Difference between revisions of "751.6 General Quantities"

From Engineering_Policy_Guide
Jump to navigation Jump to search
m (→‎751.6.2 Computation of Estimated Quantities: Per Bridge, amended Non-Destructive Testing to specifically require only welds of terminal sections of cover plates in tension areas to be checked.)
m (Per Bridge, expanded guidance for Bridge Slabs (formerly "Slab Quantity"))
Line 885: Line 885:
  
 
===751.6.2 Computation of Estimated Quantities===
 
===751.6.2 Computation of Estimated Quantities===
 
'''General'''
 
  
 
All estimated quantities shall be carried to the degree of accuracy specified in the Index of Estimated Quantities.  All quantities shall be listed on the plans in the order and worded exactly as shown in the Index of Estimated Quantities.
 
All estimated quantities shall be carried to the degree of accuracy specified in the Index of Estimated Quantities.  All quantities shall be listed on the plans in the order and worded exactly as shown in the Index of Estimated Quantities.
Line 894: Line 892:
 
In order to satisfy funding requirements on projects that add capacity to the Interstate System, the quantities that are attributed to the addition of capacity shall be reported separately from the remaining quantities in the submitted computations.  Quantities shall not be shown separately on the bridge plans.
 
In order to satisfy funding requirements on projects that add capacity to the Interstate System, the quantities that are attributed to the addition of capacity shall be reported separately from the remaining quantities in the submitted computations.  Quantities shall not be shown separately on the bridge plans.
  
'''Weight of Bolts and Shear Connectors'''
+
====751.6.2.1 Weight of Bolts and Shear Connectors====
  
 
Refer to AISC Manual of Steel Construction or ASTM A325 for weight and dimensions of high strength bolts and washers.  When calculating the weight of high strength bolts in structural connections, the following simplified weights may be used.  These values include the weight of a regular hex head, one heavy hex nut, one washer, and the portion of the bolt projecting beyond the grip (washer thickness + nut thickness + 1/4“).
 
Refer to AISC Manual of Steel Construction or ASTM A325 for weight and dimensions of high strength bolts and washers.  When calculating the weight of high strength bolts in structural connections, the following simplified weights may be used.  These values include the weight of a regular hex head, one heavy hex nut, one washer, and the portion of the bolt projecting beyond the grip (washer thickness + nut thickness + 1/4“).
Line 941: Line 939:
  
  
'''Piles'''
+
====751.6.2.2 Piles====
  
 
Estimated quantities for piles, steel or concrete, shall be compiled as the entire length of the piles used, including the length of pile embedded in the pile cap or footing, measured to the nearest foot for each pile.
 
Estimated quantities for piles, steel or concrete, shall be compiled as the entire length of the piles used, including the length of pile embedded in the pile cap or footing, measured to the nearest foot for each pile.
  
'''Pre-bore for Piling'''
+
====751.6.2.3 Pre-bore for Piling====
  
 
Pre-bore is required when fill exceeds five feet as described in Sec 702 or when specified on the Design Layout.  Pre-bore is also required through earth plugs.  Pre-bore is computed as the length of pile measured from the bottom of the pile cap or footing to the natural ground line or as directed on the Design Layout rounded to the nearest foot for each hole.
 
Pre-bore is required when fill exceeds five feet as described in Sec 702 or when specified on the Design Layout.  Pre-bore is also required through earth plugs.  Pre-bore is computed as the length of pile measured from the bottom of the pile cap or footing to the natural ground line or as directed on the Design Layout rounded to the nearest foot for each hole.
  
'''Drilled Shafts '''
+
====751.6.2.4 Drilled Shafts ====
  
 
Drilled shafts, rock sockets and reinforcing steel quantity will be measured in accordance with Sec 701.  Supplementary television camera inspection quantity will be calculated one for each drilled shaft.  Foundation inspection hole quantities will be from the top of rock socket to 10 feet below the anticipated bottom of rock socket for each rock socket.  Concrete coring quantities will be calculated for 10% of the drilled shafts for the total bridge through the drilled shaft and rock socket plus one foot below the bottom of the rock socket.  Sonic logging testing shall be performed on all drilled shafts and rock sockets.  Drilled shafts for high mast lighting will not require sonic logging testing and concrete coring.
 
Drilled shafts, rock sockets and reinforcing steel quantity will be measured in accordance with Sec 701.  Supplementary television camera inspection quantity will be calculated one for each drilled shaft.  Foundation inspection hole quantities will be from the top of rock socket to 10 feet below the anticipated bottom of rock socket for each rock socket.  Concrete coring quantities will be calculated for 10% of the drilled shafts for the total bridge through the drilled shaft and rock socket plus one foot below the bottom of the rock socket.  Sonic logging testing shall be performed on all drilled shafts and rock sockets.  Drilled shafts for high mast lighting will not require sonic logging testing and concrete coring.
  
'''Concrete '''
+
====751.6.2.5 Concrete====
  
 
The volume of concrete shall be calculated to the nearest 0.1 cubic yard.  Do not deduct for volume of concrete displaced by reinforcing steel or piling.
 
The volume of concrete shall be calculated to the nearest 0.1 cubic yard.  Do not deduct for volume of concrete displaced by reinforcing steel or piling.
  
'''Polymer Concrete'''
+
====751.6.2.6 Polymer Concrete====
  
 
The volume of polymer concrete shall be calculated to the nearest 1.0 cubic foot.  Do not deduct for volume of concrete displaced by reinforcing steel.
 
The volume of polymer concrete shall be calculated to the nearest 1.0 cubic foot.  Do not deduct for volume of concrete displaced by reinforcing steel.
 
<div id="Non-Destructive Testing (NDT) for Cover Plates"></div>
 
<div id="Non-Destructive Testing (NDT) for Cover Plates"></div>
  
'''Non-Destructive Testing (NDT) for Cover Plates'''
+
====751.6.2.7 Non-Destructive Testing (NDT) for Cover Plates====
  
 
NDT shall be required when cover plate terminates in a tension zone. Required NDT length shall be computed and details shown on the plan. The length of weld to be tested and the base metal, 1” either side of the weld, shall be cleaned of all rust prior to the testing.  On cover plates with square ends, the weld shall be tested 1” from each corner along the ends of the cover plate plus 6” back along the side from each corner of the plate.On cover plates with tapered ends, the weld shall be tested along the end of cover plate, along tapered edges and 6” back along cover plate from end of taper.   
 
NDT shall be required when cover plate terminates in a tension zone. Required NDT length shall be computed and details shown on the plan. The length of weld to be tested and the base metal, 1” either side of the weld, shall be cleaned of all rust prior to the testing.  On cover plates with square ends, the weld shall be tested 1” from each corner along the ends of the cover plate plus 6” back along the side from each corner of the plate.On cover plates with tapered ends, the weld shall be tested along the end of cover plate, along tapered edges and 6” back along cover plate from end of taper.   
  
'''Temporary Shoring'''
+
====751.6.2.8 Temporary Shoring====
  
 
When temporary shoring is required, it shall be reported as a lump sum item on the bridge plans.  In addition, the estimated area of temporary shoring shall be computed to the nearest square foot and recorded only in the quantity folder.  Embedment of temporary shoring shall be taken as one third of the exposed height of the shoring for the purpose of estimating the shoring area.  
 
When temporary shoring is required, it shall be reported as a lump sum item on the bridge plans.  In addition, the estimated area of temporary shoring shall be computed to the nearest square foot and recorded only in the quantity folder.  Embedment of temporary shoring shall be taken as one third of the exposed height of the shoring for the purpose of estimating the shoring area.  
  
'''MSE Retaining Walls'''
+
====751.6.2.9 MSE Retaining Walls====
  
 
Quantities for Mechanically Stabilized Earth Wall Systems are to be calculated based on the vertical face of the wall system as shown on the plans.  The payment for furnishing and fabricating the concrete facing elements, excavation and installing the leveling pad, furnishing and installing the soil reinforcement, furnishing and placing select granular backfill for structural systems, furnishing other incidentals related to the wall system, and erecting the wall system complete-in-place, will be considered completely covered by the contract unit price for Mechanically Stabilized Earth Wall Systems per square foot.  The use of the Select Granular Backfill for Structural Systems pay item will not be required.
 
Quantities for Mechanically Stabilized Earth Wall Systems are to be calculated based on the vertical face of the wall system as shown on the plans.  The payment for furnishing and fabricating the concrete facing elements, excavation and installing the leveling pad, furnishing and installing the soil reinforcement, furnishing and placing select granular backfill for structural systems, furnishing other incidentals related to the wall system, and erecting the wall system complete-in-place, will be considered completely covered by the contract unit price for Mechanically Stabilized Earth Wall Systems per square foot.  The use of the Select Granular Backfill for Structural Systems pay item will not be required.
<div id="Slab Quantity"></div>
 
  
'''Slab Quantity'''
+
====751.6.2.10 Bridge Slabs====
  
 
The area of concrete slabs is used in the Table of Estimated Quantities and shall be estimated to the nearest square yard from end of slab to end of slab. The end of slab shall be identified on a plan of slab detail on the bridge plans. The volume of concrete is used in the Table of Slab Quantities for the purpose of preparing the cost estimate and is given on the plans as an aid to the contractor. Concrete shall be estimated to the nearest cubic yard and reinforcing steel shall be estimated to the nearest 10 pounds.
 
The area of concrete slabs is used in the Table of Estimated Quantities and shall be estimated to the nearest square yard from end of slab to end of slab. The end of slab shall be identified on a plan of slab detail on the bridge plans. The volume of concrete is used in the Table of Slab Quantities for the purpose of preparing the cost estimate and is given on the plans as an aid to the contractor. Concrete shall be estimated to the nearest cubic yard and reinforcing steel shall be estimated to the nearest 10 pounds.
Line 981: Line 978:
 
<div id="Structural Steel Protective Coatings (Nonweathering Steel)"></div>
 
<div id="Structural Steel Protective Coatings (Nonweathering Steel)"></div>
  
{|style="padding: 0.3em; margin-right:15px; border:1px solid #a9a9a9; text-align:center; font-size: 95%; background:#DF9F9F" width="360px" align="left"
+
====751.6.2.11 Structural Steel Protective Coatings (Nonweathering Steel)====
|-
 
|'''Structural Steel Protective Coatings (Nonweathering Steel)'''
 
|}
 
 
 
 
 
 
 
 
 
 
 
  
 
The protective coating, as specified on the Design Layout, shall be System G, H or I with the color being gray or brown. The coating color shall be specified on the Design Layout. The following gives pay item guidelines for most bridges.  
 
The protective coating, as specified on the Design Layout, shall be System G, H or I with the color being gray or brown. The coating color shall be specified on the Design Layout. The following gives pay item guidelines for most bridges.  
Line 1,067: Line 1,056:
  
  
{|style="padding: 0.3em; margin-right:15px; border:1px solid #a9a9a9; text-align:center; font-size: 95%; background:#DF9F9F" width="360px" align="left"
+
====751.6.2.12 Structural Steel Protective Coatings (Weathering Steel)====
|-
 
|'''Structural Steel Protective Coatings (Weathering Steel)'''
 
|}
 
 
 
  
 
 
 
 
 
'''<u>Coating New Multi-Girder/Beam Bridges, Truss Bridges or other Unusual Structures</u>'''
 
'''<u>Coating New Multi-Girder/Beam Bridges, Truss Bridges or other Unusual Structures</u>'''
  
Line 1,095: Line 1,076:
 
'''4. Finish Field Coat (System H) (Brown)''' - Coverage shall be on a case-by-case basis.  
 
'''4. Finish Field Coat (System H) (Brown)''' - Coverage shall be on a case-by-case basis.  
  
 
+
====751.6.2.13 Protective Coatings for Concrete====
'''Protective Coatings for Concrete'''
 
  
 
When the use of a protective coating for concrete is required, it shall be reported as a lump sum item on the bridge plans.  In addition, the estimated area to be coated shall be computed to the nearest square foot and recorded only in the quantity folder.  The following guidelines shall apply to the calculations for these items.
 
When the use of a protective coating for concrete is required, it shall be reported as a lump sum item on the bridge plans.  In addition, the estimated area to be coated shall be computed to the nearest square foot and recorded only in the quantity folder.  The following guidelines shall apply to the calculations for these items.
Line 1,118: Line 1,098:
 
:Coat all surfaces above ground line of the concrete as specified on the Design Layout.
 
:Coat all surfaces above ground line of the concrete as specified on the Design Layout.
  
'''Asphaltic Concrete Pavement'''
+
====751.6.2.14 Asphaltic Concrete Pavement====
  
 
Seal coat or tack coat is required with the asphaltic concrete pavement.  Unit weights will not be calculated.
 
Seal coat or tack coat is required with the asphaltic concrete pavement.  Unit weights will not be calculated.
  
'''Seal Coat '''
+
====751.6.2.15 Seal Coat ====
  
 
A seal coat shall be used when specified on the Design Layout. Grade C seal coats shall be used whenever a bridge deck is to receive an asphalt wearing surface. Grade A seal coats shall be used whenever the seal coat is to be the final riding surface. Unit weights will not be calculated.
 
A seal coat shall be used when specified on the Design Layout. Grade C seal coats shall be used whenever a bridge deck is to receive an asphalt wearing surface. Grade A seal coats shall be used whenever the seal coat is to be the final riding surface. Unit weights will not be calculated.
  
'''Tack Coat'''
+
====751.6.2.16 Tack Coat====
  
 
A tack coat shall be used when specified on the Design Layout. The following unit weights will be used to calculate the estimated quantity reported on the bridge plans.
 
A tack coat shall be used when specified on the Design Layout. The following unit weights will be used to calculate the estimated quantity reported on the bridge plans.
Line 1,132: Line 1,112:
 
:Tack Coat = 0.05 gal/sq. yd.
 
:Tack Coat = 0.05 gal/sq. yd.
 
                                
 
                                
'''Excavation'''
+
====751.6.2.17 Excavation====
  
 
Excavation shall be computed in accordance with Sec 206 and the limits shown in this section.  
 
Excavation shall be computed in accordance with Sec 206 and the limits shown in this section.  

Revision as of 11:18, 10 July 2013

751.6.jpg


751.6.1 Index of Quantities

The following list of pay items shall be used as a guide when preparing the Table of Estimated Quantities. The pay items shall be listed on the plans in numerical order according to the Item Number. The Item Number is for information only and is not to be listed in the Table of Estimated Quantities. For pay items not listed, see the Plans Review Section.


Item Number Accuracy Units Item Description
 
Indicates this item shall be used only as approved by Plans Review Section.
206-10.00 5.0 cu. yard Class 1 Excavation
206-10.03 1.0 cu. yard Class 1 Excavation in Rock (*)
206-20.00 1.0 cu. yard Class 2 Excavation
206-20.03 1.0 cu. yard Class 2 Excavation in Rock (*)
206-33.00 5.0 cu. yard Class 4 Excavation
206-34.00 1.0 cu. yard Class 4 Excavation in Rock (*)
* Note: Use when cross-sections indicate rock will be encountered and quantity is more than 10 cu. Yard. If there is less than 10 cu. yards of total excavation in rock, no Excavation in Rock pay items should be listed in the Estimated Quantities. Excavation in rock will be paid in accordance with Sec 109. Check with Project Manager when computing this item.
206-36.00 1.0 linear foot Supplementary Foundation Test Holes (NX)
206-36.10 1.0 linear foot Supplementary Cored Holes
206-40.00 1.0 cu. yard Porous Backfill
206-55.00 1.0 lump sum Temporary Shoring
206-60.02 to
206-60.12
1.0 lump sum Cofferdams - Bent xx
Note: Use a separate pay item for each bent. Item numbers established for only Bent 2 thru Bent 12.
       
206-99.01 1.0 lump sum Misc.
206-99.02 1.0 each Misc.
206-99.03 1.0 linear foot Misc.
206-99.04 1.0 sq. foot Misc.
206-99.05 0.1 sq. yard Misc.
206-99.07 1.0 cu. yard Misc.
216-05.00 1.0 lump sum Removal of Bridges
216-05.01 1.0 lump sum Match Marking and Storing Superstructure
216-10.00 1.0 sq. yard Scarification of Bridge Decks
Note: Do not use on concrete overlay removals.
216-15.00 1.0 sq. foot Removal of Seal Coat
Note: Do not use for unbonded seal coat removal.
216-15.01 1.0 sq. foot Removal of Asphalt Wearing Surface
216-15.02 1.0 sq. foot Removal of Concrete Wearing Surface
Note: Use for all concrete wearing surfaces.
216-20.00 1.0 linear foot Removal and Storage of Existing Bridge Rails
216-25.00 1.0 sq. foot Removal of Existing Bridge Decks
216-30.00 1.0 sq. foot Partial Removal of Existing Bridge Decks
216-35.00 1.0 lump sum Partial Removal of Culvert Concrete
216-35.01 1.0 lump sum Partial Removal of Culvert-Bridge Concrete
216-35.02 1.0 lump sum Partial Removal of Substructure Concrete
216-40.00 1.0 linear foot Curb Removal
Note: Use for just removal of curbs including for thrie beam installation.
216-45.00 1.0 linear foot Removal of Existing Expansion Joints & Adjacent Concrete
Note: Also use Concrete and Reinforcing Steel pay items for replacement of expansion joint system.
216-50.00 1.0 linear foot Removal of Existing Expansion Joint Seal or Sealant
Note: Also use Concrete and Reinforcing Steel pay items for replacement of expansion joint system.
216-55.00 1.0 lump sum Removal of Cathodic Protection System
       
216-99.01 1.0 lump sum Misc.
216-99.03 1.0 linear foot Misc.
216-99.04 1.0 sq. foot Misc.
216-99.05 0.1 sq. yard Misc.
403-10.50 1.0 sq. yard Alternate Asphaltic Concrete Wearing Surface (Bridge)
407-10.05 10.0 gallon Tack Coat
409-40.00 1.0 sq. yard Seal Coat, Grade A
409-40.10 1.0 sq. yard Seal Coat, Grade B
409-40.20 1.0 sq. yard Seal Coat, Grade C
503-10.10 1.0 sq. yard Bridge Approach Slab (Bridge)
505-00.01 1.0 sq. yard Alternate Concrete Wearing Surface
505-10.00 1.0 sq. yard Low Slump Concrete Wearing Surface
505-20.00 1.0 sq. yard Latex Modified Concrete Wearing Surface
505-20.01 1.0 sq. yard Latex Modified High Early Strength Concrete Wearing Surface
505-30.00 1.0 sq. yard Silica Fume Concrete Wearing Surface
       
505-99.05 1.0 sq. yard Misc.
605-20.10A 1.0 linear foot Structural Underdrain
607-10.50 1.0 linear foot Chain-Link Fence (Retaining Walls)
607-10.54 1.0 linear foot (42 in.) Property Fence (Structures)
607-10.55 1.0 linear foot (60 in.) Property Fence (Structures)
607-10.56 1.0 linear foot (72 in.) Property Fence (Structures)
607-10.57 1.0 linear foot (84 in.) Property Fence (Structures)
607-10.58 1.0 linear foot (96 in.) Property Fence (Structures)
607-10.60 1.0 linear foot Pedestrian Fence (Structures)
607-10.65 1.0 linear foot (60 in.) Pedestrian Fence (Structures)
607-10.66 1.0 linear foot (72 in.) Pedestrian Fence (Structures)
607-10.67 1.0 linear foot (112 in.) Curved Top Pedestrian Fence (Structures)
       
607-99.03 1.0 linear foot Misc.
615-10.05 1.0 lump sum Water Transportation for Engineer
623-30.00 1.0 sq. yard Epoxy Polymer Concrete Overlay
623-40.00 1.0 cu. foot Polymer Concrete
623-99.05 1.0 sq. yard Misc.
       
701-11.00 0.10 linear foot Drilled Shafts (1 ft. 0 in. Dia.)
701-11.01 0.10 linear foot Drilled Shafts (1 ft. 6 in. Dia.)
701-11.02 0.10 linear foot Drilled Shafts (2 ft. 0 in. Dia.)
701-11.03 0.10 linear foot Drilled Shafts (2 ft. 6 in. Dia.)
701-11.04 0.10 linear foot Drilled Shafts (3 ft. 0 in. Dia.)
701-11.05 0.10 linear foot Drilled Shafts (3 ft. 6 in. Dia.)
701-11.06 0.10 linear foot Drilled Shafts (4 ft. 0 in. Dia.)
701-11.07 0.10 linear foot Drilled Shafts (4 ft. 6 in. Dia.)
701-11.08 0.10 linear foot Drilled Shafts (5 ft. 0 in. Dia.)
701-11.09 0.10 linear foot Drilled Shafts (5 ft. 6 in. Dia.)
701-11.10 0.10 linear foot Drilled Shafts (6 ft. 0 in. Dia.)
701-11.11 0.10 linear foot Drilled Shafts (6 ft. 6 in. Dia.)
701-11.12 0.10 linear foot Drilled Shafts (7 ft. 0 in. Dia.)
701-11.13 0.10 linear foot Drilled Shafts (7 ft. 6 in. Dia.)
701-11.14 0.10 linear foot Drilled Shafts (8 ft. 0 in. Dia.)
701-11.15 0.10 linear foot Drilled Shafts (8 ft. 6 in. Dia.)
701-11.16 0.10 linear foot Drilled Shafts (9 ft. 0 in. Dia.)
701-11.17 0.10 linear foot Drilled Shafts (9 ft. 6 in. Dia.)
701-11.18 0.10 linear foot Drilled Shafts (10 ft. 0 in. Dia.)
       
701-12.00 0.10 linear foot Rock Sockets (1 ft. 0 in. Dia.)
701-12.01 0.10 linear foot Rock Sockets (1 ft. 6 in. Dia.)
701-12.02 0.10 linear foot Rock Sockets (2 ft. 0 in. Dia.)
701-12.03 0.10 linear foot Rock Sockets (2 ft. 6 in. Dia.)
701-12.04 0.10 linear foot Rock Sockets (3 ft. 0 in. Dia.)
701-12.05 0.10 linear foot Rock Sockets (3 ft. 6 in. Dia.)
701-12.06 0.10 linear foot Rock Sockets (4 ft. 0 in. Dia.)
701-12.07 0.10 linear foot Rock Sockets (4 ft. 6 in. Dia.)
701-12.08 0.10 linear foot Rock Sockets (5 ft. 0 in. Dia.)
701-12.09 0.10 linear foot Rock Sockets (5 ft. 6 in. Dia.)
701-12.10 0.10 linear foot Rock Sockets (6 ft. 0 in. Dia.)
701-12.11 0.10 linear foot Rock Sockets (6 ft. 6 in. Dia.)
701-12.12 0.10 linear foot Rock Sockets (7 ft. 0 in. Dia.)
701-12.13 0.10 linear foot Rock Sockets (7 ft. 6 in. Dia.)
701-12.14 0.10 linear foot Rock Sockets (8 ft. 0 in. Dia.)
701-12.15 0.10 linear foot Rock Sockets (8 ft. 6 in. Dia.)
701-12.16 0.10 linear foot Rock Sockets (9 ft. 0 in. Dia.)
701-12.17 0.10 linear foot Rock Sockets (9 ft. 6 in. Dia.)
       
701-13.00 1.0 each Supplementary Television Camera Inspection
701-14.00 0.10 linear foot Foundation Inspection Holes
701-15.00 0.10 linear foot Concrete Coring
701-16.00 1 each Sonic Logging Testing
701-17.00 1 each Drilled Shaft Load Tests
       
701-99.01 1.0 lump sum Misc.
701-99.02 1.0 each Misc.
701-99.03 0.1 linear foot Misc.
702-10.10 1.0 linear foot Structural Steel Piles (10 in.)
702-10.12 1.0 linear foot Structural Steel Piles (12 in.)
702-10.14 1.0 linear foot Structural Steel Piles (14 in.)
702-11.14 1.0 linear foot Cast-In-Place Concrete Piles (14 in.)
702-11.16 1.0 linear foot Cast-In-Place Concrete Piles (16 in.)
702-11.20 1.0 linear foot Cast-In-Place Concrete Piles (20 in.)
702-11.24 1.0 linear foot Cast-In-Place Concrete Piles (24 in.)
702-30.00 1.0 linear foot Test Piles
702-40.00 1.0 each Loading Tests
702-50.01 1.0 each Dynamic Pile Testing
702-50.02 1.0 each Pile Wave Analysis
702-50.03 1.0 linear foot Pilot Hole
702-50.04 1.0 each Dynamic Pile Restrike Testing
702-60.00 1.0 linear foot Pre-Bore for Piling
Note: Compute this to nearest foot for each hole.
702-70.00 1.0 each Pile Point Reinforcement
       
702-99.02 1.0 each Misc.
702-99.03 1.0 linear foot Misc.
703-10.04 1.0 sq. yard Diamond Grinding
703-10.05 1.0 sq. yard Transverse Diamond Grooving
703-20.00 0.10 cu. yard Class B Concrete (Culverts-Bridge)
703-20.01 0.10 cu. yard Class B Concrete (Culverts)
703-20.02 0.10 cu. yard Class B Concrete (Misc)
703-20.03 0.10 cu. yard Class B Concrete (Substructure)
703-20.09 0.10 cu. yard Class B Concrete (Retaining Walls)
703-20.25 1.0 each Deadman Anchorage Assembly
703-30.01 0.10 cu. yard Seal Concrete
703-40.01 0.10 cu. yard Class B-1 Concrete
703-40.02 0.10 cu. yard Class B-1 Concrete (Superstructure on Steel and Concrete)
703-40.03 0.10 cu. yard Class B-1 Concrete (Substructure)
703-40.04 0.10 cu. yard Class B-1 Concrete (Superstructure on Steel)
703-40.05 0.10 cu. yard Class B-1 Concrete (Superstructure Voided Slabs)
703-40.06 0.10 cu. yard Class B-1 Concrete (Superstructure Concrete Box Girder)
703-40.07 0.10 cu. yard Class B-1 Concrete (Superstructure Concrete Tee Girder)
703-40.08 0.10 cu. yard Class B-1 Concrete (Superstructure Solid Slab)
703-40.09 0.10 cu. yard Class B-1 Concrete (Retaining Walls)
703-40.10 0.10 cu. yard Class B-1 Concrete (Superstructure Concrete on I-Girder)
703-40.20 0.10 cu. yard Class B-1 Concrete (Superstructure)
703-40.30 0.10 cu. yard Class B-1 Concrete (Barrier Curbs)
703-40.40 0.10 cu. yard Class B-1 Concrete (Culverts-Bridge)
703-40.41 0.10 cu. yard Class B-1 Concrete (Culverts)
703-42.02 0.10 cu. yard Class B-2 Concrete (Superstructure on Steel and Concrete)
703-42.04 0.10 cu. yard Class B-2 Concrete (Superstructure on Steel)
703-42.05 0.10 cu. yard Class B-2 Concrete (Superstructure Voided Slabs)
703-42.06 0.10 cu. yard Class B-2 Concrete (Superstructure Concrete Box Girder)
703-42.07 0.10 cu. yard Class B-2 Concrete (Superstructure Concrete Tee Girder)
703-42.08 0.10 cu. yard Class B-2 Concrete (Superstructure Solid Slab)
703-42.10 0.10 cu. yard Class B-2 Concrete (Superstructure Concrete on I Girder)
703-42.11 0.10 cu. yard Class B-2 Concrete (Superstructure Concrete on Box Girder)
       
703-42.12 1.0 sq. yard Slab on Steel
703-42.13 1.0 sq. yard Slab on Concrete I-Girder
703-42.14 0.10 cu. yard Class B-2 Concrete
703-42.15 1.0 linear foot Safety Barrier Curb
703-42.18 1.0 sq. yard Slab on Concrete Bulb-Tee Girder
703-42.19A 1.0 linear foot Barrier Curb (Type D)
703-42.20 1.0 sq. yard Slab on Semi-Deep Abutment
703-42.21 1.0 sq. yard Slab on Concrete NU-Girder
703-42.26 1.0 sq. yard Reinforced Concrete Slab Overlay
Note: For prestressed voided slab beams, box girders and double-tees.
703-42.30 0.10 cu. yard Class B-2 Concrete (Post -Tensioned Overlay)
703-44.10 1.0 linear foot Median Barrier Curb
703-44.11 1.0 linear foot Median Barrier Curb (Type C)
703-44.12 1.0 linear foot Median Barrier Curb Transition
703-44.13 1.0 linear foot Median Barrier Curb Transition (Type C)
703-44.20 1.0 sq. foot Raised Median Barrier
703-44.30 1.0 sq. foot Sidewalk (Bridges)
703-45.35 1.0 linear foot Curb Modification
703-46.00 1.0 linear foot Curb Blockout
703-46.10 1.0 linear foot Corral Curb
703-46.20 1.0 sq. yard Form Liners
703-60.00A 0.10 cu. yard Class A-1 Concrete
       
703-99.01 1.0 lump sum Misc.
703-99.02 1.0 each Misc.
703-99.03 1.0 linear foot Misc.
703-99.04 1.0 sq. foot Misc.
703-99.05 0.1 sq. yard Misc.
703-99.07 0.1 cu. yard Misc.
704-01.01 1.0 sq. foot Substructure Repair (Formed)
704-01.02 1.0 sq. foot Substructure Repair (Unformed)
704-01.03 1.0 sq. foot Superstructure Repair (Unformed)
704-01.04 50.0* sq. foot Repairing Concrete Deck (Half-Soling)
704-01-05 1.0* cu. yard Partial Depth Repair
704-01.06 50.0* sq. foot Full Depth Repair
704-01.07 1.0 linear foot Slab Edge Repair (Bridges)
704-01.08 50.0* sq. foot Modified Deck Repair
704-01.09 1.0 sq. yard Total Surface Hydro Demolition
704-01.10 1.0 linear foot Epoxy Pressure Injecting
704-01.11 1.0 each Deck Girder End Repair
704-01.12 50.0* sq. foot Deck Repair with Void Tube Replacement
704-01.13 1.0 sq. foot Clean and Epoxy Seal
      *Note: Round quantity up to nearest multiple of 50 sq. ft. or 1 cu. yard
704-01.14 1.0 sq. yard Total Surface Hydro Demolition with Vacuum System
704-01.15 1.0 sq. yard Hydro Surface Profiling
704-01.16 1.0 sq. yard Hydro Surface Profiling with Vacuum System
       
704-99.01 1.0 lump sum Misc.
704-99.02 1.0 each Misc.
704-99.03 1.0 linear foot Misc.
704-99.04 1.0 sq. foot Misc.
704-99.05 1.0 sq. yard Misc.
704-99.07 0.1 cu. yard Misc.
705-60.00 1.0 linear foot Type 2 (32 in.), Prestressed Concrete I-Girder
705-60.01 1.0 linear foot Type 3 (39 in.), Prestressed Concrete I-Girder
705-60.02 1.0 linear foot Type 4 (45 in.), Prestressed Concrete I-Girder
705-60.03 1.0 linear foot Type 6 (54 in.), Prestressed Concrete I-Girder
705-60.10 1.0 linear foot Type 8 (63 in.), Prestressed Concrete Bulb-Tee Girder
705-60.11 1.0 linear foot Type 7 (72 in.), Prestressed Concrete Bulb-Tee Girder
705-60.21 1.0 linear foot NU 35, Prestressed Concrete NU-Girder
705-60.22 1.0 linear foot NU 43, Prestressed Concrete NU-Girder
705-60.23 1.0 linear foot NU 53, Prestressed Concrete NU-Girder
705-60.24 1.0 linear foot NU 63, Prestressed Concrete NU-Girder
705-60.25 1.0 linear foot NU 70, Prestressed Concrete NU-Girder
705-60.30 1.0 linear foot 11 in., Prestressed Concrete Solid Slab Beam
705-60.31 1.0 linear foot 12 in., Prestressed Concrete Solid Slab Beam
705-60.40A 1.0 linear foot 15 in., Prestressed Concrete Spread Voided Slab Beam
705-60.41A 1.0 linear foot 17 in., Prestressed Concrete Spread Voided Slab Beam
705-60.42A 1.0 linear foot 18 in., Prestressed Concrete Spread Voided Slab Beam
705-60.43A 1.0 linear foot 21 in., Prestressed Concrete Spread Voided Slab Beam
705-60.45 1.0 linear foot 15 in., Prestressed Concrete Adjacent Voided Slab Beam
705-60.46 1.0 linear foot 17 in., Prestressed Concrete Adjacent Voided Slab Beam
705-60.47 1.0 linear foot 18 in., Prestressed Concrete Adjacent Voided Slab Beam
705-60.48 1.0 linear foot 21 in., Prestressed Concrete Adjacent Voided Slab Beam
705-60.50A 1.0 linear foot 27 in., Prestressed Concrete Spread Box Beam
705-60.51A 1.0 linear foot 33 in., Prestressed Concrete Spread Box Beam
705-60.52A 1.0 linear foot 39 in., Prestressed Concrete Spread Box Beam
705-60.53A 1.0 linear foot 42 in., Prestressed Concrete Spread Box Beam
705-60.55 1.0 linear foot 27 in., Prestressed Concrete Adjacent Box Beam
705-60.56 1.0 linear foot 33 in., Prestressed Concrete Adjacent Box Beam
705-60.57 1.0 linear foot 39 in., Prestressed Concrete Adjacent Box Beam
705-60.58 1.0 linear foot 42 in., Prestressed Concrete Adjacent Box Beam
705-60.60 1.0 linear foot 16 in., Prestressed Concrete Double-Tee Girder
705-60.61 1.0 linear foot 22 in., Prestressed Concrete Double-Tee Girder
705-60.62 1.0 linear foot 30 in., Prestressed Concrete Double-Tee Girder
       
705-99.01 1.0 lump sum Misc.
705-99.02 1.0 each Misc.
705-99.03 1.0 linear foot Misc.
705-99.04 1.0 sq. foot Misc.
705-99.05 1.0 sq. yard Misc.
706-10.00 10 pound Reinforcing Steel
706-10.20 10 pound Reinforcing Steel (Culverts-Bridge)
706-10.30 10 pound Reinforcing Steel (Culverts)
706-10.40 10 pound Reinforcing Steel (Retaining Wall)
706-10.60 10 pound Reinforcing Steel (Bridges)
706-10.70 1.0 each Mechanical Bar Splice
       
706-99.11 10 pound Misc.
707-10.00 1.0 lump sum Conduit System on Structure
707-10.30 1.0 lump sum Conduit System on Structure (Telephone)
707-10.40 1.0 lump sum Cathodic Protection System
       
707-99.01 1.0 lump sum Misc.
707-99.02 1.0 each Misc.
710-10.00 10 pound Reinforcing Steel (Epoxy Coated)
       
710-99.11 10 pound Misc.
       
711-01.00 1 lump sum Protective Coating – Concrete Bents and Piers (Urethane)Note: Tar appearance
711-02.00 1 lump sum Protective Coating – Concrete Bents and Piers (Epoxy)Note: Clear appearance
711-03.00 1 lump sum Concrete and Masonry Protection System
711-04.00 1 lump sum Sacrificial Graffiti Protection System
711-05.00 1 lump sum Temporary Coating – Concrete Bents and Piers (Weathering Steel)
711-06.00 1 lump sum Aesthetic Concrete Stain
711-07.00 1.0 sq. yard Penetrating Sealer
711-10.00 1.0 sq. yard Waterproofing
711-10.01 1.0 sq. yard Waterproofing Membrane
       
711-99.01 1 lump sum Misc.
711-99.04 1.0 sq. foot Misc.
711-99.05 1.0 sq. yard Misc.
712-09.00 1.0 linear foot Expansion Device (Finger Plate)
712-09.15 1.0 linear foot Expansion Device (Flat Plate)
712-10.00 10 pound Fabricated Structural Carbon Steel (Misc.)
712-10.10 10 pound Fabricated Structural Carbon Steel (I-Beam)
712-10.20 10 pound Fabricated Structural Carbon Steel (Plate Girder)
712-10.30 10 pound Fabricated Structural Carbon Steel (Trusses)
712-10.40 10 pound Fabricated Structural Carbon Steel (Concrete)
712-10.50 10 pound Fabricated Structural Carbon Steel (Box Girder)
712-10.60 1.0 lump sum Fabricated Sign Support Brackets
712-11.00 10 pound Fabricated Structural Low Alloy Steel (Misc.)
       
712-11.11 10 pound Fabricated Structural Low Alloy Steel (I-Beam)A709, Grade 50
712-11.13 10 pound Fabricated Structural Low Alloy Steel (I-Beam) A709, Grade 50W
712-11.21 10 pound Fabricated Structural Low Alloy Steel (Plate Girder) A709, Grade 50
712-11.22 10 pound Fabricated Structural Low Alloy Steel (Plate Girder) A709, Grade 50W
712-11.23 10 pound Fabricated Structural Low Alloy Steel (Plate Girder) A709 Grade HPS70W
712-11.24 10 pound Fabricated Structural Low Alloy Steel (Plate Girder) A709 Grade HPS50W
       
712-11.30 10 pound Fabricated Structural Low Alloy Steel (Trusses)
712-11.40 10 pound Fabricated Structural Low Alloy Steel (Concrete)
       
712-11.51 10 pound Fabricated Structural Low Alloy Steel (Box Girder) A709, Grade 50
712-11.52 10 pound Fabricated Structural Low Alloy Steel (Box Girder) A709, Grade 50W
712-11.59 1.0 each Shear Connectors
       
712-11.60 1.0 sq. foot Steel Grid Floor (Half Concrete Filled)
712-11.61 1.0 sq. foot Steel Grid Floor (Concrete Filled)
712-12.50 1.0 lump sum Strengthening Existing Stringers
712-12.51 1.0 each Hinge Modification
       
712-13.00 10 pound Fabricated Structural Steel Bearings
712-20.00 10 pound Carbon Steel Castings
712-22.00 10 pound Gray Iron Castings
712-23.00 1.0 linear foot Bridge Rail (Two Tube Structural Steel)
712-30.00 1.0 each Steel Bar Dam
712-31.00 1.0 each Cleaning and Coating Existing Bearings
712-31.10 1.0 each Bearing Removal for Inspection
712-31.15 1.0 each Surface Finishing Bearing Rocker
712-31.20 1.0 each Cleaning, Lubricating and Coating Bearing
712-31.30 1.0 each Rehabilitate Bearing
712-31.40 10 pound New Bearing Materials
712-31.50 1.0 each Anchor Bolt Replacement
712-32.00 1.0 each Removing, Coating and Reinstalling Light Standards (Bridges)
712-32.10 1.0 each Earthquake Restrainer Assemblies
712-32.50 1.0 each Rivet Removal and Replacement
712-33.00 1.0 lump sum Existing Diaphragm Connections to Flange
712-33.01 1.0 each Steel Intermediate Diaphragm for P/S Concrete Girders
712-35.00 1.0 linear foot Railing for Steps
712-36.10 1.0 each Slab Drain
712-36.11 1.0 each Slab Drain with Grate
712-36.20 1.0 lump sum Drainage System (On Structure)
       
712-51.00 1.0 lump sum Surface Preparation for Recoating Structural Steel
712-51.01 1.0 lump sum Surface Preparation for Overcoating Structural Steel
712-51.03 1.0 lump sum Chloride Remediation Surface Preparation
712-51.02 1.0 lump sum Surface Preparation for Applying Epoxy-Mastic Primer
712-51.10 1.0 lump sum Field Application of Inorganic Zinc Primer
712-51.11 1.0 lump sum Intermediate Field Coat (System G)
712-51.12 1.0 lump sum Finish Field Coat (System G)
712-51.13 1.0 lump sum Intermediate Field Coat (System H)
712-51.14 1.0 lump sum Finish Field Coat (System H)
712-51.15 1.0 lump sum Finish Field Coat (System I)
       
712-52.00 100.0 sq. foot Surface Preparation for Recoating Structural Steel
712-52.01 100.0 sq. foot Surface Preparation for Overcoating Structural Steel
712-52.10 100.00 sq. foot Field Application of Inorganic Zinc Primer
       
712-53.15A 0.10 tons Intermediate Field Coat (System G)
712-53.20A 0.10 tons Finish Field Coat (System G)
       
712-53.35A 0.10 tons Intermediate Field Coat (System H)
712-53.40A 0.10 tons Finish Field Coat (System H)
712-53.46 1.0 tons Finish Field Cost (System I)
       
712-53.65A 100.0 sq. foot Intermediate Field Coat (System G)
712-53.70A 100.0 sq. foot Finish Field Coat (System G)
       
712-53.85A 100.0 sq. foot Intermediate Field Coat (System H)
712-53.90A 100.0 sq. foot Finish Field Coat (System H)
712-53.96 100.0 ssq. foot Finish Field Coat (System I)
       
712-59.00 1.0 lump sum Calcium Sulfonate Rust Penetrating Sealer
712-59.01 1.0 lump sum Calcium Sulfonate Primer
712-59.02 1.0 lump sum Calcium Sulfonate Topcoat
       
712-59.20 100.0 sq. foot Calcium Sulfonate Primer
712-59.21 100.0 sq. foot Calcium Sulfonate Topcoat
       
712-59.30 0.10 tons Calcium Sulfonate Primer
712-59.31 0.10 tons Calcium Sulfonate Topcoat
       
712-59.60 1.0 lump sum Aluminum Epoxy-Mastic Primer
712-59.61 1.0 lump sum Gray Epoxy-Mastic Primer
       
712-60.00 1.0 linear foot Non-Destructive Testing
712-99.01 1.0 lump sum Misc.
712-99.02 1.0 each Misc.
712-99.03 1.0 linear foot Misc.
712-99.04 1.0 sq. foot Misc.
712-99.05 1.0 sq. yard Misc.
712-99.10 0.1 tons Misc.
712-99.11 10 pound Misc.
713-30.00 1.0 linear foot Bridge Guardrail (W-Beam)
713-40.00 1.0 linear foot Bridge Guardrail (Thrie Beam)
713-99.03A 1.0 linear foot Misc.
715-10.01 1.0 each Vertical Drain at End Bents
715-99.02 1.0 each Misc.
716-10.00 1.0 each Plain Neoprene Bearing Pad
716-10.01 1.0 linear foot Plain Neoprene Bearing Pad
716-10.02 1.0 each Laminated Neoprene Bearing Pad
716-10.03 1.0 each Laminated Neoprene Bearing Pad (Tapered)
716-20.00 1.0 each Laminated Neoprene Bearing Pad Assembly
716-30.00 1.0 each Type N PTFE Bearing
716-40.00 1.0 each POT Bearing
716-99.01 1.0 lump sum Misc.
716-99.02 1.0 each Misc.
716-99.03 1.0 linear foot Misc.
       
717-00.01 1.0 linear foot Alternate Expansion Joint System
717-10.01 1.0 linear foot Preformed Compression Seal Expansion Joint System
717-10.02 1.0 linear foot Preformed Compression Seal
Note: Use for seal only, no armor.
717-20.01 1.0 linear foot Strip Seal Expansion Joint System
717-20.02 1.0 linear foot Strip Seal
Note: Use for seal only, no armor.
717-30.01 1.0 linear foot Silicone Expansion Joint Sealant System
Note: See EPG 751.13.2 Silicone Expansion Joint Sealant.
717-30.02 1.0 linear foot Silicone Expansion Joint Sealant
Note: See EPG 751.13.2 Silicone Expansion Joint Sealant.
Use for silicone sealant only, no armor.
717-40.01 1.0 linear foot Preformed Silicone or EPDM Expansion Joint System
717-40.02 1.0 linear foot Preformed Silicone or EPDM Expansion Joint Seal
Note: Use for seal only, no armor.
717-99.03 1.0 linear foot Misc.
718-10.10 1.0 lump sum Furnishing Superstructure
718-10.11 1.0 lump sum Partial Furnishing of Superstructure
718-10.20 1.0 lump sum Transporting and Erecting Superstructure
718-10.30 1.0 lump sum Removing and Storing Superstructure
718-99.01 1.0 lump sum Misc.
718-99.02 1.0 Each Misc.
720-10.00 1.0 sq. foot Mechanically Stabilized Earth Wall Systems
720-11.00 1.0 sq. yard Form Liners for MSE Wall Systems
720-12.00 1.0 cu. yard Select Granular Backfill for Structural Systems
720-99.04 1.0 sq. foot Misc.
720-99.05 1.0 sq. yard Misc.
725-10.00 1.0 each Corrugated Metal Pipe Pile Spacers
       
901-93.00 1.0 lump sum Navigation Lighting System
901-93.01 1.0 lump sum Bridge Lighting

751.6.2 Computation of Estimated Quantities

All estimated quantities shall be carried to the degree of accuracy specified in the Index of Estimated Quantities. All quantities shall be listed on the plans in the order and worded exactly as shown in the Index of Estimated Quantities.

Two sets of quantity computations shall be independently performed and then agreed upon by the individuals performing the computations. Both sets of computations shall be bound together and submitted with the design plans.

In order to satisfy funding requirements on projects that add capacity to the Interstate System, the quantities that are attributed to the addition of capacity shall be reported separately from the remaining quantities in the submitted computations. Quantities shall not be shown separately on the bridge plans.

751.6.2.1 Weight of Bolts and Shear Connectors

Refer to AISC Manual of Steel Construction or ASTM A325 for weight and dimensions of high strength bolts and washers. When calculating the weight of high strength bolts in structural connections, the following simplified weights may be used. These values include the weight of a regular hex head, one heavy hex nut, one washer, and the portion of the bolt projecting beyond the grip (washer thickness + nut thickness + 1/4“).


Weight of High Strength Bolts
Bolt Size
Diameter (inch)
Weight per
100 Bolts (pounds)
5/8 40
3/4 65
7/8 95
1 135
1-1/8 180
1-1/4 245
1-3/8 352
1-1/2 400


Weight of Shear Connectors
  Weight In Place Per 100 Studs
Stud Dia. 4" 5" 6" 7"
3/4" 63 75 88 100
7/8" 81 98 115 132


751.6.2.2 Piles

Estimated quantities for piles, steel or concrete, shall be compiled as the entire length of the piles used, including the length of pile embedded in the pile cap or footing, measured to the nearest foot for each pile.

751.6.2.3 Pre-bore for Piling

Pre-bore is required when fill exceeds five feet as described in Sec 702 or when specified on the Design Layout. Pre-bore is also required through earth plugs. Pre-bore is computed as the length of pile measured from the bottom of the pile cap or footing to the natural ground line or as directed on the Design Layout rounded to the nearest foot for each hole.

751.6.2.4 Drilled Shafts

Drilled shafts, rock sockets and reinforcing steel quantity will be measured in accordance with Sec 701. Supplementary television camera inspection quantity will be calculated one for each drilled shaft. Foundation inspection hole quantities will be from the top of rock socket to 10 feet below the anticipated bottom of rock socket for each rock socket. Concrete coring quantities will be calculated for 10% of the drilled shafts for the total bridge through the drilled shaft and rock socket plus one foot below the bottom of the rock socket. Sonic logging testing shall be performed on all drilled shafts and rock sockets. Drilled shafts for high mast lighting will not require sonic logging testing and concrete coring.

751.6.2.5 Concrete

The volume of concrete shall be calculated to the nearest 0.1 cubic yard. Do not deduct for volume of concrete displaced by reinforcing steel or piling.

751.6.2.6 Polymer Concrete

The volume of polymer concrete shall be calculated to the nearest 1.0 cubic foot. Do not deduct for volume of concrete displaced by reinforcing steel.

751.6.2.7 Non-Destructive Testing (NDT) for Cover Plates

NDT shall be required when cover plate terminates in a tension zone. Required NDT length shall be computed and details shown on the plan. The length of weld to be tested and the base metal, 1” either side of the weld, shall be cleaned of all rust prior to the testing. On cover plates with square ends, the weld shall be tested 1” from each corner along the ends of the cover plate plus 6” back along the side from each corner of the plate.On cover plates with tapered ends, the weld shall be tested along the end of cover plate, along tapered edges and 6” back along cover plate from end of taper.

751.6.2.8 Temporary Shoring

When temporary shoring is required, it shall be reported as a lump sum item on the bridge plans. In addition, the estimated area of temporary shoring shall be computed to the nearest square foot and recorded only in the quantity folder. Embedment of temporary shoring shall be taken as one third of the exposed height of the shoring for the purpose of estimating the shoring area.

751.6.2.9 MSE Retaining Walls

Quantities for Mechanically Stabilized Earth Wall Systems are to be calculated based on the vertical face of the wall system as shown on the plans. The payment for furnishing and fabricating the concrete facing elements, excavation and installing the leveling pad, furnishing and installing the soil reinforcement, furnishing and placing select granular backfill for structural systems, furnishing other incidentals related to the wall system, and erecting the wall system complete-in-place, will be considered completely covered by the contract unit price for Mechanically Stabilized Earth Wall Systems per square foot. The use of the Select Granular Backfill for Structural Systems pay item will not be required.

751.6.2.10 Bridge Slabs

The area of concrete slabs is used in the Table of Estimated Quantities and shall be estimated to the nearest square yard from end of slab to end of slab. The end of slab shall be identified on a plan of slab detail on the bridge plans. The volume of concrete is used in the Table of Slab Quantities for the purpose of preparing the cost estimate and is given on the plans as an aid to the contractor. Concrete shall be estimated to the nearest cubic yard and reinforcing steel shall be estimated to the nearest 10 pounds.

751.6.2.11 Structural Steel Protective Coatings (Nonweathering Steel)

The protective coating, as specified on the Design Layout, shall be System G, H or I with the color being gray or brown. The coating color shall be specified on the Design Layout. The following gives pay item guidelines for most bridges.

Coating New Multi-Girder/Beam Bridges

Intermediate Field Coat and Finish Field Coat (System G, H or I) (Gray or Brown) - The quantity shall be computed to the nearest one hundred square foot of structural steel to be field coated. The area computations do not include bearings, diaphragms, stiffeners and all other miscellaneous steel within the limits of the field coatings.

1. Bridges over Roadways (does not include over Railroads)

The intermediate field coat for beam and girder spans shall be applied to the surfaces of all structural steel except those surfaces to be in contact with concrete shall not receive the intermediate coat. The intermediate coat shall also be applied to the bearings, except where bearings will be encased in concrete.

The finish field coat for beam and girder spans shall include the facia girders or beams. The limits of the facia girders or beams shall include the bottom of the top exterior flanges, the top of the bottom exterior flanges, the exterior web area, the exterior face of the top and bottom flanges, and the bottom of the bottom flange. Areas of steel to be in contact with concrete shall not receive the finish coat. The finish coat shall also be applied to the exterior bearings, except where bearings will be encased in concrete.

The surfaces of all structural steel located under expansion joints of beam and girder spans shall be field coated with intermediate and finish coats for a distance of one and a half times the girder depth, but not less than 10 feet from the center line of the joint. Within this limit, the items to be field coated shall include all surfaces of beams, girders, bearings, diaphragms, stiffeners and miscellaneous structural steel items. Areas of steel to be in contact with concrete shall not receive the field coats. The limits of the field coatings shall be masked to provide crisp, straight lines and to prevent overspray on adjacent areas.

2. Bridges over Streams and Bridges over Railroads

The field coatings (including intermediate and finish coats) for beam and girder spans shall include the facia girders or beams. The limits of the facia girders or beams shall include the bottom of the top exterior flanges, the top of the bottom exterior flanges, the exterior web area, the exterior face of the top and bottom flanges, and the bottom of the bottom flange. Areas of steel to be in contact with concrete shall not receive the field coats. The field coatings shall also be applied to the exterior bearings, except where bearings will be encased in concrete. The interior beams or girders shall only have the prime coat applied with no other field coatings required.

The surfaces of all structural steel located under expansion joints of beam and girder spans shall be field coated with intermediate and finish coats for a distance of one and a half times the girder depth, but not less than 10 feet from the center line of the joint. Within the limit, the items to be field coated shall include all surfaces of beams, girders, bearings, diaphragms, stiffeners and miscellaneous structural steel items. Areas of steel to be in contact with concrete shall not receive the field coats. The limits of the field coatings shall be masked to provide crisp, straight lines and to prevent overspray on adjacent areas.

Coating New Truss Bridges or Other Unusual Structures

Intermediate Field Coat and Finish Field Coat (System G, H or I) (Gray or brown) - The quantity shall be computed as a lump sum quantity.

All structural steel for truss or steel box girder spans shall be field coated with intermediate and finish coats, except the area of steel to be in contact with concrete.

Recoating Existing Multi-Girder/Beam Bridges

Quantities shall be computed to the nearest one hundred square feet of structural steel to be prepared or coated. The area computations do not include bearings, diaphragms, stiffeners and all other misc. steel within the limits of surface preparation or field coatings.

1. Surface Preparation for Recoating Structural Steel - Preparation shall include the surfaces of all structural steel.

2. Field Application of Inorganic Zinc Primer - Coverage shall meet the same requirements of Surface Preparation for Recoating Structural Steel.

3. Intermediate Field Coat (System G or H) (Gray or Brown) - Coverage shall meet the same requirements as new multi-girder/beam bridges.

4. Finish Field Coat (System G, H or I) (Gray or Brown) - Coverage shall meet the same requirements as new multi-girder/beam bridges.

Recoating Existing Truss Bridges or other Unusual Structures

Quantities shall be computed as lump sum quantities. The approximate weight of steel shall be shown to the nearest ton in the contract documents.

1. Surface Preparation for Recoating Structural Steel - Preparation shall include the surfaces of all structural steel.

2. Field Application of Inorganic Zinc Primer – Coverage shall meet the same requirements of Surface Preparation for Recoating Structural Steel.

3. Intermediate Field Coat (System G or H) (Gray or Brown) – Coverage shall meet the same requirements as new truss bridges.

4. Finish Field Coat (System G, H or I) (Gray or Brown) – Coverage shall meet the same requirements as new truss bridges.

Ovcoating Existing Multi-Girder/Beam Bridges

Quantities shall be computed to the nearest one hundred square feet of structural steel to be prepared or overcoated except as noted below. The area computations do not include bearings, diaphragms, stiffeners and all other misc. steel within the limits of surface preparation or field coatings. Partial overcoating of steel structures is allowed and the areas of partial overcoating should be clearly indicated shown on the plans.

1. Surface Preparation for Ovcoating Structural Steel - Preparation shall include the surfaces of all structural steel.

2. Calcium Sulfonate Rust Penetrating Sealer – Quantity shall be computed as a lump sum quantity. Coverage shall be applied to the surfaces of all bearings, overlapping steel plates, pin connections, pin and hanger connections, and other locations where rust bleeding , pack rust and layered rust is occurring.

3. Calcium Sulfonate Primer - Coverage shall meet the same requirements as Surface Preparation for Overcoating Structural Steel.

4. Calcium Sulfonate Topcoat - Coverage shall meet the same requirements as new multi-girder/beam bridges.

Limits of Paint Overlap

Refer to EPG 751.50 Notes A4a.15 and A4a.16.

Bridge Standard Drawings
Paint Overlap


751.6.2.12 Structural Steel Protective Coatings (Weathering Steel)

Coating New Multi-Girder/Beam Bridges, Truss Bridges or other Unusual Structures

There will not be a quantity item for coating weathering steel. The cost of coating weathering steel structures will be considered completely covered by the contract unit price for the Fabricated Structural Steel.

Recoating Existing Multi-Girder/Beam Bridges, Truss Bridges or other Unusual Structures

Recoating weathering steel when performing joint repair/replacement may be included on the contract plans. Other areas may be recoated depending upon inspection of the condition of weathering steel and the future deterioration expectations of same by Bridge Maintenance. See Structural Project Manager or Structural Liaison Engineer.

For existing multi-girder/beam bridges, quantities shall be computed to the nearest one hundred square feet of structural steel to be prepared or recoated. The area computations do not include bearings, diaphragms, stiffeners and all other misc. steel within the limits of surface preparation or field coatings. For truss bridges or other unusual structures, quantities shall be computed as lump sum quantities.

1. Surface Preparation for Recoating Structural Steel - Preparation shall be on a case-by-case basis.

2. Field Application of Inorganic Zinc Primer - Coverage shall meet the same requirements of Surface Preparation for Recoating Structural Steel.

3. Intermediate Field Coat (System H) (Brown) - Coverage shall be on a case-by-case basis.

4. Finish Field Coat (System H) (Brown) - Coverage shall be on a case-by-case basis.

751.6.2.13 Protective Coatings for Concrete

When the use of a protective coating for concrete is required, it shall be reported as a lump sum item on the bridge plans. In addition, the estimated area to be coated shall be computed to the nearest square foot and recorded only in the quantity folder. The following guidelines shall apply to the calculations for these items.

Protective Coating - Concrete Bents and Piers (Urethane) or (Epoxy)
See Expansion Devices Section for details.
Protective Coating - Concrete Bents and Piers (Weathering Steel)
Concrete Abutments - Coat all surfaces above the ground line.
Concrete Intermediate Bents & Piers - Coat all surfaces above the ground line or above the low water elevation, whichever is the higher at that bent or pier.
Concrete and Masonry Protection System
Coat all surfaces above ground line of the concrete as specified on the Design Layout.
Sacrificial Graffiti Protection System
Coat all surfaces above ground line of the concrete as specified on the Design Layout.

751.6.2.14 Asphaltic Concrete Pavement

Seal coat or tack coat is required with the asphaltic concrete pavement. Unit weights will not be calculated.

751.6.2.15 Seal Coat

A seal coat shall be used when specified on the Design Layout. Grade C seal coats shall be used whenever a bridge deck is to receive an asphalt wearing surface. Grade A seal coats shall be used whenever the seal coat is to be the final riding surface. Unit weights will not be calculated.

751.6.2.16 Tack Coat

A tack coat shall be used when specified on the Design Layout. The following unit weights will be used to calculate the estimated quantity reported on the bridge plans.

Tack Coat = 0.05 gal/sq. yd.

751.6.2.17 Excavation

Excavation shall be computed in accordance with Sec 206 and the limits shown in this section.

The Roadway and Drainage Excavation Line is the finish grade line after the bridge is completed in place. This may or may not correspond to the preliminary embankment line placed before the bridge is built.

The Excavation Datum is located at one foot above Low Water Elevation of the stream bed (round up to the next one foot). Use the low point of the streambed cross-section as Low Water Elevation, if a Low Water Elevation can not be found. Everything above this datum is Class 1 Excavation while everything below it is Class 2 Excavation.

Excavation Limit Rules

Soil or other sub-strata shall be excavated to the limits of:

  • 18” around the perimeter at the bottom of footings, and vertically (*) to the finished Roadway and Drainage Excavation Line
  • 18” for tapered wings only and around the wings on end bents
  • No excavation below sidewalls or wings of a semi-deep abutment
  • The perimeter of seal courses
  • No excavation shall be figured for piles or bracing
  • If there is less than 10 cubic yards of total excavation, no excavation item needs to be listed in the Estimated Quantities. See EPG 751.50 Standard Detailing Notes for the appropriate notes.

Classes of Excavation (**)

Class 1, Class 2 Excavations shall be computed in accordance with Sec 206 and the limits shown in the figures below. Excavation for structures below Excavation Datum Elevation will be paid for as Class 2 Excavation. Excavation for structures above Excavation Datum Elevation will be paid for as Class 1 Excavation. Use a minimum of 10 cubic yards of Class 1 Excavation when there is Class 2.

Class 4 Excavation shall be used for culverts. Class 4 Excavation shall be computed in accordance with Sec 206 and the limits shown below. Culvert concrete removal for extensions will be paid for as Partial Removal of Culvert-Bridge Concrete. See the Design Layout for special cases.

Cases of Excavation

Case 1 is when the ground line survey is a higher elevation than the roadway and drainage excavation line.

Case 2 is when the ground line survey is a lower elevation than the roadway and drainage excavation line.

(*) Soil shall be excavated vertically from the bottom of the footing for footing on pile, 6” above the bottom of the footing for footing on rock and 18” above the bottom of the footing for footing on shale.

(**) Use Excavation in Rock if it is anticipated to be more than 10 cu. yard. The designer should check with the Structural Project Manager before calculating the quantity of Excavation in Rock. See EPG 751.6.1 Index of Quantities Bridge.

751.6 NIEB Case 1 A.gif

PART PLAN

751.6 NIEB Case 1 B.gif

SECTION A-A

751.6 NIEB Case 1 C.gif

SECTION B-B

(*) 12" at lowest beam depth for Girder Bridges and 24" for Concrete Slab Bridges.

Non-Integral End Bent Excavation Limits (Case I)

(**) Case 1 is when the ground line survey is a higher elevation than the roadway and drainage excavation line.


751.6 StubBent-Case1.gif

(*) 12" at lowest beam depth for Girder Bridges and 24" for Concrete Slab Bridges.
(**) Specify berm elevation or 4'-0" minimum clearance.
(***) 6" for footing on rock, 18" for footing on shale.

When calculating rock excavations allow 18" around and 6" underneath wing.


Use the following note on plans:


Note: Bottom of wings at End Bents No. __ and __ shall not be cast on rock. Stub Bent Excavation Limits (Case I ****)

(****) Case 1 is when the ground line survey is a higher elevation than the roadway and drainage excavation line.


751.6 SDA Case 1 A.gif

PART PLAN

751.6 SDA Case 1 B.gif

SECTION A-A

751.6 SDA Case 1 C.gif

SECTION B-B

Semi-Deep Abutment Excavation Limits (Case 1 *)

(*) Case 1 is when the ground line survey is a higher elevation than the roadway and drainage excavation line.


751.6 SD Case 2-A.gif

PLAN

751.6 SD Case 2-B.gif

SECTION A-A

751.6 SD Case 2-C.gif

SECTION B-B

Semi-Deep Abutment Excavation Limits (Case 2 *)

(*) Case 2 is when the ground line survey is a lower elevation than the roadway and drainage excavation line.


751.6 All Grade Seperations Legend.gif 751.6 All Grade Seperations A.gif 751.6 All Grade Seperations B.gif 751.6 All Grade Seperations C.gif

Excavation Limits: All Grade Seperations

751.6 stream legend.gif

751.6 Stream Crossing.gif 751.6 seal course.gif


(*) 12" at lowest beam depth for Girder Bridges and 24" for Concrete Slab Bridges.
(**) BERM: Give the Elevation specified on DESIGN LAYOUT. If the berm elevation is not specified,

show 4'-0" MINIMUM from bottom of superstructure to finished ground line.

(***) 0" for footing on Pile, 6" for footing on Rock, 18" for footing on Shale.

EXCAVATION DATUM: (Design Layout)

(1) Indicate Low Water Elevation as given on Bridge Survey Report.
(2) Indicate Stream Bed Elevation (Low point of stream bed).
Excavation Limits: Stream Crossings (Typical)

(*) 12" at lowest beam depth for Girder Bridges and 24" for Concrete Slab Bridges.

751.6 Stream Crossing no excav.gif


Excavation Limits: Stream Crossing (No Excavation Item)


751.6 Retaining Walls.gif

Note:

Excavation to be included in Estimated Quantity Table (Class 1 or Class 4 Excavation for small block MSE walls,
shall be calculated to the nearest 5 cubic yards).
Final limits of the roadway and bridge excavation to be coordinated with the bridge plans prior to estimating.
See EPG 751.50 Standard Detailing Notes for the appropriate notes.


Excavation Limits: Retaining Walls
751.6 Culverts.gif


Excavation to be included in Estimated Quantity Table (Class 4 Excavation shall be carried to the nearest 5 cubic yards). Final limits of the roadway and bridge excavation to be coordinated with the bridge plans prior to estimating.

Excavation of 18" adjacent to the removal of culvert ends for purpose of extending the culvert will not be considered excavation and is considered part of removal. (Refer to Sec 206)

See EPG 751.50 Standard Detailing Notes for the appropriate notes.

Excavation Limits: Culverts