from stringers, girders, etc. shall be concentrated loads applied at the intersection of centerline of stringer and centerline of bearing.
 
(2) Live Load
  Loads from stringers, girders, etc. shall be applied as concentrated loads at the intersection of centerline of stringer and centerline of earing.
 
(3) Temperature
  The force due to expansion or contraction applied at bearing pads are not used for stability or pile bearing computations. However, the movement due to temperature should be considered in the bearing pad design and expansion device design.
 
(4) Wing with Detached Wing Wall
SECTION A-A


DETAIL B


(*) Detached wing wall shown is for illustration purpose only. Design detached wing wall as a retaining wall.
(**) See retaining wall design.
751.40.8.13.1.4 Design Assumptions - Loadings
1) Piles
  a. Stresses in the piles due to bending need not be considered in design calculations except for seismic design in categories B, C and D.
  b. The following four loading cases should be considered.
   
Case Vertical Loads Horizontal Loads Special Consideration
I DL + E + SUR EP + SUR -
II DL + LL + E + SUR EP + SUR -
III DL + LL + E EP -
IV DL + LL + E None Allow 25% Overstress
    Where,
    LL = live load
    DL = dead load of superstructure, substructure and one half of the apporach slab
    SUR = two feet of live load surcharge
    E = dead load of earth fill
    EP = equivalent fluid pressure of earth
    Maximum pile pressure = pile capacity
    Minimum pile pressure = 0 (tension on a pile will not be allowed for any combination of forces exept as noted)
 
2) Analysis Procedure
  a. Find the lateral stiffness of a pile, Kδ:
    With fixed pile-head (i.e., only translation movement is allowed but no rotation allowed): The lateral stiffness of a pile can be estimated using Figures 1 and 3 or 2 and 3 for pile in cohesionless or cohesive soil, respectively. The method of using Figures 1, 2, and 3 to find lateral stiffness is called Linear Subgrade Modulus Method. Usually the significant soil-pile interaction zone for pile subjected to lateral movement is confined to a depth at the upper 5 to 10 pile diameters. Therefore, simplified single layer stiffness chart shown in Figure 3 is appropriate for lateral loading. The coefficient f in Figures 1 and 2 is used to define the subgrade modulus Es at depth “z” representing the soil stiffness per unit pile length. For the purpose of selecting an appropriate f value, the soil condition at the upper 5 pile diameters should be used. Since soil property, friction angle ϕ, or cohesion c, is needed when Figure 1 or 2 is used, determine soil properties based on available soil boring data. If soil boring data is not available, one can conservatively use f value of 0.1 in Figure 3. Designer may also use soil properties to convert SPT N value to friction angle ϕ, or cohesion c, for granular or cohesive soil, respectively. Figures 1 and 2 were based on test data for smaller-diameter (12 inches) piles, but can be used for piles up to about 24 inches in diameter. In Figure 2, the solid line (by Lam et al. 1991) shall be used in design.
  b. Find the axial stiffness of a pile, Ka:
    For friction pile, Ka may be determined based on a secant stiffness approach as described in EPG 751.9 Bridge Seismic Design or by the in-house computer program “SPREAD” where Ka is calculated as:
    1Ka=1AE/L+1KQf+1KQb   Equation (1)
    Where:
    A = cross sectional area of pile
    E = elastic modulus of pile
    L = total length of pile
    KQf = secant stiffness due to ultimate friction capacity of the pile as described in EPG 751.9.2.6.3 Pile Axial Stiffness
    KQf = secant stiffness due to ultimate bearing capacity of the pile as described in EPG 751.9.2.6.3 Pile Axial Stiffness
  For HP bearing pile on rock Ka shall be calculated as:
    1Ka=1AE/L+1KQf   Equation (2)
    Or Conservatively, Ka may be determined as:
    Ka=AEL   Equation (3)
 
 
Recommended Coefficient f of Variation in Subgrade Modulus with Depth for Sand
 
 
Recommended Coefficient f of Variation in Subgrade Modulus with Depth for Clay
 
PILE HEAD AT
GRADE LEVEL
  EMBEDDED PILE HEAD
 
Lateral Embedded Pile-Head Stiffness
 
  c. Find the equivalent cantilever pile length, L
    For the structural model used in the structural analyses of loading cases I through IV. As shown in figure below, length L can be calculated as:
    L=(12EIKδ)1/3   Equation (4)
 
 
Structural Model
 
  d. Find the equivalent pile area, Ae :
    Once the equivalent cantilever pile length has been determined from step (c) above, the equivalent axial rigidity of the pile, Ae×Ee , can be calculated as Ae×E=KaL. Then, the equivalent pile area, Ae , is equal to
    Ae=KaLE   Equation (5)
 
  e. Perform structural analyses for loading cases I through IV.
    Use computer programs STRUCT3D, SAP2000 or any other program capable of running static analysis.
 
  f. Check abutment movement at the top of backwall and at the bottom of beam cap
    Maximum movement away from the backfill shall not be greater than 1/8". Maximum movement toward the backfill shall not be greater than 1/4".
 
  g. Check pile axial loads from the analysis with the allowable pile axial load capacity.
 
  h. Check overturning of bent
    Conservatively, use the same equivalent cantilever pile length, L. Check overturning of bent at the bottom of toe pile for loading cases I and II(Figure of Structural model).
   
Case I Point of
Investigation
Vertical Loads Horizontal Loads Factor of Safety (**)
I Toe Pile DL + E EP + SUR 1.2
II Toe Pile DL + LL + E EP + SUR 1.5
 
5) Deadman Anchorage System
  Deadman anchorage can be used when the abutment movement exceeds the allowable movement.
  The size and location of deadman anchorage shall be designed appropriately to maintain the stability of the abutment.
  The deadman forces may be used to resist overturning with the approval of the Structural Project Manager.
 
6) Passive Pressure Shear Key (if applicable)
  Passive pressure shear key may be used when the abutment movement exceeds the allowable movement.
  The passive resistance of soil to the lateral force at shear keys may be used with the approval of structural project manager.
751.40.8.13.1.5 Deadman Anchors

Design Assumptions



  Length of Deadman = (FE+FS/(PPPA)
  Number of tie rods required = (FE+FS)/FR
  PA = Active earth pressure on deadman, in lb./ft. = (120 pcf) KAhT
(**) PP = Passive earth pressure on deadman, in lb./ft. = (120 pcf) KPhT
  FE = Earth pressure on end bent, in lb. = 0.5(120 pcf)KAH2 (length of beam)
  FS = Surcharge on end bent, in lb. = (120pcf)(2)KAH(lengthofbeam)
  KA=Tan2(45ϕ/2)
  KP=Tan2(45ϕ/2)
(***) FR = 8.0 kips for 7/8" Ø tie rod and 10.50 kips for 1" Ø tie rods
(Capacity of the tie rods based on a maximum skew of 30°.)
 
* If the number of 7/8" Ø tie rods causes too long of a deadman, then try 1" Ø tie rods.
** For seismic loads only, use PP = 4 kips/sq.ft. as the ultimate capacity of compacted fill.
*** For seismic loads only, the allowable stress in the tie rod may be taken as the yield stress of the rod.


Notes:

No more than 20% of deadman may fall outside of the roadway shoulders. To prevent more than 20% limit, using a deeper deadman to reduce its length. If this is not possible, the total passive pressure resistance should be calculated by summing the resistance from the different fill depths.

When deadman anchors are to be used, design the piles for a factor of safety of 1.0 for sliding and design deadman anchors to resist all horizontal earth forces with a factor of safety of 1.0. This will result in a factor of safety for sliding of 2.0. For special cases, see the Structural Project Manager.


Design Example

Assume:
  Roadway width = 36', Out-Out slab width = 36' + 2 x 16" = 38.67'
  Skew = 15, Length of Beam = (38.67)/(Cos15)=40.03
  Beam depth = 30, ϕ=27, H=8.20
 
  H3=8.203=2.73
  32.73=0.27<9, use 9
  h=H(Beamdepth)+9=8.203+0.75=5.95
  Assume T=20 (Deadman anchor depth)


Determine Earth and Surcharge Forces
  KA = Tan2(45/2)=Tan2(4527/2)=0.3755
  KP = Tan2(45/2)=Tan2(4527/2)=2.6629
  Fe = 12(120KAH2)(LengthofBeam)
  = (60lb./cu.ft.)(0.3755)(8.20)2(40.03)
  = 60,842lbs.
  Fs = (2)(120KAH)(LengthofBeam)
  = (240lb./cu.ft.)(0.3755)(8.20)(40.03)
  = 297,582lbs.
  PA = 120KAhT
  = (120lb./cu.ft.)(0.3755)(5.95)(2.0)
  = 536lbs.perfootofDeadman
  PP = 120KPhT
  = (120lb./cu.ft.)(2.6629)(5.95)(2.0)
  = 3,803lbs.perfootofDeadman


Determine number of Tie Rods required
  Try 7/8"Ø Rods: FR=8.0 kips
  Number of Rods required = (FE+FS)/FR=(60,642+29,582)/8,000=11.29
  Use 12-7/8"Ø Rie Rods.
Determine length of Deadman
  Length of Deadman required = (FE+FS)/(PPPA=(60,642+29,582)lbs./(3,803536)lb/ft.=27.62
  Tie Rod spacing = (27.622.0)/11=2.33say24>12 minimum, ok.
  Length of Deadman provided = (24)(11)+2.0=278



ϕ=27


45ϕ2=31.5


1) Check tie rod skew angle at Fill Face of End Bent
  (5.5spacing)(30.528)=13.75,tan ϕ=13.75/(24.33×12)=0.471
  ϕ=2.70<30, tie capacity ok.
 
 
2) Check criteria for Deadman Anchors extending into Fill Slope
 


A) Extension of Deadman into Fill Slope
  Length of Deadman extending into Fill Slope = 1.08tan15+
    (13.83((15.04+3.87)24.33tan15))=1.73
  0.2 (Length of Deadman) = 0.2(27.67)=5.53
    1.73<5.53
  Length of Deadman extending into Fill Slope <0.2 (Length of Deadman), ok
 
Note: See below for Section A-A details.
 
B) Cover of Deadman in Fill Slope
  1.44×(cos15)=1.39


SECTION A-A
DETAIL AT FILL SLOPE


Note:

(*) Fill slope shown is for illustration purpose only, see roadway plans.

751.40.8.13.2 Reinforcement

751.40.8.13.2.1 Wide Flange Beams, Plate Girders and Prestressed Girders

END BENT WITH EXPANSION DEVICE


SECTION A-A
 
 
  PART ELEVATION

Notes:

(1) See details for reinforcement of end bent backwall.

(2) #6-H bars and #4-H bars in backwall of skewed bridges shall be bent in field if required.

(3) Center #5 bars in backwall.

Epoxy coat all reinforcing in end bents with expansion devices. See ______ for details of protective coating and sloping top of beam to drain.


DETAIL OF #5 BARS
SHAPE 19
PART PLAN B-B


END BENT WITHOUT EXPANSION DEVICE


SECTION A-A
 
 
  PART ELEVATION


(1) #5 Dowel bars are 2'-6" long and placed parallel to centerline roadway.
(2) #6-H bars and #4-H bars in backwall of skewed bridges shall be bent in field.
(3) For skewed bridges with no expansion device place a #4 bar along skew.
(4) See details of end bent backwall for reinforcement.
(5) Seal joint with joint sealant. See special provisions.
Note: See Structural Project Manager before using this detail.
PART PLAN B-B


END BENT WING


|
SECTION A-A
 
  TYPICAL ELEVATION OF WING

Note: (1) Development length


h (2) (3)
2' or less #4 @ 12" #6 @ 6"
Over 2' to 4' #5 @ 6" #7 @ 6"
Over 4' to 6' #7 @ 5" #8 @ 5"
  SECTION B-B
PART SECTION THRU BENTS
WITH PASSIVE PRESSURE
  HORIZONTAL SECTION THRU WING
(K bars not shown for clarity)


END BENT BEAM HEEL


ELEVATION A-A (TYP.) PART PLAN OF BEAM (SQUARE)
PART PLAN OF BEAM - SKEWS THRU 15° - LEFT ADVANCE SHOWN


SECTION B-B
PART PLAN OF BEAM - SKEWS OVER 15° - LEFT ADVANCE SHOWN


Note:

Vertical spacing for #7 bars shown in Elevation A-A is typical for all types of end bent beams.

For a long distance between heel pile and bearing beam investigate for use of larger bars; e.g. larger skews where the shear line does not fall within the bearing beam.


Pile Load Not Greater (1)* Hair-Pin Stirrups (2) Horizontal Rebar around Heel Pile
Skew thru 30° Skew 31° thru 45° Skew 46° thru 60° Skew over 60°
140 kips #6 @ 9" 5-#7 5-#7 5-#8 By Design
194 kips #6 @ 6" 5-#7 5-#8 By Design By Design


* Use 21" horizontal leg.


END BENT BACKWALL


PART SECTION THRU BACKWALL AND BEAM


V-BAR SIZE AND SPACING
h
(feet)
t
(inch)
Fill Face
Reinforcement
Front Face
Reinforcement
1-6 12 #5 @ 12" #5 @ 12"
7 12 #5 @ 12" #5 @ 12"
8 12 #5 @ 12" #5 @ 12"
9 12 #6 @ 12" #5 @ 12"
10 12 #6 @ 10" #5 @ 12"
11 15 #6 @ 10" #5 @ 12"
12 15 #6 @ 8" #5 @ 12"
13 18 #6 @ 8" #5 @ 12"
14 18 #6 @ 6" #5 @ 12"


Note:

All reinforcement is grade 60.

Design is based on 45 lbs. per cu. ft. equivalent fluid pressure and 90 lbs. per sq. ft. live load surcharge.

Epoxy coat all reinforcing steel in beam and backwall on non-integral end bents with expansion devices.

751.40.8.14 Concrete Pile Cap Integral End Bents

751.40.8.14.1 Design

751.40.8.14.1.1 Design Unit Stresses
  1. Reinforced Concrete
    • Class B Concrete (Substructure)   fc   = 1,200 psi,   f'c   = 3,000 psi
    • Reinforcing Steel (Grade 60)         fs   = 24,000 psi   fy   = 60,000 psi
    • n   = 10
    • Ec   =w1.5×33f'c   (AASHTO Article 8.7.1)(*)
  2. Structural Steel
    • Structural Carbon Steel (ASTM A709 Grade 36)   fs   = 20,000 psi   fy   = 36,000 psi
  3. Piling
    • See the Bridge Memorandum if pile capacity is indicated.
  4. Overstress
    • The allowable overstresses as specified in AASHTO Article 3.22 shall be used where applicable for Service Loads design method.

(*)   Ec=57,000f'cforW=145pcf,Ec=60,625f'cforW=150pcf

751.40.8.14.1.2 Loads
  1. Dead Loads
  2. Live Load
    • As specified on the Bridge Memorandum.
    • Impact of 30% is to be used for design of the beam. No impact is to be used for design of any other portion of bent including the piles.
  3. Temperature, Wind and Frictional Loads
751.40.8.14.1.3 Distribution of Loads
  1. Dead Loads
    • Loads from stringers, girders, etc. shall be concentrated loads applied at the intersection of centerline of stringer and centerline of bearing. Loads from concrete slab spans shall be applied as uniformly, distributed loads along the centerline of bearing.
  2. Live Load
    • Loads from stringers, girders, etc. shall be applied as concentrated loads at the intersection of centerline of stringer and centerline of bearing. For concrete slab spans distribute two wheel lines over 10'-0" (normal to centerline of roadway) of substructure beam. This distribution shall be positioned on the beam on the same basis as used for wheel lines in Traffic Lanes for Substructure Design.
  3. Wing with Detached Wing Wall
    • When wing length, L, is greater than 17 feet, use maximum length of 10 feet rectangular wing wall combined with a detached wing wall. When detached wing walls are used, no portion of the bridge live load shall be assumed distributed to the detached wing walls. Design detached wing wall as a retaining wall. (The weight of barrier or railing on top of the wall shall be included in Dead Load.)
751.40.8.14.1.4 Design Examples

Design H-bar and F-bar of an intermediate wing as shown in the figures below (wing length = 12.5', wing thickness = 24", wing height = 8'-4"), a Seismic Force of   ω = 12.21 kips/ft. is applied on the wall.


Section Near Intermediate Wing Section B-B
 
Interior Wing Design
Section C-C


Solve: Assume #6 V bar, #8 H bar, #6 F bar

1.) Design H-bar for bending
d=24in.2in.(clr.)0.75in.(VBar)0.5×1in.(Hbar)=20.75in..
=11ft.,   ω=12.21kips/ft.,   b=8ft.4in.=100in.
 
At Section A-A:
Mu=(1.0)(ω2/2)=12.21×112/2=738.705kipft.
Ru=Mu/(ϕbd2)=738.705×12,000/(0.9×100in.×(20.75)2)=228.85psi
Use fc=3kisi,   fy=60ksi
m=fy/(0.85fc)=60/(0.85×3)=23.53
ρ=(1/m)[112Rum/fy]=(112×228.85×23.53/60000)/23.53=0.004003
As (Req'd) = ρbd=0.004003×100in.×20.75in.=8.31sq.in.
Try No. 8 @ 9", USE   100in3in.(clr.)2in.(clr.)1in(No.8bar)9in=10.44spacing
Say 11 spacings, 12 bars (Each Face)
Total Area = 12(0.7854)=9.42sq.in.>8.31sq.in.,   USE 12-No. 8 H-bar (Each Face)


2.) Design F-bar for shear
Vuϕ(Vc=Vs),ϕ=0.85   (AASHTO Article 8.16.6.1.1)
 
At Section A-A:
Vu=1.0×(ω)=(12.21kips/ft.)(11ft.)=134.11kips
Vc=bd(ϑc)=bd(2fc=(100in.×20.75in.)(2×3000)/1000=227.30kips
ϕVc=0.85Vc=0.85×227.30kips=193.20kips
ϕVc=193.20kips>Vu=134.11kips,   No   Vs   needed by AASHTO Article 8.16.6.3.1.
Minimum shear reinforcement is required by AASHTO Article 8.19.1.1(a).(ACI 318-95 11.5.5.1)
 
F-bar is a single group of parallel bars, all bent up at the same distance from support (no "spacing" along the "L" direction of the wing).
Try No. 6 @ 12" F-bar (each face).
Try (100in.3in.2in.1in.)/12in=7.83, say 8 spacing, 9 bars (each face).
 
Since seismic force is a cyclic loading, assume one bar works at any instance.
Av(provided)=1×9×(0.4418sq.in.)=3.98sq.in.
 
Vs=Av(FySin45)=(3.98sq.in.)(60ksi)(Sin45)=168.7kips
Check   3fcbωd=33000×100in.×20.75in./1000=341.0kips
 
Vs=Av(fySin45)3fcbωd,   O.K. by AASHTO Article 8.16.6.3.4.
USE 9 No. 6 F-bars (each face).

751.40.8.14.2 Reinforcement

751.40.8.14.2.1 Earthquake Loads at End Bent – Intermediate Wing (Seismic Shear Wall)
Section Near Intermediate Wing Section B-B
 
 
Section A-A  
* Use 1.25 x development length for seismic design.
** Additional reinforcing steel by design if required.
Note: Make sure reinforcement does not interfere with girders.

751.40.8.15 Cast-In-Place Concrete Retaining Walls

751.40.8.15.1 Loads

Dead Loads

Dead loads shall be determined from the unit weights in EPG 751.2.1.1 Dead Load.

Equivalent Fluid Pressure (Earth Pressures)

Additional Information
AASHTO 3.20.1

For determining equivalent earth pressures for Group Loadings I through VI the Rankine Formula for Active Earth Pressure shall be used.

Rankine Formula: Pa=12CaγsH2 where:

Ca = cosδ[cosδcos2δcos2ϕcosδ+cos2δcos2ϕ] = coefficient of active earth pressure
Pa = equivalent active earth pressure
H = height of the soil face at the vertical plane of interest
γs = unit weight of soil
δ= slope of fill in degrees
ϕ = angle of internal friction of soil in degrees

Example

Given:

δ = 3:1 (H:V) slope
ϕ = 25°
γs = 0.120 kcf
H = 10 ft

δ = arctan[13] = 18.4°

Ca = cos(18.4)[cos(18.4)cos2(18.4)cos2(25)cos(18.4)+cos2(18.4)cos2(25)] = 0.515

Pa = (1/2)(0.515)(0.120 kips/ft3)(10 ft)2 = 3.090 kips per foot of wall length

The ϕ angle shall be determined by the Materials Division from soil tests. If the ϕ angle cannot be provided by the Construction and Materials Division a ϕ angle of 27 degrees shall be used.

Drainage shall be provided to relieve water pressure from behind all cast-in-place concrete retaining walls. If adequate drainage can not be provided then walls shall be designed to resist the maximum anticipated water pressure.

Surcharge Due to Point, Line and Strip Loads

Surcharge due to point and line loads on the soil being retained shall be included as dead load surcharge. The effect of these loads on the wall may be calculated using Figure 5.5.2B from AASHTO.

Surcharge due to strip loads on the soil being retained shall be included as a dead load surcharge load. The following procedure as described in Principles of Foundation Engineering by Braja M. Das (1995) shall be applied to calculate these loads when strip loads are applicable. An example of this application is when a retaining wall is used in front of an abutment so that the wall is retaining the soil from behind the abutment as a strip load on the soil being retained by the wall.

Retaining Wall in front of an Abutment

The portion of soil that is in the active wedge must be determined because the surcharge pressure only affects the wall if it acts on the active wedge. The actual failure surface in the backfill for the active state can be represented by ABC shown in the figure below. An approximation to the failure surface based on Rankine's active state is shown by dashed line AD. This approximation is slightly unconservative because it neglects friction at the pseudo-wall to soil interface.

The following variables are shown in the figure below:

β = slope of the active failure plane in degrees
δ = slope of fill in degrees
H = height of the pseudo-wall (fom the bottom of the footing).
L1 = distance from back of stem to back of footing heel
L2 = distance from footing heel to intersection of failure plane with ground surface
Determination of Active Wedges

In order to determine β, the following equation which has been derived from Rankine's active earth pressure theory must be solved by iteration:

tan(β)+1tan(βϕ)1tan(βδ)+1tan(90+ϕ+δβ)=0
ϕ = angle of internal friction of soil in degrees

A good estimate for the first iteration is to let β = 45° + (ϕ/2). In lieu of iterating the above equation a conservative estimate for β is 45°. Once β has been established, an estimate of L1 is needed to determine L2. From the geometry of the variables shown in the above figure:

L2=Hcosδcosβsin(βδ)

The resultant pressure due to the strip load surcharge and its location are then determined. The following variables are shown in the figure below:

q = load per unit area
Ps = resultant pressure on wall due only to surcharge earth pressure
z¯ = location of Ps measured from the bottom of the footing
L3 = distance from back of stem to where surcharge pressure begins
Surcharge Pressure on Retaining Wall

From the figure:

Ps = q90[H(θ2θ1)] where
θ1=arctan[L3H]andθ2=arctan[L2H]
z¯=H2(θ2θ1)(RQ)+57.03L4H2H(θ2θ1) where
R=(L2)2(90θ2)andQ=(L3)2(90θ1)

When applicable, Ps is applied to the wall in addition to other earth pressures. The wall is then designed as usual.

Live Load Surcharge

Additional Information
AASHTO 3.20.3 & 5.5.2

Live load surcharge pressure of not less than two feet of earth shall be applied to the structure when highway traffic can come within a horizontal distance equal to one-half of the wall height, measured from the plane where earth pressure is applied.

Live Load Surcharge
PLLS = (2 ft.) γs Ca H = pressure due to live load surcharge only
γs = unit weight of soil (Note: AASHTO 5.5.2 specifies a minimum of 125 pcf for live load surcharge, MoDOT policy allows 120 pcf as given from the unit weights in EPG 751.2.1.1 Dead Load.)
Ca = coefficient of active earth pressure
H = height of the soil face at the vertical plane of interest

The vertical live load surcharge pressure should only be considered when checking footing bearing pressures, when designing footing reinforcement, and when collision loads are present.

Live Load Wheel Lines

Live load wheel lines shall be applied to the footing when the footing is used as a riding or parking surface.

Additional Information
AASHTO 3.24.5.1.1 & 5.5.6.1

Distribute a LLWL equal to 16 kips as a strip load on the footing in the following manner.


P = LLWL/E
where E = 0.8X + 3.75
X = distance in ft. from the load to the front face of the wall
Additional Information
AASHTO 3.24.2 & 3.30

Two separate placements of wheel lines shall be considered, one foot from the barrier or wall and one foot from the toe of the footing.

Collision Forces

Additional Information
AASHTO Figure 2.7.4B

Collision forces shall be applied to a wall that can be hit by traffic. Apply a point load of 10 kips to the wall at a point 3 ft. above the finished ground line.

Section

Distribute the force to the wall in the following manner:

Force per ft of wall = (10 kips)/2L
Profile

When considering collision loads, a 25% overstress is allowed for bearing pressures and a factor of safety of 1.2 shall be used for sliding and overturning.

Wind and Temperature Forces

These forces shall be disregarded except for special cases, consult the Structural Project Manager.

When walls are longer than 84 ft., an expansion joint shall be provided.

Contraction joint spacing shall not exceed 28 feet.

Seismic Loads

Retaining walls in Seismic Performance Category A (SPC A) and SPC B that are located adjacent to roadways may be designed in accordance with AASHTO specifications for SPC A. Retaining walls in SPC B which are located under a bridge abutment or in a location where failure of the wall may affect the structural integrity of a bridge shall be designed to AASHTO specifications for SPC B. All retaining walls located in SPC C and SPC D shall be designed in accordance to AASHTO specifications for the corresponding SPC.

In seismic category B, C and D determine equivalent fluid pressure from Mononobe-Okabe static method.

Additional Information
1992 AASHTO Div. IA Eqns. C6-3 and C6-4

PAE = equivalent active earth pressure during an earthquake

PAE = 0.5 γsH2(1 - kv)KAE where

KAE = seismic active pressure coefficient

KAE=cos2(ϕθβ)cosθcos2βcos(δ+β+θ){1+sin(ϕ+δ)sin(ϕθi)cos(δ+β+θ)cos(iβ)}2


γs = unit weight of soil

Additional Information
AASHTO 5.2.2.3 & Div. IA 6.4.3

kv = vertical acceleration coefficient

kh = horizontal acceleration coefficient which is equal to 0.5A for all walls,

but 1.5A for walls with battered piles where
A = seismic acceleration coefficient

The following variables are shown in the figure below:

ϕ = angle of internal friction of soil

θ = arctan(kh1kv)

β = slope of soil face

δ = angle of friction between soil and wall in degrees

i = backfill slope angle in degrees

H = distance from the bottom of the part of the wall to which the pressure is applied to the top of the fill at the location where the earth pressure is to be found.

Active Soil Wedge

Group Loads

For SPC A and B (if wall does not support an abutment), apply AASHTO Group I Loads only. Bearing capacity, stability and sliding shall be calculated using working stress loads. Reinforced concrete design shall be calculated using load factor design loads.

Additional Information
AASHTO Table 3.22.1A

AASHTO Group I Load Factors for Load Factor Design of concrete: γ = 1.3

βD = 1.0 for concrete weight

βD = 1.0 for flexural member

βE = 1.3 for lateral earth pressure for retaining walls

βE = 1.0 for vertical earth pressure

βLL = 1.67 for live load wheel lines

βLL = 1.67 for collision forces

Additional Information
AASHTO 5.14.2

βE = 1.67 for vertical earth pressure resulting from live load surcharge

βE = 1.3 for horizontal earth pressure resulting from live load surcharge

For SPC B (if wall supports an abutment), C, and D apply AASHTO Group I Loads and seismic loads in accordance with AASHTO Division IA - Seismic Design Specifications.

Additional Information
AASHTO Div. IA 4.7.3

When seismic loads are considered, load factor for all loads = 1.0.

751.40.8.15.3 Unit Stresses

Concrete Concrete for retaining walls shall be Class B Concrete (f'c = 3000 psi) unless the footing is used as a riding surface in which case Class B-1 Concrete (f'c = 4000 psi) shall be used.

Reinforcing Steel

Reinforcing Steel shall be Grade 60 (fy = 60,000 psi).

Pile Footing

For steel piling material requirements, see the unit stresses in EPG 751.50 Standard Detailing Notes.

Spread Footing

For foundation material capacity, see Foundation Investigation Geotechnical Report.

751.40.8.15.4 Design

For epoxy coated reinforcement requirements, see EPG 751.5.9.2.2 Epoxy Coated Reinforcement Requirements.

If the height of the wall or fill is a variable dimension, then base the structural design of the wall, toe, and heel on the high quarter point between expansion joints.

Fig. 40.8.15.4.1
Additional Information
AASHTO 5.5.5
751.40.8.15.4.1 Spread Footings

Location of Resultant

The resultant of the footing pressure must be within the section of the footing specified in the following table.

When Retaining Wall is Built on: AASHTO Group Loads I-VI For Seismic Loads
Soila Middle 1/3 Middle 1/2 b
Rockc Middle 1/2 Middle 2/3
a Soil is defined as clay, clay and boulders, cemented gravel, soft shale, etc. with allowable bearing values less than 6 tons/sq. ft.
b MoDOT is more conservative than AASHTO in this requirement.
c Rock is defined as rock or hard shale with allowable bearing values of 6 tons/sq. ft. or more.

Note: The location of the resultant is not critical when considering collision loads.

Factor of Safety Against Overturning

Additional Information
AASHTO 5.5.5

AASHTO Group Loads I - VI:

  • F.S. for overturning ≥ 2.0 for footings on soil.
  • F.S. for overturning ≥ 1.5 for footings on rock.

For seismic loading, F.S. for overturning may be reduced to 75% of the value for AASHTO Group Loads I - VI. For seismic loading:

  • F.S. for overturning ≥ (0.75)(2.0) = 1.5 for footings on soil.
  • F.S. for overturning ≥ (0.75)(1.5) = 1.125 for footings on rock.

For collision forces:

  • F.S. for overturning ≥ 1.2.

Factor of Safety Against Sliding

Additional Information
AASHTO 5.5.5

Only spread footings on soil need be checked for sliding because spread footings on rock or shale are embedded into the rock.

  • F.S. for sliding ≥ 1.5 for AASHTO Group Loads I - VI.
  • F.S. for sliding ≥ (0.75)(1.5) = 1.125 for seismic loads.
  • F.S. for sliding ≥ 1.2 for collision forces.

The resistance to sliding may be increased by:

  • adding a shear key that projects into the soil below the footing.
  • widening the footing to increase the weight and therefore increase the frictional resistance to sliding.

Passive Resistance of Soil to Lateral Load

The Rankine formula for passive pressure can be used to determine the passive resistance of soil to the lateral force on the wall. This passive pressure is developed at shear keys in retaining walls and at end abutments.

Additional Information
AASHTO 5.5.5A

The passive pressure against the front face of the wall and the footing of a retaining wall is loosely compacted and should be neglected when considering sliding.

Rankine Formula: Pp=12Cpγs[H2H12] where thefollowing variables are defined in the figure below

Cp = tan(45+ϕ2)
y1 = H1y22+23y23H2H12
Pp = passive force at shear key in pounds per foot of wall length
Cp = coefficient of passive earth pressure
γs = unit weight of soil
H = height of the front face fill less than 1 ft. min. for erosion
H1 = H minus depth of shear key
y1 = location of Pp from bottom of footing
ϕ = angle of internal friction of soil
Additional Information
AASHTO 5.5.2

The resistance due to passive pressure in front of the shear key shall be neglected unless the key extends below the depth of frost penetration.

Additional Information
MoDOT Materials Division

Frost line is set at 36 in. at the north border of Missouri and at 18 in. at the south border.

Passive Pressure During Seismic Loading

During an earthquake, the passive resistance of soil to lateral loads is slightly decreased. The Mononobe-Okabe static method is used to determine the equivalent fluid pressure.

PPE = equivalent passive earth pressure during an earthquake
Additional Information
1992 AASHTO Div. IA Eqns. C6-5 and C6-6
PPE=12γsH2(1kv)KPE where:
KPE = seismic passive pressure coefficient
KPE=cos2(ϕθβ)cosθcos2βcos(δ+β+θ)[1+sin(ϕ+δ)sin(ϕθi)cos(δ+β+θ)cos(iβ)]2
γs = unit weight of soil
H = height of soil at the location where the earth pressure is to be found
kV = vertical acceleration coefficient
ϕ = angle of internal friction of soil
θ=arctan[kh1kV]
kH = horizontal acceleration coefficient
β = slope of soil face in degrees
i = backfill slope angle in degrees
δ = angle of friction between soil and wall

Special Soil Conditions

Due to creep, some soft clay soils have no passive resistance under a continuing load. Removal of undesirable material and replacement with suitable material such as sand or crushed stone is necessary in such cases. Generally, this condition is indicated by a void ratio above 0.9, an angle of internal friction (ϕ) less than 22°, or a soil shear less than 0.8 ksf. Soil shear is determined from a standard penetration test.

Soil Shear (kft2)=blowsper12in.10

Friction

In the absence of tests, the total shearing resistance to lateral loads between the footing and a soil that derives most of its strength from internal friction may be taken as the normal force times a coefficient of friction. If the plane at which frictional resistance is evaluated is not below the frost line then this resistance must be neglected.

When A Shear Key Is Not Used
Additional Information
AASHTO 5.5.2B

Sliding is resisted by the friction force developed at the interface between the soil and the concrete footing along the failure plane. The coefficient of friction for soil against concrete can be taken from the table below. If soil data is not readily available or is inconsistent, the friction factor (f) can be taken as

f =tan(2ϕ3) where ϕ is the angle of internal friction of the soil (Civil Engineering Reference Manual by Michael R. Lindeburg, 6th ed., 1992).
Coefficient of Friction Values for Soil Against Concrete
Soil Typea Coefficient of Friction
coarse-grained soil without silt 0.55
coarse-grained soil with silt 0.45
silt (only) 0.35
clay 0.30b
a It is not necessary to check rock or shale for sliding due to embedment.
b Caution should be used with soils with ϕ < 22° or soil shear < 0.8 k/sq.ft. (soft clay soils). Removal and replacement of such soil with suitable material should be considered.
When A Shear Key Is Used

When a shear key is used, the failure plane is located at the bottom of the shear key in the front half of the footing. The friction force resisting sliding in front of the shear key is provided at the interface between the stationary layer of soil and the moving layer of soil, thus the friction angle is the internal angle of friction of the soil (soil against soil). The friction force resisting sliding on the rest of the footing is of that between the concrete and soil. Theoretically the bearing pressure distribution should be used to determine how much normal load exists on each surface, however it is reasonable to assume a constant distribution. Thus the normal load to each surface can be divided out between the two surfaces based on the fractional length of each and the total frictional force will be the sum of the normal load on each surface multiplied by the corresponding friction factor.

Bearing Pressure

Additional Information
AASHTO 4.4.7.1.2 & 4.4.8.1.3
Group Loads I - VI
The bearing capacity failure factor of safety for Group Loads I - VI must be greater than or equal to 3.0. This factor of safety is figured into the allowable bearing pressure given on the "Design Layout Sheet".
The bearing pressure on the supporting soil shall not be greater than the allowable bearing pressure given on the "Design Layout Sheet".
Seismic Loads
Additional Information
AASHTO Div. IA 6.3.1(B) and AASHTO 5.5.6.2
When seismic loads are considered, AASHTO allows the ultimate bearing capacity to be used. The ultimate capacity of the foundation soil can be conservatively estimated as 2.0 times the allowable bearing pressure given on the "Design Layout".
Stem Design
The vertical stem (the wall portion) of a cantilever retaining wall shall be designed as a cantilever supported at the base.
Footing Design
Additional Information
AASHTO 5.5.6.1
Toe
The toe of the base slab of a cantilever wall shall be designed as a cantilever supported by the wall. The critical section for bending moments shall be taken at the front face of the stem. The critical section for shear shall be taken at a distance d (d = effective depth) from the front face of the stem.
Heel
The rear projection (heel) of the base slab shall be designed to support the entire weight of the superimposed materials, unless a more exact method is used. The heel shall be designed as a cantilever supported by the wall. The critical section for bending moments and shear shall be taken at the back face of the stem.
Shear Key Design
The shear key shall be designed as a cantilever supported at the bottom of the footing.
751.40.8.15.4.2 Pile Footings

Footings shall be cast on piles when specified on the "Design Layout Sheet". If the horizontal force against the retaining wall cannot otherwise be resisted, some of the piles shall be driven on a batter.

Pile Arrangement
For retaining walls subject to moderate horizontal loads (walls 15 to 20 ft. tall), the following layout is suggested.
Section
Plan
For higher walls and more extreme conditions of loading, it may be necessary to:
  • use the same number of piles along all rows
  • use three rows of piles
  • provide batter piles in more than one row
Loading Combinations for Stability and Bearing
The following table gives the loading combinations to be checked for stability and pile loads. These abbreviations are used in the table:
DL = dead load weight of the wall elements
SUR = two feet of live load surcharge
E = earth weight
EP = equivalent fluid earth pressure
COL = collision force
EQ = earthquake inertial force of failure wedge
Loading Case Vertical Loads Horizontal Loads Overturning Factor of Safety Sliding Factor of Safety
Battered Toe Piles Vertical Toe Piles
Ia DL+SUR+E EP+SUR 1.5 1.5 2.0
II DL+SUR+E EP+SUR+COL 1.2 1.2 1.2
III DL+E EP 1.5 1.5 2.0
IVb DL+E None - - -
Vc DL+E EP+EQ 1.125 1.125 1.5
a Load Case I should be checked with and without the vertical surcharge.
b A 25% overstress is allowed on the heel pile in Load Case IV.
c The factors of safety for earthquake loading are 75% of that used in Load Case III. Battered piles are not recommended for use in seismic performance categories B, C, and D. Seismic design of retaining walls is not required in SPC A and B. Retaining walls in SPC B located under a bridge abutment shall be designed to AASHTO Specifications for SPC B.
Pile Properties and Capacities
For Load Cases I-IV in the table above, the allowable compressive pile force may be taken from the pile capacity table in the Piling Section of the Bridge Manual which is based in part on AASHTO 4.5.7.3. Alternatively, the allowable compressive pile capacity of a friction pile may be determined from the ultimate frictional and bearing capacity between the soil and pile divided by a safety factor of 3.5 (AASHTO Table 4.5.6.2.A). The maximum amount of tension allowed on a heel pile is 3 tons.
For Load Case V in the table above, the allowable compressive pile force may be taken from the pile capacity table in the Piling Section of the Bridge Manual multiplied by the appropriate factor (2.0 for steel bearing piles, 1.5 for friction piles). Alternatively, the allowable compressive pile capacity of a friction pile may be determined from the ultimate frictional and bearing capacity between the soil and pile divided by a safety factor of 2.0. The allowable tension force on a bearing or friction pile will be equal to the ultimate friction capacity between the soil and pile divided by a safety factor of 2.0.
To calculate the ultimate compressive or tensile capacity between the soil and pile requires the boring data which includes the SPT blow counts, the friction angle, the water level, and the soil layer descriptions.
Assume the vertical load carried by battered piles is the same as it would be if the pile were vertical. The properties of piles may be found in the Piling Section of the Bridge Manual.
Neutral Axis of Pile Group
Locate the neutral axis of the pile group in the repetitive strip from the toe of the footing at the bottom of the footing.
Moment of Inertia of Pile Group
The moment of inertia of the pile group in the repetitive strip about the neutral axis of the section may be determined using the parallel axis theorem:
I = Σ(IA) + Σ(Ad2) where :
IA = moment of inertia of a pile about its neutral axis
A = area of a pile
d = distance from a pile's neutral axis to pile group's neutral axis
IA may be neglected so the equation reduces to:
I = Σ(Ad2)
Resistance To Sliding
Any frictional resistance to sliding shall be ignored, such as would occur between the bottom of the footing and the soil on a spread footing.
Friction or Bearing Piles With Batter (Case 1)
Retaining walls using friction or bearing piles with batter should develop lateral strength (resistance to sliding) first from the batter component of the pile and second from the passive pressure against the shear key and the piles.
Friction or Bearing Piles Without Batter (Case 2)
Retaining walls using friction or bearing piles without batter due to site constrictions should develop lateral strength first from the passive pressure against the shear key and second from the passive pressure against the pile below the bottom of footing. In this case, the shear key shall be placed at the front face of the footing.
Concrete Pedestal Piles or Drilled Shafts (Case 3)
Retaining walls using concrete pedestal piles should develop lateral strength first from passive pressure against the shear key and second from passive pressure against the pile below the bottom of the footing. In this case, the shear key shall be placed at the front of the footing. Do not batter concrete pedestal piles.
Resistance Due to Passive Pressure Against Pile
The procedure below may be used to determine the passive pressure resistance developed in the soil against the piles. The procedure assumes that the piles develop a local failure plane.
F = the lateral force due to passive pressure on pile
F=12γsCPH2B , where: CP=tan2[45+ϕ2]
γs = unit weight of soil
H = depth of pile considered for lateral resistance (Hmax= 6B)
CP = coefficient of active earth pressure
B = width of pile
ϕ = angle of internal friction of soil
Resistance Due to Pile Batter
Use the horizontal component (due to pile batter) of the allowable pile load as the lateral resistance of the battered pile. (This presupposes that sufficient lateral movement of the wall can take place before failure to develop the ultimate strength of both elements.)
b = the amount of batter per 12 inches.
c=(12in.)2+b2
PHBatter=PT(bc) (# of battered piles) where:
PHBatter = the horizontal force due to the battered piles
PT = the allowable pile load
Maximum batter is 4" per 12".
Resistance Due to Shear Keys
A shear key may be needed if the passive pressure against the piles and the horizontal force due to batter is not sufficient to attain the factor of safety against sliding. The passive pressure against the shear key on a pile footing is found in the same manner as for spread footings.
Resistance to Overturning
The resisting and overturning moments shall be computed at the centerline of the toe pile at a distance of 6B (where B is the width of the pile) below the bottom of the footing. A maximum of 3 tons of tension on each heel pile may be assumed to resist overturning. Any effects of passive pressure, either on the shear key or on the piles, which resist overturning, shall be ignored.
Pile Properties
Location of Resultant
The location of the resultant shall be evaluated at the bottom of the footing and can be determined by the equation below:
e=ΣMΣV where:
e = the distance between the resultant and the neutral axis of the pile group
ΣM = the sum of the moments taken about the neutral axis of the pile group at the bottom of the footing
ΣV = the sum of the vertical loads used in calculating the moment
Pile Loads
The loads on the pile can be determined as follows:
P=ΣVA±McI where:
P = the force on the pile
A = the areas of all the piles being considered
M = the moment of the resultant about the neutral axis
c = distance from the neutral axis to the centerline of the pile being investigated
I = the moment of inertia of the pile group
Additional Information
AASHTO 5.5.6.2
Stem Design
The vertical stem (the wall portion) of a cantilever retaining wall shall be designed as a cantilever supported at the base.
Footing Design
Toe
Additional Information
AASHTO 5.5.6.1
The toe of the base slab of a cantilever wall shall be designed as a cantilever supported by the wall. The critical section for bending moments shall be taken at the front face of the stem. The critical section for shear shall be taken at a distance d (d = effective depth) from the front face of the stem.
Heel
The top reinforcement in the rear projection (heel) of the base slab shall be designed to support the entire weight of the superimposed materials plus any tension load in the heel piles (neglect compression loads in the pile), unless a more exact method is used. The bottom reinforcement in the heel of the base slab shall be designed to support the maximum compression load in the pile neglecting the weight of the superimposed materials. The heel shall be designed as a cantilever supported by the wall. The critical sections for bending moments and shear shall be taken at the back face of the stem.
Shear Key Design
The shear key shall be designed as a cantilever supported at the bottom of the footing.
751.40.8.15.4.3 Counterfort Walls

Assumptions:

(1) Stability The external stability of a counterfort retaining wall shall be determined in the same manner as described for cantilever retaining walls. Therefore refer to previous pages for the criteria for location of resultant, factor of safety for sliding and bearing pressures.

(2) Stem

P=Caγs
where:
Ca = coefficient of active earth pressure
γs = unit weigt of soil

Design the wall to support horizontal load from the earth pressure and the liveload surcharge (if applicable) as outlined on the previous pages and as designated in AASHTD Section 3.20, except that maximum horizontal loads shall be the calculated equivalent fluid pressure at 3/4 height of wall [(0.75 H)P] which shall be considered applied uniformly from the lower quarter point to the bottom of wall.

In addition, vertical steel In the fill face of the bottom quarter of the wall shall be that required by the vertical cantilever wall with the equivalent fluid pressure of that (0.25 H) height.

Maximum concrete stress shall be assumed as the greater of the two thus obtained.

The application of these horizontal pressures shall be as follows:

Counterfort Wall Section
Moments are to be determined by analysis as a continuous beam. The counterforts are to be spaced so as to produce approximately equal positive and negative moments.

(3) Counterfort Counterforts shall be designed as T-beams, of which the wall is the flange and the counterfort is the stem. For this reason the concrete stresses ane normally low and will not control.

For the design of reinforcing steel in the back of the counterfort, the effective d shall be the perpendicular distance from the front face of the wall (at point that moment is considered), to center of reinforcing steel.

(4) Footing

The footing of the counterfort walls shall be designed as a continuous beam of spans equal to the distance between the counterforts.

The rear projection or heel shall be designed to support the entire weight of the superimposed materials, unless a more exact method is used. Refer to AASHTD Section 5.5.6.

Divide footing (transversely) into four (4) equal sections for design footing pressures.

Counterfort walls on pile are very rare and are to be treated as special cases. See Structural Project Manager.

(5) Sign-Board type walls

The Sign-Board type of retaining walls are a special case of the counterfort retaining walls. This type of wall is used where the soiI conditions are such that the footings must be placed a great distance below the finished ground line. For this situation, the wall is discontinued approximately 12 in. below the finished ground line or below the frost line.

Due to the large depth of the counterforts, it may be more economical to use a smaller number of counterforts than would otherwise be used.

All design assumptions that apply to counterfort walls will apply to sign-board walls with the exception of the application of horizontal forces for the stem (or wall design), and the footing design which shall be as follows:

Wall
Footing
The individual footings shall be designed transversely as cantilevers supported by the wall. Refer to AASHTO Section 5.

751.40.8.15.5 Example 1: Spread Footing Cantilever Wall

Typical Section thru Wall
(Spread Footing)
f'c = 3,000 psi
fy = 60,000 psi
φ = 24 in.
γs = 120 pcf (unit wgt of soil)
Allowable soil pressure = 2 tsf
γc = 150 pcf (unit wgt of concr.)
Retaining wall is located in Seismic Performance Category (SPC) B.
A = 0.1 (A = seismic acceleration coefficient)
Pa=12γsCaH2 Pp=12γsCpH22H12

Assumptions

  • Retaining wall is under an abutment or in a location where failure of the wall may affect the structural integrity of a bridge. Therefore, it must be designed for SPC B.
  • Design is for a unit length (1 ft.) of wall.
  • Sum moments about the toe at the bottom of the footing for overturning.
  • For Group Loads I-VI loading:
  • F.S. for overturning ≥ 2.0 for footings on soil.
  • F.S. for sliding ≥ 1.5.
  • Resultant to be within middle 1/3 of footing.
  • For earthquake loading:
  • F.S. for overturning ≥ 0.75(2.0) = 1.5.
  • F.S. for sliding ≥ 0.75(1.5) = 1.125.
  • Resultant to be within middle 1/2 of footing.
  • Base of footing is below the frost line.
  • Neglect top one foot of fill over toe when determining passive pressure and soil weight.
  • Use of a shear key shifts the failure plane to "B" where resistance to sliding is provided by passive pressure against the shear key, friction of soil along failure plane "B" in front of the key, and friction between soil and concrete along the footing behind the key.
  • Soil cohesion along failure plane is neglected.
  • Footings are designed as cantilevers supported by the wall.
  • Critical sections for bending are at the front and back faces of the wall.
  • Critical sections for shear are at the back face of the wall for the heel and at a distance d (effective depth) from the front face for the toe.
  • Neglect soil weight above toe of footing in design of the toe.
  • The wall is designed as a cantilever supported by the footing.
  • Load factors for AASHTO Groups I - VI for design of concrete:
  • γ = 1.3.
  • βE = 1.3 for horizontal earth pressure on retaining walls.
  • βE = 1.0 for vertical earth pressure.
  • Load factor for earthquake loads = 1.0.

Lateral Pressures Without Earthquake

Ca = cosδ[cosδcos2δcos2ϕcosδ+cos2δcos2ϕ]
Ca = cos18.435[cos18.435cos218.435cos224cos18.435+cos218.435cos224] = 0.546
Cp=tan2(45+ϕ2)=tan2(45+242)=2.371
PA=12[0.120kft3](1ft)(0.546)(10.667ft)2=3.726k
PP=12[0.120kft3](1ft)(2.371)[(5.0)2(2.5)2]=2.668k
PAV=PA(sinδ)=3.726k(sin18.435)=1.178k
PAH=PA(cosδ)=3.726k(cos18.435)=3.534k
Load Area (ft2) Force (k) = (Unit Wgt.)(Area) Arm (ft.) Moment (ft-k)
(1) (0.5)(6.667ft)(2.222ft) = 7.407 0.889 7.278 6.469
(2) (6.667ft)(6.944ft) = 46.296 5.556 6.167 34.259
(3) (0.833ft)(8.000ft) + (0.5)(0.083ft)(8.000ft) = 7.000 1.050 2.396 2.515
(4) (1.500ft)(9.500ft) = 14.250 2.138 4.750 10.153
(5) (2.500ft)(1.000ft) = 2.500 0.375 2.500 0.938
(6) (1.000ft)(1.917ft)+(0.5)(0.010ft)(1.000ft) = 1.922 0.231 0.961 0.222
Σ - ΣV = 10.239 - ΣMR = 54.556
PAV - 1.178 9.500 11.192
Σ resisting - ΣV = 11.417 - ΣMR = 65.748
PAH - 3.534 3.556 12.567
PP - 2.668 1.3891 -
1 The passive capacity at the shear key is ignored in overturning checks,since this capacity is considered in the factor of safety against sliding. It is assumed that a sliding and overturning failure will not occur simultaneously. The passive capacity at the shear key is developed only if the wall does slide.

y¯=H1y2+23y3H22H12=(2.5ft)(2.5ft)2+23(2.5ft)3(5.0ft)2(2.5ft)2 = 1.389 ft.

Overturning
F.S. = MRMOT=65.748(ftk)12.567(ftk)=5.2322.0 o.k.
where: MOT = overturning moment; MR = resisting moment
Resultant Eccentricity
x¯=(65.74812.567)(ftk)11.417k = 4.658 ft.
e=9.500ft24.658ft.=0.092ft.
L6=9.500ft6=1.583ft>e o.k.
Sliding
Check if shear key is required for Group Loads I-VI:
F.S. = ΣV(tanϕsc)PAH=11.042k(tan23(24)3.534k= 0.896 no good - shear key req'd
where: φs-c = angle of friction between soil and concrete = (2/3)φs-s
F.S. = PP+(ΣV)(L2L1tanϕss+L3L1tanϕsc)PAH
where: φs-s = angle of internal friction of soil
F.S. = 2.668k+(11.417k)[(2ft9.50ft)tan24+(7.50ft9.50fttan(23(24))]3.534k = 1.789 ≥ 1.5 o.k.
Footing Pressure
P=ΣVbL[1±6eL]
PH = pressure at heel PH=11.417k(1ft)9.50ft[16(0.092ft)9.50ft] = 1.132 k/ft2
PT = pressure at toe PT=11.417k(1ft)9.50ft[1+6(0.092ft)9.50ft] = 1.272 k/ft2
Allowable pressure = 2 tons/ft2 = 4 k/ft2 ≥ 1.272 k/ft2 o.k.

Lateral Pressures With Earthquake

kh = 0.5A = 0.5 (0.1) = 0.05

kv = 0

θ=arctan[kh1kv]=arctan[0.0510]=2.862

Active Pressure on Psuedo-Wall
δ = φ = 24° (δ is the angle of friction between the soil and the wall. In this case, δ = φ = because the soil wedge considered is next to the soil above the footing.)
i = 18.435°
β = 0°
KAE=cos2(ϕθβ)cosθcos2βcos(δ+β+θ)(1+sin(ϕ+δ)sin(ϕθi)cos(δ+β+θ)cos(Iβ))2
KAE=cos2(242.8620)cos(2.862)cos2(0)cos(24+0+2.862)(1+sin(24+24)sin(242.86218.435)cos(24+0+2.862)cos(18.4350))2
KAE = 0.674
PAE = ½γsH2(1 − kv)KAE
PAE = ½[0.120 k/ft3](10.667 ft)2(1 ft.)(1 - 0)(0.674) = 4.602k
PAEV = PAE(sinδ) = 4.602k(sin24°) = 1.872k
PAEH = PAE(cosδ) = 4.602k(cos 24°) = 4.204k
P'AH = PAEH − PAH = 4.204k − 3.534k = 0.670k
P'AV = PAEV − PAV = 1.872k − 1.178k = 0.694k
where: P'AH and P'AV are the seismic components of the active force.
Passive Pressure on Shear Key
δ = φ = 24° (δ = φ because the soil wedge considered is assumed to form in front of the footing.)
i = 0
β = 0
KPE=cos2(ϕθ+β)cosθcos2βcos(δβ+θ)(1sin(ϕδ)sin(ϕθ+i)cos(δβ+θ)cos(Iβ))2
KPE=cos2(242.862+0)cos(2.862)cos2(0)cos(240+2.862)(1sin(2424)sin(242.862+0)cos(240+2.862)cos(00))2
KPE = 0.976
PPE = ½γsH2(1 − kv)KPE
PPE = ½[0.120 k/ft3][(5.0 ft)2 - (2.5 ft2)](1 ft.)(1 - 0)(0.976) = 1.098k
Load Force (k) Arm (ft) Moment (ft-k)
Σ (1) thru (6) 10.239 - 54.556
PAV 1.178 9.500 11.192
P'AV 0.694 9.500 6.593
Σresisting ΣV = 12.111 - ΣMR = 72.341
PAH 3.534 3.556 12.567
P'AH 0.670 6.400a 4.288
PPEV 0.447b 0.000 0.000
PPEH 1.003b 1.389c 0.000
- - - ΣMOT = 16.855
a P'AH acts at 0.6H of the wedge face (1992 AASHTO Div. IA Commentary).
b PPEH and PPEH are the components of PPE with respect to δ (the friction angle). PPE does not contribute to overturning.
c The line of action of PPEH can be located as was done for PP.
Overturning
F.S.OT=72.341ftk16.855ftk=4.292>1.5 o.k.
Resultant Eccentricity
x¯=72.341ftk16.855ftk12.111k=4.581ft.
e=9.5ft.24.581ft.=0.169ft.
L4=9.5ft.4=2.375ft.>e o.k.


Sliding
F.S.=1.003k+12.111k[(29.5)tan24+(7.59.5)tan(23(24))]4.204k=1.161>1.125 o.k.


Footing Pressure
for e ≤ L/6:
P=ΣVbL[1±6eL]
PH=pressureatheelPH=12.111k(1ft.)9.50ft.[16(0.169ft.)9.50ft] = 1.139 k/ft2
PTH=pressureattoePT=12.111k(1ft.)9.50ft.[1+6(0.169ft.)9.50ft] = 1.411 k/ft2
Allowable soil pressure for earthquake = 2 (allowable soil pressure)
(2)[4 k/ft2] = 8 k/ft2 > 1.411 k/ft2 o.k.

Reinforcement-Stem

d = 11" - 2" - (1/2)(0.5") = 8.75"

b = 12"

f'c = 3,000 psi

Without Earthquake
PAH = ½ [0.120 k/ft3](0.546)(6.944 ft.)2(1 ft.)(cos 18.435°) = 1.499k
γ = 1.3
βE = 1.3 (active lateral earth pressure)
Mu = (1.3)(1.3)(1.499k)(2.315ft) = 5.865 (ft-k)
With Earthquake
kh = 0.05
kv = 0
Additional Information
1992 AASHTO Div. IA Commentary
θ = 2.862°
δ = φ/2 = 24°/2 = 12° for angle of friction between soil and wall. This criteria is used only for seismic loading if the angle of friction is not known.
φ = 24°
i = 18.435°
β = 0°
KAE = 0.654
PAEH = 1/2 γsKAEH2cosδ
PAEH = 1/2 [0.120k/ft](0.654)(6.944 ft.)2(1 ft.) cos(12°) = 1.851k
Mu = (1.499k)(2.315 ft.) + (1.851k − 1.499k)(0.6(6.944 ft.)) = 4.936(ft−k)
The moment without earthquake controls:
Rn=Muϕbd2=5.865(ftk)0.9(1ft.)(8.75in.)2(1000lbk) = 85.116 psi
ρ = 0.85f'cfy[112Rn0.85f'c]
ρ = 0.85(3.000psi60,000psi[112(85.116psi0.85(3000psi)] = 0.00144
Additional Information
AASHTO 8.17.1.1 & 8.15.2.1.1
ρmin = 1.7[hd]2f'cfy=1.7[11in.8.75in.23000psi60,000psi] = 0.00245
Use ρ = 4/3 ρ = 4/3 (0.00144) = 0.00192
ASReq = ρbd = 0.00192 (12 in.)(8.75 in.) = 0.202 in.2/ft
One #4 bar has AS = 0.196 in2
s0.196in.2=12in.0.202in.2
s = 11.64 in.
Use #4's @ 10" cts.
Check Shear
Vuφ Vn
Without Earthquake
Vu, = (1.3)(1.3)(1.499k) = 2.533k
With Earthquake
Vu = 1.851k
The shear force without earthquake controls.
νuϕ=2.533k0.85(12in.)(8.75in.)(1000lb/k) = 28.4 psi
νc=23,000psi = 109.5 psi > 28.4 psi o.k.

Reinforcement-Footing-Heel

Note: Earthquake will not control and will not be checked.

βE = 1.0 (vertical earth pressure)

d = 18" - 3" - (1/2)(0.750") = 14.625"

b = 12"

f'c = 3,000 psi

Mu = 1.3 [(5.556k + 1.500k)(3.333ft) + 0.889k(4.444ft) + 1.178k(6.667ft)]

Mu = 45.919(ft−k)

Rn=45.919(ftk)0.9(1ft.)(14.625in.)2(1000lbk) = 238.5 psi

ρ = 0.85(3000)psi60,000psi[112(238.5psi)0.85(3000psi)] = 0.00418

ρmin = 1.7[18in.14.625in.]23000psi60,000psi = 0.00235

ASReq = 0.00418 (12 in.) (14.625 in.) = 0.734 in2/ft.


Use #6's @ 7" cts.

Check Shear
Shear shall be checked at back face of stem.
Vu = 1.3 (5.556k + 1.500k + 0.889k + 1.178k) = 11.860k
νuϕ=11.860k0.85(12in.)(14.625in.)(1000lbk)=79.5psi<23,000psi = 109.5 psi o.k.

Reinforcement-Footing-Toe

d = 18" - 4" = 14"

b = 12"

Without Earthquake
Apply Load Factors
load 4 (weight) = 0.431k(1.3)(1.0) = 0.560k
βE = 1.3 for lateral earth pressure for retaining walls.
βE = 1.0 for vertical earth pressure.
ΣMOT = 12.567(ft−k)(1.3)(1.3) = 21.238(ft−k)
ΣMR = [54.556(ft−k) + 11.192(ft−k)](1.3)(1.0) = 85.472(ft−k)
ΣV = 11.417k(1.3)(1.0) = 14.842k
x¯=85.472(ftk)21.238(ftk)14.842k = 4.328 ft.
e = (9.5 ft./2) − 4.328 ft. = 0.422 ft.
PH=14.842k(1ft.)(9.5ft.)[16(0.422ft.)9.5ft.] = 1.146k/ft2
PT=14.842k(1ft.)(9.5ft.)[1+6(0.422ft.)9.5ft.] = 1.979k/ft2
P=[1.979kft.1.146kft.9.5ft.](7.583ft.)+1.146kft. = 1.811k/ft.
Mu=1.811kft.(1.917ft.)22+12(1.917ft.)2[1.979kft.1.811kft.]230.560k(0.958ft.)
Mu = 2.997(ft−k)
With Earthquake
PH = 1.139 k/ft
PT = 1.411 k/ft
P=[1.411kft.1.139kft.9.5ft.](7.583ft.)+1.139kft. = 1.356 k/ft
Mu=1.356kft.(1.917ft.)22+12(1.917ft.)2[1.411kft.1.356kft.]230.431k(0.958ft.)
Mu = 2.146(ft−k)
The moment without earthquake controls.
Rn=2.997(ftk)0.9(1ft.)(14.0in.)2(1000lbk) = 16.990 psi
ρ = 0.85(3000psi)60,000psi[112(16.990psi)0.85(3000psi)] = 0.000284
ρmin = 1.7[18in.14.0in.]23,000psi60,000psi = 0.00257
Use ρ = 4/3 ρ = 43(0.000284) = 0.000379
ASReq = 0.000379 (12 in.)(14.0 in.) = 0.064 in.2/ft.


12in.0.064in.2=s0.196in.2
s = 36.8 in.
Minimum is # 4 bars at 12 inches. These will be the same bars that are in the back of the stem. Use the smaller of the two spacings.
Use # 4's @ 10" cts.
Check Shear
Shear shall be checked at a distance "d" from the face of the stem.
Without Earthquake
Pd=[1.979kft.1.146kft.9.5ft.](8.750ft.)+1.146kft. = 1.913k/ft.
Vu=1.979kft.+1.913kft.2(0.750ft.)1.3[0.225kft.](0.750ft.) = 1.240k
With Earthquake
Pd=[1.411kft.1.139kft.9.5ft.](8.750ft.)+1.139kft. = 1390k/ft.
Vu=1.411kft.+1.139kft.2(0.750ft.)[0.225kft.](0.750ft.) = 0.788k
Shear without earthquake controls.
νuϕ=1.240k0.85(12in.)(14.0in.)(1000lbk)=8.7psi<23000psi = 109.5 psi o.k.

Reinforcement-Shear Key

The passive pressure is higher without earthquake loads.

γ = 1.3

βE = 1.3 (lateral earth pressure)

d = 12"-3"-(1/2)(0.5") = 8.75"

b = 12"

Mu = (3.379k)(1.360 ft.)(1.3)(1.3) = 7.764(ft−k)

Rn=7.764(ftk)0.9(1ft.)(8.75in.)2(1000lbk) = 112.677 psi

ρ = 0.85(3000psi)60,000psi[112(112.677psi)0.85(3000psi)] = 0.00192

ρmin = 1.7[12in.8.75in.]23000psi60,000psi = 0.00292

Use ρ = 4/3 ρ = 4/3 (0.00192) = 0.00256

ASReq = 0.00256(12 in.)(8.75 in.) = 0.269 in.2/ft.


Use # 4 @ 8.5 in cts.

Check Shear

νuϕ=1.3(3.379k)(1.3)0.85(12in.)(8.75.)(1000lbk)=64.0psi<23000psi = 109.5 psi o.k.

Reinforcement Summary

751.40.8.15.6 Example 2: L-Shaped Cantilever Wall

Typical Section thru Wall
(Spread Footing)

f'c = 4000 psi

fy = 60,000 psi

φ = 29°

γs = 120 pcf

Allowable soil pressure = 1.5 tsf = 3.0 ksf

Retaining wall is located in Seismic Performance Category (SPC) A.

δ=tan112.5 = 21.801°

Ca=cosδ[cosδcos2δcos2ϕcosδ+cos2δcos2ϕ] = 0.462

Cp=tan2[45+ϕ2] = 2.882

PA = 1/2 γs CaH2 = 1/2 (0.120 k/ft3)(0.462)(4.958 ft.)2 = 0.681k

For sliding, PP is assumed to act only on the portion of key below the frost line that is set at an 18 in. depth on the southern border.

PP = 1/2 (0.120 k/ft3)(2.882)[(2.458 ft.)2 − (1.500 ft.)2] = 0.656k

Assumptions

  • Design is for a unit length (1 ft.) of wall.
  • Sum moments about the toe at the bottom of the footing for overturning.
  • F.S. for overturning ≥ 2.0 for footings on soil.
  • F.S. for sliding ≥ 1.5 for footings on soil.
  • Resultant of dead load and earth pressure to be in back half of the middle third of the footing if subjected to frost heave.
  • For all loading combinations the resultant must be in the middle third of the footing except for collision loads.
  • The top 12 in. of the soil is not neglected in determining the passive pressure because the soil there will be maintained.
  • Frost line is set at 18 in. at the south border for Missouri.
  • Portions of shear key which are above the frost line are assumed not to resist sliding by passive pressure.
  • Use of a shear key shifts the failure plane to "B" where resistance to sliding is also provided by friction of soil along the failure plane in front of the shear key. Friction between the soil and concrete behind the shear key will be neglected.
  • Soil cohesion along the failure plane is neglected.
  • Live loads can move to within 1 ft. of the stem face and 1 ft. from the toe.
  • The wall is designed as a cantilever supported by the footing.
  • Footing is designed as a cantilever supported by the wall. Critical sections for bending and shear will be taken at the face of the wall.
  • Load factors for AASHTO Groups I-VI for design of concrete are:
  • γ = 1.3.
  • βE = 1.3 for horizontal earth pressure on retaining walls.
  • βE = 1.0 for vertical earth pressure.
  • βLL = 1.67 for live loads and collision loads.

Dead Load and Earth Pressure - Stabilty and Pressure Checks

Dead Load and Earth Pressure - Stabilty and Pressure Checks
Load Force (k) Arm (in.) Moment (ft-k)
(1) (0.833 ft.)(5.167 ft.)(0.150k/ft3) = 0.646 5.333 3.444
(2) (0.958ft)(5.750ft)(0.150k/ft3) = 0.827 2.875 2.376
(3) (1.000ft)(1.500ft)(0.150k/ft3) = 0.22534.259 4.250 0.956
ΣV = 1.698 ΣMR = 6.776
PAV 0.253 5.750 1.455
ΣV = 1.951 ΣMR = 8.231
PAH 0.633 1.653 1.045
PP 0.656 1.061 -
ΣMOT = 1.045
1 The passive pressure at the shear key is ignored in overturning checks.
Overturning
F.S.=ΣMRΣMOT=8.231(ftk)1.045(ftk) = 7.877 ≥ 2.0 o.k.
Location of Resultant
MoDOT policy is that the resultant must be in the back half of the middle third of the footing when considering dead and earth loads:
[5.750ft.2=2.875ft.]x¯[(5.750ft.2+5.750ft.6)=3.833ft.]
x¯=MNETΣV=8.231(ftk)1.045(ftk)1.951k = 3.683 ft. o.k.
Sliding
F.S.=PP+ΣV[(L2L1)tanϕss+(L3L1)tanϕsc]PAH
where:
φs-s = angle of internal friction of soil
φs-c = angle of friction between soil and concrete = (2/3)φs-s
F.S.=0.656k+(1.951k)[(3.75ft.5.75ft.)tan29+(1ft.5.75ft.)tan(23(29))]0.633k = 2.339 ≥ 1.5 o.k.
Footing Pressure
P=ΣVbL[1±6eL]
e=x¯L2=3.683ft.5.75ft.2 = 0.808 ft.
Heel: PH=1.951k(1ft.)(5.75ft.)[1+6(0.808ft.)5.75ft.] = 0.625 ksf < 3.0 ksf o.k.
Toe: PT=1.951k(1ft.)(5.75ft.)[16(0.808ft.)5.75ft.] = 0.053 ksf < 3.0 ksf o.k.

Dead Load, Earth Pressure, and Live Load - Stability and Pressure Checks

Stability is not an issue because the live load resists overturning and increases the sliding friction force.

The live load will be distributed as:

FLL=LLWLE

where E = 0.8X + 3.75
X = distance in feet from the load to the front face of wall

The live load will be positioned as shown by the dashed lines above. The bearing pressure and resultant location will be determined for these two positions.

Live Load 1 ft From Stem Face
Resultant Eccentricity
X = 1 ft.
E = 0.8(1 ft.) + 3.75 = 4.55 ft.
FLL=16k4.55ft.(1ft.) = 3.516k
x¯=MNETΣV=8.231(ftk)+(3.516k)(3.917ft.)1.045(ftk)1.951k+3.516k = 3.834 ft.
e=x¯L2=3.834ft.5.75ft.2=0.959ft.L6 = 5.75 ft. o.k.
Footing Pressure
P=ΣVbL[1±6eL]
Allowable Pressure = 3.0 ksf
Heel: PH=5.467k(1ft.)(5.75ft.)[1+6(0.959ft.)5.75ft.] = 1.902 ksf
Toe: PT=5.467k(1ft.)(5.75ft.)[16(0.959ft.)5.75ft.] = 0.000ksf
Live Load 1 ft From Toe
Resultant Eccentricity
X = 3.917 ft.
E = 0.8(3.917 ft.) + 3.75 = 6.883 ft.
FLL=16k6.883ft(1ft.) = 2.324k
x=8.231(ftk)+(2.324k)(1ft.)1.045(ftk)1.951k+2.324k = 2.225 ft.
e=L2x¯=5.75ft.22.225ft.=0.650ft.L6=5.75ft.6 = 0.958 ft. o.k.
Footing Pressure
Allowable Pressure = 3.0ksf
Heel: PH=4.275k(1ft.)(5.75ft.[16(0.650ft.)5.75ft.] = 0.239ksf o.k.
Toe: PT=4.275k(1ft.)(5.75ft.[1+6(0.650ft.)5.75ft.] = 1.248ksf o.k.

Dead Load, Earth Pressure, Collision Load, and Live Load - Stability and Pressure Checks

During a collision, the live load will be close to the wall so check this combination when the live load is one foot from the face of the stem. Sliding (in either direction) will not be an issue. Stability about the heel should be checked although it is unlikely to be a problem. There are no criteria for the location of the resultant, so long as the footing pressure does not exceed 125% of the allowable. It is assumed that the distributed collision force will develop an equal and opposite force on the fillface of the back wall unless it exceeds the passive pressure that can be developed by soil behind the wall.

FLL = 3.516k

FCOLL = 10k2(3ft.)(1ft.) = 1.667k

CP=cosδ[cosδ+cos2δcos2ϕcosδcos2δcos2ϕ] = 1.867

PPH=12γsCPH2cosδ=12(0.120kcf)(1.867)(4.958ft)2cos(21.801)

PPH = 2.556k > FCOLL Thus the soil will develop an equal but opp. force.

Overturning About the Heel
F.S. = (0.646k)(0.417ft.)+(0.827k)(2.875ft.)+(0.225k)(1.500ft.)+(3.516k)(1.833ft.)+(1.667k)(4.958ft.3)(1.667k)(3.958ft.)
F.S. = 12.184(ftk)6.598(ftk) = 1.847 ≥ 1.2 o.k.
Footing Pressure
x¯=12.184(ftk)6.598(ftk)1.951k+3.516k = 1.022 ft. from heel
e = 5.75ft.21.022ft. = 1.853 ft.
Allowable Pressure = (1.25)(3.0ksf) = 3.75ksf
Heel: PH=2(ΣV)3b[L2e]=2(5.467k)3(1ft.)[5.75ft.21.853ft.] = 3.566ksf o.k.

Stem Design-Steel in Rear Face

γ = 1.3

βE = 1.3 (active lateral earth pressure)

d = 10 in. − 2 in. − (0.5 in./2) = 7.75 in.

PAH=12γsCaH2cosδ=12[0.120kft3](0.462)(4ft.)2(1ft.)cos21.801

PAH = 0.412k

Mu = (1.333 ft.)(0.412k)(1.3)(1.3) = 0.928(ft−k)

Rn=Muϕbd2=0.928(ftk)(0.9)(1ft.)(7.75in.)2(1000lbk) = 17.160psi

ρ=0.85fcfy[112Rn0.85fc]

ρ=4000psi60,000psi[112(17.160psi)0.85(4000psi)] = 0.000287

ρmin=1.7[hd]2fcfy

ρmin=1.7[10in.7.75in.]24000psi60000psi = 0.00298

Use ρ = (4/3)ρ = (4/3)(0.000287) = 0.000382

ASReq=ρbd=0.000382(12in.)(7.75in.)=0.036in2ft.

One #4 bar has AS = 0.196 in2, so the required minimum of one #4 bar every 12 in. controls.

Use #4's @ 12 in. (min)

(These bars are also the bars in the bottom of the footing so the smaller of the two required spacings will be used.)

Check Shear
νuϕVn
νuϕ=(1.3)(1.3)(0.412k)0.85(12in.)(7.75in.)(1000lbk) = 8.8 psi
νc=2f'c
νc=24,000psi = 126.5 psi > 8.8 psi o.k.

Stem Design-Steel in Front Face (Collision Loads)


The soil pressure on the back of the stem becomes passive soil pressure during a collision, however this pressure is ignored for reinforcement design.

γ = 1.3

βLL = 1.67

d=10in.1.5in.0.5in.0.5in.2 = 7.75 in.

FCOLL=10k2L=10k(2)(3ft.) = 1.667 k/ft.

Mu = 1.667k/ft. (1 ft.)(3 ft.)(1.3)(1.67) = 10.855(ft−k)

Rn=10.855(ftk)0.9(1ft.)(7.75in.)2(1000lbk) = 200.809 psi

ρ=0.85(4000psi)60,000psi[112(200.809psi)0.85(4000psi)] = 0.00345

ρmin=1.7[10in.7.75in.]24000psi60,000psi = 0.00298

ASReq=0.00345(12in.)(7.75in.)=0.321in.2ft.

One #4 bar has AS = 0.196 in2.

s0.196in.2=12in.0.321in.2

s = 7.3 in.

Use #4's @ 7 in.

Check Shear
νuϕ=(1.3)(1.67)(1.667k)(0.85)(12in.)(7.75in.)(1000lbk) = 45.8 psi < 126.5 psi o.k.

Footing Design - Bottom Steel

It is not considered necessary to design footing reinforcement based upon a load case which includes collision loads.

Dead Load and Earth Pressure Only
Footing wt. = [11.512ft.](4.917ft.)[0.150kft.3](1ft.) = 0.707k
βE = 1.3 (lateral earth pressure)
γ = 1.3
Apply Load Factors:
ΣV = 1.951k (1.3) = 2.536k
ΣMR = 8.231(ft−k)(1.3) = 10.700(ft−k)
ΣMOT = 1.045(ft−k)(1.3)(1.3) = 1.766(ft−k)
Footing wt. = 0.707k (1.3) = 0.919k
x¯=10.700(ftk)1.766(ftk)2.536k = 3.523 ft.
e=3.523ft.5.75ft2 = 0.648 ft.
PH=2.536k(1ft.)(5.75ft.)[1+6(0.648ft.)5.75ft.] = 0.739 ksf
PT=2.536k(1ft.)(5.75ft.)[16(0.648ft.)5.75ft.] = 0.143ksf
PW=0.143ksf+[0.739ksf0.143ksf][4.917ft.5.75ft.] = 0.653 ksf
Moment at Wall Face:
MW=[0.143kft.][(4.917ft.)22]+13(4.917ft.)2[0.653kft.0.143kft.]120.919k[4.917ft.2] = 1.524(ft−k)
Dead Load, Earth Pressure, and Live Load
Live Load 1 ft. From Stem Face
βE = 1.3 (lateral earth pressure)
βLL = 1.67
γ = 1.3
Apply Load Factors:
FLL = 3.516k(1.3)(1.67) = 7.633k
ΣV = 7.633k + 1.951k(1.3) = 10.169k
ΣMOT = 1.045(ft−k)(1.3)(1.3) = 1.766(ft−k)
ΣMR = 8.231(ft−k)(1.3) + 3.917 ft.(7.633k) = 40.599(ft−k)
x¯=40.599(ftk)1.766(ftk)10.169k = 3.819 ft.
e = 3.819 ft. − (5.75 ft./2) = 0.944 ft.
PT=[10.169k(1ft.)(5.75ft.)][16(0.944ft.)5.75ft.] = 0.026 ksf
PH=[10.169k(1ft.)(5.75ft.)][1+6(0.944ft.)5.75ft.] = 3.511 ksf
PW=0.026ksf+[3.511ksf0.026ksf][4.917ft.5.75ft.] = 3.006 ksf
PLL=0.026ksf+[3.511ksf0.026ksf][3.917ft.5.75ft.] = 2.400 ksf
Footing wt. from face of wall to toe:
Footing wt. = 1.3[11.512ft.](4.917ft.)[0.150kft3](1ft.) = 0.919k
Footing wt. from LLWL to toe:
Footing wt. = 1.3[11.512ft.](3.917ft.)[0.150kft3](1ft.) = 0.732k
Moment at Wall Face:
MW = 0.026kft(4.917ft.)227.633k(1ft.)+12[3.006kft0.026kft](4.917ft.)2[13]0.919k(4.917ft.)2
MW = 2.430(ft−k)
Moment at LLWL:
MLL = 0.026kft(3.917ft.)220.732k(3.917ft.)2+12[2.400kft0.026kft](3.917ft.)2[13] = 4.837(ft−k)
Live Load 1 ft. From Toe
Apply Load Factors:
FLL = 2.324k(1.3)(1.67) = 5.045k
ΣV = 5.045k + 1.951k(1.3) = 7.581k
ΣMOT = 1.045(ft−k)(1.3)(1.3) = 1.766(ft−k)
ΣMR = 8.231(ft−k)(1.3) + 5.045k(1ft.) = 15.745(ft−k)
x¯=15.745(ftk)1.766(ftk)7.581k = 1.844 ft.
e=5.75ft.21.844ft. = 1.031 ft.
PH = 0 ksf
PT=2(7.581k)3(1ft.)[5.75ft.21.031ft.] = 2.741 ksf
L1 = 3[(L/2)− e]
L1 = 3[(5.75 ft./2)− 1.031 ft.] = 5.532 ft.
PW=2.741ksf[0.615ft.5.532ft.] = 0.305 ksf
PLL=2.741ksf[4.432ft.5.532ft.] = 2.196 ksf
Moment at Wall Face:
MW = 5.045k(3.917ft.)0.919k[4.917ft.2]+12(0.305kft.)(4.917ft.)2+12(4.917ft.)2[2.741kft.0.305kft.][23] = 1.298(ft−k)
Moment at LLWL:
MLL = 0.187k(0.5ft.)+2.196kft.(1ft.)22+12(1ft.)[2.741kft.2.196kft.][23](1ft.) = 1.186(ft−k)
Design Flexural Steel in Bottom of Footing
d = 11.5 in. − 4 in. = 7.500 in.
Mu = 4.837(ft−k) (controlling moment)
Rn=4.837(ftk)0.9(1ft.)(7.5in.)2 = 0.096 ksi
ρ=0.85(4000psi)60,000psi[112(0.096ksi)0.85(4ksi)] = 0.00162
ρmin=1.7[11.5in.7.5in.]24000psi60,000psi = 0.00421
Use ρ = (4/3)ρ = (4/3)(0.00162) = 0.00216
ASReq = 0.00216(12 in.)(7.5 in.) = 0.194 in2/ft.


s0.196in2=12in.0.194in2
s = 12.1 in.
Use #4's @ 12 in. cts. (Also use this spacing in the back of the stem.)
Check Shear
Dead Load and Earth Pressure Only
VW=0.143kft.(4.917ft.)+12(4.917ft.)[0.653kft.0.143kft.]0.919k
VW = 1.038k
Live Load 1 ft. From Stem Face
Shear at the wall can be neglected for this loading case.
VLL=0.026kft.(3.917ft.)+12(3.917ft.)[2.400kft.0.026kft.]0.732k
VLL = 4.019k
Live Load 1 ft. From Toe
VW=0.305kft.(4.917ft.)+12(4.917ft.)[2.741kft.0.305kft.]0.919k5.045k
VW = 1.525k
VLL=2.196kft.(1ft)+12(1ft)[2.741kft.2.196kft.]0.187k
VLL = 2.282k
Use VU = 4.019k
νuϕ=4019(lbs)0.85(12in.)(7.5in.)=52.5psi<24000psi = 126.5 psi

Shear Key Design

For concrete cast against and permanently exposed to earth, minimum cover for reinforcement is 3 inches.

d=12in.3in.12[12in.] = 8.75 in.

P1=0.120kft3(1ft.)(2.882)[11.512ft.] = 0.331 k/ft.

P2=0.120kft3(1ft.)(2.882)[29.512ft.] = 0.850 k/ft.

Mu=(1.3)(1.3){0.331kft.(1.5ft.)22+12(1.5ft.)[0.850kft.0.331kft][23](1.5ft.)}

Mu = 1.287(ft−k)

Rn=1.287(ftk)0.9(1ft.)(8.75in.)2 = 0.0187 ksi

ρ=0.85(4000psi)60,000psi[112(0.0187ksi)0.85(4ksi)] = 0.000312

ρmin=1.7[12in.8.75in.]24000psi60,000psi = 0.00337

Use ρ = (4/3)ρ = (4/3)(0.000312) = 0.000416

ASReq = 0.000416 (12 in.)(8.75 in.) = 0.0437 in2/ft.


s0.196in.2=12in.0.0437in.2

s = 53.8 in.

Use #4's @ 18 in. cts. (min)

Check Shear
V = 0.886k
νuϕ=(1.3)(1.3)(886lbs)0.85(12in.)(8.75in.) = 16.8 psi < 126.5 psi o.k.

Reinforcement Summary

751.40.8.15.7 Example 3: Pile Footing Cantilever Wall

f’c = 3,000 psi

fy = 60,000 psi

φ = 27°

γs = 120 pcf

Pile type: HP 10 x 42

Allowable pile bearing = 56 tons

Pile width = 10 inches

Toe pile batter = 1:3

See EPG 751.12 Barriers, Railings, Curbs and Fences for weight and centroid of barrier.

Assumptions

  • Retaining wall is located such that traffic can come within half of the wall height to the plane where earth pressure is applied.
  • Reinforcement design is for one foot of wall length.
  • Sum moments about the centerline of the toe pile at a distance of 6B (where B is the pile width) below the bottom of the footing for overturning.
  • Neglect top one foot of fill over toe in determining soil weight and passive pressure on shear key.
  • Neglect all fill over toe in designing stem reinforcement.
  • The wall is designed as a cantilever supported by the footing.
  • Footing is designed as a cantilever supported by the wall.
  • Critical sections for bending are at the front and back faces of the wall.
  • Critical sections for shear are at the back face of the wall for the heel and at a distance d (effective depth) from the front face for the toe.

CA=cosδ[cosδcos2δcos2ϕcosδ+cos2δcos2ϕ]

δ = 0, ϕ = 27° so CA reduces to:

CA=1sinϕ1+sinϕ=1sin271+sin27 = 0.376

CP=tan2[45+ϕ2]=tan2[45+272] = 2.663

Table 751.24.3.5.1 is for stability check (moments taken about C.L. of toe pile at a depth of 6B below the bottom of the footing).

Table 751.24.3.5.1
Load Force (kips/ft) Arm about C.L. of toe pile at 6B below footing (ft.) Moment (ft-kips) per foot of wall length
Dead Load (1) 0.340 2.542 0.864
(2) (1.333 ft.)(7.000 ft.)(0.150k/ft3) = 1.400 2.833 3.966
(3) (3.000 ft.)(8.500 ft.)(0.150k/ft3) = 3.825 4.417 16.895
(4) (1.000 ft.)(1.750 ft.)(0.150k/ft3) = 0.263 4.417 1.162
Σ ΣV = 5.828 - ΣMR = 22.887
Earth Load (5) (7.000 ft.)(5.167 ft.)(0.120k/ft3) = 4.340 6.083 26.400
(6) (2.000 ft.)(2.000 ft.)(0.120k/ft3) = 0.480 1.167 0.560
Σ ΣV = 4.820 - ΣMR = 26.960
Live Load Surcharge PSV (2.000 ft.)(5.167 ft.)(0.120k/ft3) = 1.240 6.083 MR = 7.543
PSH (2.000 ft.)(0.376)(10.000 ft.)(0.120k/ft3) = 0.902 10.000 MOT = 9.020
Earth Pressure PA 2.2561 8.333 MOT = 18.799
PP 3.2852 - -
Collision Force (FCOL) (10.000k)/[2(7.000 ft.)] = 0.714 18.000 MOT = 12.852
Heel Pile Tension (PHV) (3.000 tons)(2 k/ton)(1 pile)/(12.000 ft.) = 0.500 7.167 MR = 3.584
Toe Pile Batter (PBH) 5.9033 - -
Passive Pile Pressure (Ppp) 0.8324 - -
1 PA=12γSCAH2=12[0.120kft3](0.376)(10ft.)3=2.256kft
2 PP=12γSCA[H22H12]=12[0.120kft3](2.663)[(6.75ft.)2(5ft.)2]=3.285kft
3 PBH=(56tonspile)(2kton)(2piles)(4in.(12in.)2+(4in.)2)(112ft.)=5.903kft
4 PPP=12(2.663)(5ft.)2(0.120kft3)(0.833ft.)(3piles)(112ft.)=0.832kft


Table 751.24.3.5.2 is for bearing pressure checks (moments taken about C.L of toe pile at the bottom of the footing).

Table 751.24.3.5.2
Load Force (kips/ft) Arm about C.L. of toe pile at 6B below footing (ft.) Moment (ft-kips) per foot of wall length
Dead Load (1) 0.340 0.875 0.298
(2) (1.333 ft.)(7.000 ft.)(0.150k/ft3) = 1.400 1.167 1.634
(3) (3.000 ft.)(8.500 ft.)(0.150k/ft3) = 3.825 2.750 10.519
(4) (1.000 ft.)(1.750 ft.)(0.150k/ft3) = 0.263 2.750 0.723
Σ ΣV = 5.828 - ΣMR = 13.174
Earth Load (5) (7.000 ft.)(5.167 ft.)(0.120k/ft3) = 4.340 4.417 19.170
(6) (2.000 ft.)(2.000 ft.)(0.120k/ft3) = 0.480 -0.500 -0.240
Σ ΣV = 4.820 - ΣMR = 18.930
Live Load Surcharge PSV (2.000 ft.)(5.167 ft.)(0.120k/ft3) = 1.240 4.417 MR = 5.477
PSH (2.000 ft.)(0.376)(10.000 ft.)(0.120k/ft3) = 0.902 5.000 MOT = 4.510
Earth Pressure PA 2.256 3.333 MOT = 7.519
PP 3.285 - -
Collision Force (FCOL) (10.000k)/[2(7.000 ft.)] = 0.714 13.000 MOT = 9.282
Heel Pile Tension (PHV) (3.000 tons)(2 k/ton)(1 pile)/(12.000 ft.) = 0.500 5.500 MR = 2.750
Toe Pile Batter (PBH) 5.903 - -
Passive Pile Pressure (Ppp) 0.832 - -

Investigate a representative 12 ft. strip. This will include one heel pile and two toe piles. The assumption is made that the stiffness of a batter pile in the vertical direction is the same as that of a vertical pile.

Neutral Axis Location = [2piles(1.5 ft.) + 1pile(7 ft.)] / (3 piles) = 3.333 ft. from the toe.

I = Ad2

For repetitive 12 ft. strip:

Total pile area = 3A
I = 2A(1.833 ft.)2 + A(3.667 ft.)2 = 20.167(A)ft.2

For a 1 ft. unit strip:

I=20.167(A)ft.212ft.=1.681(A)ft.2
Total pile area = (3A/12 ft.) = 0.250A
Case I
F.S. for overturning ≥ 1.5
F.S. for sliding ≥ 1.5
Check Overturning
Neglect resisting moment due to PSV for this check.
ΣMR = 22.887(ft−k) + 26.960(ft−k) + 3.584(ft−k)
ΣMR = 53.431(ft−k)
ΣMOT = 9.020(ft−k) + 18.799(ft−k) = 27.819(ft−k)
F.S.OT = ΣMRΣMOT=53.431(ftk)27.819(ftk) = 1.921 > 1.5 o.k.
Check Pile Bearing
Without PSV :
ΣV = 5.828k + 4.820k = 10.648k
e = ΣMΣV=(13.174+18.930)(ftk)(4.510+7.519)(ftk)10.648k = 1.885 ft.
Moment arm = 1.885 ft. - 1.833 ft. = 0.052 ft.
PT=ΣVAMcI=10.648k0.250A10.648k(0.052ft.)(1.833ft.)1.681(A)ft2
PT=41.988Ak
PH=10.648k0.250A+10.648k(0.052ft.)(3.667ft.)1.681(A)ft2
PH=43.800Ak
Allowable pile load = 56 tons/pile. Each pile has area A, so:
PT=41.988kpile=20.944tonspile o.k.
PH=43.800kpile=21.900tonspile o.k.
With PSV:
ΣV = 5.828k + 4.820k + 1.240k = 11.888k
e=(13.174+18.930+5.477)(ftk)(4.510+7.519)(ftk)11.888k = 2.149 ft.
Moment arm = 2.149 ft. - 1.833 ft. = 0.316 ft.
PT=11.888k0.250A11.888k(0.316ft.)(1.833ft.)1.681(A)ft2=43.456k=21.728tonspile o.k.
PH=11.888k0.250A+11.888k(0.316ft.)(3.667ft.)1.681(A)ft2=55.747k=27.874tonspile o.k.
Check Sliding
F.S.Sliding=3.285k+5.903k+0.832k0.902k+2.256k = 3.173 ≥ 1.5 o.k.
Case II
F.S. for overturning ≥ 1.2
F.S. for sliding ≥ 1.2
Check Overturning
ΣMR = (22.887 + 26.960 + 7.543 + 3.584)(ft−k) = 60.974(ft−k)
ΣMOT = (9.020 + 18.799 + 12.852)(ft−k) = 40.671(ft−k)
F.S.OT=ΣMRΣMOT=60.974(ftk)40.671(ftk) = 1.499 ≥ 1.2 o.k.
Check Pile Bearing
e=ΣMΣV=(13.174+18.930+5.477)(ftk)(4.510+7.519+9.282)(ftk)(5.828+4.820+1.240)k = 1.369 ft.
Moment arm = 1.833 ft. - 1.369 ft. = 0.464 ft.
PT=ΣVA+McI=11.888k0.250A+11.888k(0.464ft.)(1.833ft.)1.681(A)ft2
PT=53.567kpile=26.783tonspile56tonspile o.k.
PH=11.888k0.250A11.888k(0.464ft.)(3.667ft.)1.681(A)ft2 = 35.519k
PH=17.760tonspile56tonspile o.k.
Check Sliding
F.S.Sliding=3.285k+5.903k+0.832k0.902k+2.256k+0.714k = 2.588 ≥ 1.2 o.k.
Case III
F.S. for overturning ≥ 1.5
F.S. for sliding ≥ 1.5
Check Overturning
ΣMR = (22.887 + 26.960 + 3.584)(ft−k) = 53.431(ft−k)
ΣMOT = 18.799(ft−k)
F.S.OT=ΣMRΣMOT=53.431(ftk)18.799(ftk) = 2.842 ≥ 1.5 o.k.
Check Pile Bearing
e=ΣMΣV=(13.174+18.930)(ftk)7.519(ftk)(5.828+4.820)k = 2.309 ft.
Moment arm = 2.309 ft. - 1.833 ft. = 0.476 ft.
PT=10.648k0.250A10.648k(0.476ft.)(1.833ft.)1.681(A)ft2 = 37.065k
PT=18.532tonspile56tonspile o.k.
PH=10.648k0.250A+10.648k(0.476ft.)(3.667ft.)1.681(A)ft2 = 53.649k
PH=26.825tonspile56tonspile o.k.
Check Sliding
F.S.Sliding=3.285k+5.903k+0.832k2.256k = 4.441 ≥ 1.5 o.k.
Case IV
Check Pile Bearing
e=ΣMΣV=(13.174+18.930)(ftk)5.828k+4.820k = 3.015 ft.
Moment arm = 3.015 ft. - 1.833 ft. = 1.182 ft.
PH=ΣVA+McI=10.648k0.250A+10.648k(1.182ft.)(3.667ft.)1.681(A)ft2
PH=70.047k=35.024tonspile
25% overstress is allowed on the heel pile:
PH=35.024tonspile1.25(56tonspile)=70tonspile o.k.
PT=10.648k0.250A10.648k(1.182ft.)(1.833ft.)1.681(A)ft2 = 28.868k
PT=14.434tonspile56tonspile o.k.
Reinforcement - Stem
b = 12 in.
cover = 2 in.
h = 16 in.
d = 16 in. - 2 in. - 0.5(0.625 in.) = 13.688 in.
FCollision = 0.714k/ft
PLL=γsCAH(2.000ft.)=(2.000ft.)(0.376)(7.000ft.)(0.120kft3)=0.632kft
PAStem=12γsCAH2=12[0.120kft3](0.376)(7.000ft.)2=1.105kft
Apply Load Factors
FCol. = γβLL(0.714k) = (1.3)(1.67)(0.714k) = 1.550k
PLL = γβE (0.632k) = (1.3)(1.67)(0.632k) = 1.372k
PAStem = γβE (1.105k) = (1.3)(1.3)(1.105k) = 1.867k
Mu = (10.00 ft.)(1.550k) + (3.500 ft.)(1.372k) + (2.333 ft.)(1.867k)
Mu = 24.658(ft−k)
Rn=Muϕbd2=24.658(ftk)(0.9)(1ft.)(13.688in.)2 = 0.146ksi
ρ=0.85f'cfy[112Rn0.85f'c]=0.85(3ksi)60ksi[112(0.146ksi)0.85(3ksi)] = 0.00251
ρmin=1.7[hd]2f'cfy=1.7[16in.13.688in.]23000psi60,000psi = 0.00212
ρ = 0.00251
ASReq.=ρbd=(0.00251)(12in.)(13.688in.)=0.412in2ft.
One #5 bar has AS = 0.307 in2
s0.307in2=12in.0.412in2
s = 8.9 in.
Use # 5 bars @ 8.5 in. cts.
Check Shear
VuφVn
Vu = FCollision + PLL + PAStem = 1.550k + 1.372k + 1.867k = 4.789k


νuϕ=vuϕbd=4789lbs0.85(12in.)(13.688in.) = 34.301 psi
νn=νc=2f'c=23000psi = 109.5 psi > 34.3 psi o.k.
Reinforcement - Footing - Top Steel
b = 12 in.
cover = 3 in.
h = 36 in.
d = 36 in. - 3 in. - 0.5(0.5 in.) = 32.750 in.
Design the heel to support the entire weight of the superimposed materials.
Soil(1) = 4.340k/ft.
LLs = 1.240k/ft.
Slabwt.=(3.000ft.)[0.150kft3](5.167ft.) = 2.325k/ft.
Apply Load Factors
Soil(1) = γβE(4.340k) = (1.3)(1.0)(4.340k) = 5.642k
LLs = γβE(1.240k) = (1.3)(1.67)(1.240k) = 2.692k
Slab wt. = γβD(2.325k) = (1.3)(1.0)(2.325k) = 3.023k
Mu = (2.583 ft.)(5.642k + 2.692k + 3.023k) = 29.335(ft−k)
Rn=Muϕbd2=29.335(ftk)(0.9)(1ft.)(32.750in.)2 = 0.0304 ksi
ρ=0.85(3ksi)60ksi[112(0.0304ksi)0.85(3ksi)] = 0.000510
ρmin=1.7[36in.32.750in.]23000psi60,000psi = 0.00188
Use ρ = 4/3 ρ = 4/3 (0.000510) = 0.000680
ASReq=ρbd=(0.000680)(12in.)(32.750in.)=0.267in2ft.
One #4 bar has As = 0.196 in.2
s0.196in2=12in0.267in.2
s = 8.8 in.
Use #4 bars @ 8.5 in. cts.
Check Shear
Vu=Soil(1)+LLs+Slabwt.=5.642k+2.692k+3.023k=11.357k
νuϕ=Vuϕbd=11357lbs(0.85)(12in.)(32.750in.) = 33.998 psi ≤ 109.5 psi = νc o.k.
Reinforcement - Footing - Bottom Steel
Design the flexural steel in the bottom of the footing to resist the largest moment that the heel pile could exert on the footing. The largest heel pile bearing force was in Case IV. The heel pile will cause a larger moment about the stem face than the toe pile (even though there are two toe piles for every one heel pile) because it has a much longer moment arm about the stem face.
Pile is embedded into footing 12 inches.
b = 12 in.
h = 36 in.
d = 36 in. - 4 in. = 32 in.
Apply Load Factors to Case IV Loads
ΣV=γβD[5.828kft.]+γβE[4.820kft.]
ΣV=1.3(1.0)[5.828kft.]+1.3(1.0)[4.820kft.]
ΣV = 13.842 k/ft.
ΣM=γβD[13.174(ftk)ft.]+γβE[18.930(ftk)ft.]
ΣM=(1.3)(1.0)[13.174(ftk)ft.]+(1.3)(1.0)[18.930(ftk)ft.]
ΣM = 41.735 (ft−k)/ft.
e = ΣMΣV=41.735(ftk)13.842k = 3.015 ft.
Moment arm = 3.015 ft. - 1.833 ft. = 1.182 ft.
PH=ΣVA+McI=13.842k0.250A+13.842k(1.182ft.)(3.667ft.)1.681(A)ft2
PH=91.059kpile(112ft.) = 7.588 k/ft.
Mu=(7.588kft.)(3.667ft.) = 27.825(ft−k)/ft.
Rn=Muϕbd2=27.825(ftk)(0.9)(1ft.)(32in.)2 = 0.0301 ksi
ρ=0.85(3ksi)60ksi[112(0.0301ksi)0.85(3ksi)] = 0.000505
ρmin=1.7[36in.32in.]23000psi60,000psi = 0.00196
Use ρ = 4/3 ρ = 4/3 (0.000505) = 0.000673
ASReq = ρbd = (0.000673)(12 in.)(32 in.) = 0.258 in2/ft.


One #4 bar has As = 0.196 in2.
s0.196in.2=12in.0.258in.2
s = 9.1 in.
Use #4 bars @ 9 in. cts.
Check Shear
The critical section for shear for the toe is at a distance d = 21.75 inches from the face of the stem. The toe pile is 6 inches from the stem face so the toe pile shear does not affect the shear at the critical section. The critical section for shear is at the stem face for the heel so all of the force of the heel pile affects the shear at the critical section. The worst case for shear is Case IV.
Vu = 7.588k
νuϕ=Vuϕbd=7588lbs0.85(12in.)(32in.) = 23.248 psi ≤ 109.5 psi = νc o.k.
Reinforcement - Shear Key
b = 12 in.
h = 12 in.
cover = 3 in.
d = 12 in. - 3 in. - 0.5(0.5 in.) = 8.75 in.
Apply Load Factors
PP = γβE (3.845k) = (1.3)(1.3)(3.845k) = 6.498k
Mu = (0.912 ft.)(6.498k) = 5.926(ft−k)
Rn=Muϕbd2=5.926(ftk)(0.9)(1ft.)(8.75in.)2 = 0.0860 ksi
ρ=0.85(3ksi)60ksi[112(0.0860ksi)0.85(3ksi)] = 0.00146
ρmin=1.7[12in.8.75in]23000psi60,000psi = 0.00292
Use ρ = 4/3 ρ = 4/3(0.00146) = 0.00195
ASReq = ρbd = (0.00195)(12 in.)(8.75 in.) = 0.205 in.2/ft.


One #4 bar has As = 0.196 in2


s0.196in.2=12in.0.205in.2
s = 11.5 in.
Use #4 bars @ 11 in. cts.
Check Shear
νuϕ=Vuϕbd=6498lbs0.85(12in.)(8.75in.) = 72.807 psi < 109.5 psi = νc
Reinforcement Summary

751.40.8.15.8 Dimensions

Cantilever Walls

Each section of wall shall be in increments of 4 ft. with a maximum length of 28'-0".


Each section of wall shall be in increments of 4 ft. with a maximum length of 28'-0".


Cantilever Walls - L-Shaped

Each section of wall shall be in increments of 4 ft. with a maximum length of 28'-0".


Counterfort Walls

Notes:
Dimension "A"
• Maximum length = 28'-0".
• Each section to be in 4'-0" increments.
• (See rustication recess details.)
Dimensions "B" & "C"
• As required by the design to balance the negative and positive moments. (See the design assumptions).
Notes:
Batter "D":
* As required to maintain 9" minimum at the top of the counterfort and 12" minimum edge distance at the top of the footing, between counterfort and footing edge.
* Batter to be given an eighth of an inch per foot of counterfort height.
Dimension "L":
* As required for stability.
* As an estimate, use "L" equal to 1/2 the height of "H".

Sign-Board Type Counterfort Walls

Notes:
Dimension "A"
* Maximum length = 28'-0".
* Each section to be in 4'-0" increments.
* (See rustication recess details.)
Dimensions "B" & "C"
* As required by the design to balance the negative and positive moments. (See the design assumptions).
Dimension "E"
* (Sign-board type only)
* As required to maintain footing pressure within the allowable for existing foundation material. 12" minimum.
Notes:
Batter "D":
* As required to maintain 9" minimum at the top of the counterfort and 12" minimum edge distance at the top of the footing, between counterfort and footing edge.
* Batter to be given an eighth of an inch per foot of counterfort height.
Dimension "L":
* As required for stability.
* As an estimate, use "L" equal to 1/2 the height of "H".

751.40.8.15.9 Reinforcement

Cantilever Walls

(*) Alternate long and short bars at equal spaces.
(**) If collision forces are assumed, use #4 @ 12" cts. min. and extend at least development length into footing. (See EPG 751.5.9.2.8.1 Development and Lap Splice General.)
(***) Theo. cut-off for bending + development length. (Wall height over 10' only.)
(*) Alternate long and short bars at equal spaces.
(**) If collision forces are assumed, use #4 @ 12" cts. min. and extend at least development length into footing. (See EPG 751.5.9.2.8.1 Development and Lap Splice General.)
(***) Theo. cut-off for bending + development length. (Wall height over 10' only.)
(****) Due to site constriction.

Cantilever Walls - L-Shaped

(*) Do not splice stress bars in the fill face at top of footing.
(**) If collision forces are assumed, use #4 @ 12" cts. min. and extend at least development length into footing. (See EPG 751.5.9.2.8.1 Development and Lap Splice General.)

Counterfort Walls

Wall and Stem
(For footing reinforcement, see the "Footing" diagram, below)
(*) Use development length or standard hook in accordance with EPG 751.5.9.2.8.1 Development and Lap Splice General.
(**) See lap splices Class B. (See EPG 751.5.9.2.8.1 Development and Lap Splice General.)
Footing
(*) By design for loads and footing pressures on section under consideration. (#5 @ 12" cts. is the minimum.)

Counterfort Walls - Sign-Board Type

Wall and Stem
Refer to "Counterfort Walls, Wall and Stem", above.
Spread Footing
If the shear line is within the counterfort projected (longitudinally or transversely), the footing may be considered satisfactory for all conditions. If outside of the counterfort projected, the footing must be analyzed and reinforced for bending and checked for bond stress and for diagonal tension stress.

751.40.8.15.10 Details

Non-Keyed Joints

Each section of wall shall be in increments of 4 ft. with a maximum length of 28'-0".

See EPG 751.50 Standard Detailing Notes for appropriate notes.

Keyed Joints

See EPG 751.50 Standard Detailing Notes for appropriate notes.


Rustication Recess


Drains

Note: French drains shall be used on all retaining walls, unless otherwise specified on the Design Layout.


Construction Joint Keys:

Cantilever Walls


Counterfort Walls


Key length: Divide the length "A" into an odd number of spaces of equal lengths. Each space shall not exceed a length of 24 inches. Use as few spaces as possible with the minimum number of spaces equal to three (or one key).
Key width = Counterfort width/3 (to the nearest inch)
Key depth = 2" (nominal)
Sign-Board Walls
Key length = divide length "A" or "B" into an odd number of spaces of equal lengths. Each space length shall not exceed 24 inches. Use as few spaces as possible with the minimum number of spaces equal to three (or one key).